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QFT basics:
A quantum field theory model on Rd (example) can be seen as
a sequence indexed by n ≥ 0 of (correlation) functions
〈φ(x1) · · ·φ(xn)〉 which depend on n points in Rd . Such
functions would be given nonrigorously by

〈φ(x1) · · ·φ(xn)〉 =
1

Z

∫
Ω

φ(x1) · · ·φ(xn)×

exp

(
−
∫
Rd

{(∂φ)2(x) + µφ2(x) + gφ4(x)}ddx

)
Dφ

where Ω (probability space) is a space of functions from Rd to
R, Dφ is the Lebesgue measure on Ω and Z (the partition
function) is a normalization constant. Namely,

Z =

∫
Ω

exp

(
−
∫
Rd

{(∂φ)2(x) + µφ2(x) + gφ4(x)}ddx

)
Dφ

Of particular interest is the case where the correlations satisfy
conformal invariance, i.e., the QFT is a CFT.



There is no Dφ because Ω is infinite dimensional. To make
sense of the wanted probability measure: discretize, work in
finite volume, and then take weak limits. Fix some number
L > 1. For r , s ∈ Z, replace Rd by a finite set of points,
namely, the points in a lattice of mesh Lr , which fit in a box of
linear size Ls . This replaces Ω by a finite dimensional space
RLd(s−r)

.
The goal is to obtain the wanted probability measure ν, whose
moments are the 〈φ(x1) · · ·φ(xn)〉 as a (double) weak limit of
well defined probability measures νr ,s , namely

ν = lim
r→−∞

lim
s→∞

νr ,s .

Similar in spirit to numerical approximations by Monte-Carlo
methods. . .



From Talapov et al. IJMP 1993 (Thanks to S. Rychkov for
this reference)



A touristic view of AdS/CFT:

Let R̂d = Rd ∪ {∞} ' Sd .
The Möbius group M(Rd) is the group of bijective

transformations of R̂d generated by isometries, dilations and
the unit sphere inversion J(x) = |x |−2x .
This is also the invariance group of the absolute cross-ratio

CR(x1, x2, x3, x4) =
|x1 − x3| |x2 − x4|
|x1 − x4| |x2 − x3|

.

Conformal ball model: R̂d ' Sd seen as boundary of Bd+1

with metric ds = 2|dx |
1−|x |2 .

Half-space model: Rd seen as boundary of
Hd+1 = Rd × (0,∞) with metric ds = |dx |

xd+1
.

Bijection: f ∈M(Rd) ↔ hyperbolic isometry of the interior
Bd+1 or Hd+1, the Euclidean AdS space.



A scalar field O of scaling dimension ∆ in a CFT on Rd has
pointwise correlations which satisfy

〈O(x1) · · · O(xn)〉 =

(
n∏

i=1

|Jf (xi)|
∆
d

)
×〈O(f (x1)) · · · O(f (xn))〉

for all f ∈M(Rd) and all collection of distinct points in
Rd\{f −1(∞)}.
Here, Jf (x) denotes the Jacobian of f at x .
The AdS/CFT correspondence, discovered by Maldacena 1997
and made more precise by Gubser, Klebanov, Polyakov and
Witten 1998, postulates a relation of the form:〈

e
∫
Rd j(x)O(x)ddx

〉
CFT

= e−S[φext]

where S [φ] is an action for a field φ(x , xd+1) on AdS space
and φext makes it extremal for a boundary condition
φ(x , xd+1) ∼ (xd+1)d−∆j(x) when xd+1 → 0.



AdS/CFT or holographic correspondence not yet known
explicitly, i.e., exact S [φ] still mysterious. However, physicists
have been experimenting with toy actions of the form:∫
Rd×(0,∞)

ddx dxd+1

√
detgµν

{
1

2
gµν∂µφ∂νφ +

1

2
m2φ2 + · · ·

}
where m2 is related to ∆ and is allowed to be (not too)
negative.
This gives an expansion for connected CFT correlations in
terms of tree-level Feynman diagrams (Witten diagrams). The
simplest “Mercedes logo” 3-point Witten diagram reproduces
the correct CFT prediction

O(1)

|x1 − x2|∆1+∆2−∆3|x1 − x3|∆1+∆3−∆2|x2 − x3|∆2+∆3−∆1

for 〈O1(x1)O2(x2)O3(x3)〉 by a calculation of Freedman,
Mathur, Matusis and Rastelli 1999.



The good news:

All of the above makes sense for the hierarchical model, i.e.,
p-adic analogue.
See in particular:
• Melzer, IJMP 1989.
• Lerner, Missarov, LMP 1991.
• Gubser et al. “p-Adic AdS/CFT”, CMP 2017.
• Gubser et al. “O(N) and O(N) and O(N)”, JHEP 2017.

The calculations of the last reference for scaling dimensions of
Φ and Φ2, for N = 1 in hierarchical case were made
nonperturbatively rigorous in:

“Rigorous quantum field theory functional integrals over the
p-adics I: anomalous dimensions”, arXiv 2013, by A.A., Ajay
Chandra (Imperial College), Gianluca Guadagni (UVa).
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The hierarchical or p-adic continuum:

Let p be a prime number. We will replace Rd by Qd
p , so now

Ω becomes a space of functions from Qd
p to R. For

x = (x1, . . . , xd) ∈ Qd
p we let

|x |p = max(|x1|p, . . . , |xd |p) .

We equip Qd
p with the distance |x − y |p.

Let Lk , k ∈ Z, be the set of closed balls of radius pk in Qd
p ,

i.e., Lk = Qd
p/p

−kZd
p .

Hence T = ∪k∈ZLk naturally has the structure of a doubly
infinite tree which is organized into layers or generations Lk :



Picture for d = 1, p = 2



The hierarchical continuum Qd
p = leafs at infinity “L−∞”.

More precisely, these leafs at infinity are the infinite bottom-up
paths in the tree. T, with the graph distance, will play the role
of hyperbolic space Hd+1 of AdS bulk space.

A path representing an element x ∈ Qd
p



A point x = (x1, . . . , xd) ∈ Qd
p is encoded by a sequence

(an)n∈Z, an ∈ {0, 1, . . . , p − 1}d . For each n,
an = (an,1, . . . , an,d) and these are the digits of the p-adic
expansions xi =

∑
n∈Z an,ip

n.

an represents the local coordinates for a cube of L−n−1 inside
a cube of L−n.



Moreover, rescaling is defined as follows.
If x = (an)n∈Z then px := (an−1)n∈Z, i.e., upward shift.

Likewise p−1x is downward shift, and so on for the definition
of pkx , k ∈ Z.



Distance:

If x , y ∈ Qd
p , their distance can be visualized as |x − y |p = pk

where k is the depth where the two paths merge.

Keep in mind that
|px |p = p−1|x |p



Closed balls ∆ of radius pk correspond to the nodes x ∈ Lk



Lebesgue measure:

Metric space Qd
p → Borel σ-algebra → Lebesgue (or additive

Haar) measure ddx which gives a volume pdk to closed balls
of radius pk .

The hierarchical unit lattice:
Truncate the tree at level zero and take L := L0. Using the
identification of nodes with balls, define the hierarchical
distance as

d(x, y) = inf{|x − y |p | x ∈ x, y ∈ y} .



The massless Gaussian measure:

To every group of offsprings G of a vertex z ∈ Lk+1 associate
a centered Gaussian random vector (ζx)x∈G with pd × pd

covariance matrix made of 1− p−d ’s on the diagonal and
−p−d ’s everywhere else. We impose that Gaussian vectors
corresponding to different layers or different groups are
independent. We have

∑
x∈G ζx = 0 a.s.



The ancestor function: for k < k ′, x ∈ Lk , let anck ′(x) denote
the ancestor in Lk ′ .
Ditto for anck ′(x) when x ∈ Qd

p .
The massless Gaussian field φ(x), x ∈ Qd

p of scaling dimention
[φ] is given by

φ(x) =
∑
k∈Z

p−k[φ]ζanck (x)

〈φ(x)φ(y)〉 =
c

|x − y |2[φ]

This is heuristic since φ is not well-defined in a pointwise
manner. We need random Schwartz(-Bruhat) distributions.
I will now drop the p from | · |p.



Test functions:

f : Qd
p → R is smooth if it is locally constant.

Define S(Qd
p) as the space of compactly supported smooth

functions.
Take locally convex topology generated by the set of all
semi-norms on S(Qd

p).

Distributions:

S ′(Qd
p) is the dual space with strong topology (happens to be

same as weak-∗).

S(Qd
p) ' ⊕NR .

Thus
S ′(Qd

p) ' RN

with product topology. Ω := S ′(Qd
p) is a Polish space.



The p-adic CFT toy model:

d = 3, [φ] = 3−ε
4

, L = p` zooming-out factor

r ∈ Z UV cut-off, r → −∞

s ∈ Z IR cut-off, s →∞

The regularized Gaussian measure µCr is the law of

φr (x) =
∞∑

k=`r

p−k[φ]ζanck (x)

Sample fields are true fonctions that are locally constant on
scale Lr . These measures are scaled copies of each other.

If the law of φ(·) is µC0 , then that of L−r [φ]φ(Lr ·) is µCr .



The same Gaussian measures can be defined using (the less
intuitive) Fourier representation:

〈φ(x1)φ(x2)〉µC−∞ =

∫
Qd

e2πi{ξ(x1−x2)}p

|ξ|d−2[φ]
ddξ

and

〈φ(x1)φ(x2)〉µCr =

∫
Qd

χr (ξ)e2πi{ξ(x1−x2)}p

|ξ|d−2[φ]
ddξ

where χr (ξ) = 1l{|ξ| ≤ L−r} is a sharp UV cutoff.



Fix the dimensionless parameters g , µ and let gr = L−(3−4[φ])rg
and µr = L−(3−2[φ])rµ. Same as strict scaling limit of fixed
critical probability measure on unit lattice. Bare/dimensionful
couplings gr , µr go to ∞.

Let Λs = B(0, Ls), IR (or volume) cut-off.

Let

Vr ,s(φ) =

∫
Λs

{gr : φ4 :r (x) + µr : φ2 :r (x)}d3x

where : φk :r is Wick ordering using dµCr .
Define the probability measure

dνr ,s(φ) =
1

Zr ,s
e−Vr,s(φ)dµCr (φ) .



Let φr ,s be the random distribution in S ′(Q3
p) sampled

according to νr ,s and define the squared field Nr [φ
2
r ,s ] which is

a deterministic function(al) of φr ,s , with values in S ′(Q3
p),

given by

Nr [φ
2
r ,s ](j) = (Z2)r

∫
Q3

p

{Y2 : φ2
r ,s :r (x)− Y0L

−2r [φ]} j(x) d3x

for suitable parameters Z2, Y0, Y2. We also need a Y1.

Our main result concerns the limit law of the pair
(Y1φr ,s ,Nr [φ

2
r ,s ]) in S ′(Q3

p)× S ′(Q3
p) when r → −∞, s →∞

(in any order).
For the precise statement we need the approximate fixed point
value

ḡ∗ =
pε − 1

36Lε(1− p−3)
.



Theorems:

Theorem 1: A.A.-Chandra-Guadagni 2013

∃ρ > 0, ∃L0, ∀L ≥ L0, ∃ε0 > 0, ∀ε ∈ (0, ε0], ∃[φ2]>2[φ],

∃ fonctions µ(g), Y0(g), Y2(g) on (ḡ∗ − ρε
3
2 , ḡ∗ + ρε

3
2 ) such

that if one lets µ = µ(g), Y0 = Y0(g), Y2 = Y2(g) and
Z2 = L−([φ2]−2[φ]) then the joint law of (Y1φr ,s ,Nr [φ

2
r ,s ]) con-

verge weakly and in the sense of moments to that of a pair
(φ,N[φ2]) such that:

1 ∀k ∈ Z, (L−k[φ]φ(Lk ·), L−k[φ2]N[φ2](Lk ·))
d
= (φ,N[φ2]).

2 〈φ(1Z3
p
), φ(1Z3

p
), φ(1Z3

p
), φ(1Z3

p
)〉T < 0 i.e., φ is

non-Gaussian. Here, 1Z3
p

denotes the indicator function of

B(0, 1).

3 〈N[φ2](1Z3
p
),N[φ2](1Z3

p
)〉T = 1.

4 〈φ(1Z3
p
)2〉 = 1.



The mixed correlation functions satisfy, in the sense of
distributions,

〈 φ(L−kx1) · · ·φ(L−kxn) N[φ2](L−ky1) · · ·N[φ2](L−kym) 〉

= L−(n[φ]+m[φ2])k 〈 φ(x1) · · ·φ(xn) N[φ2](y1) · · ·N[φ2](ym) 〉

For our hierarchical version of the 3D fractional φ4 model we
also proved [φ2]− 2[φ] = 1

3
ε + o(ε).

This was predicted by Wilson in “Renormalization of a scalar
field theory in strong coupling”, PRD 1972.

This is also what is expected for the Euclidean model on R3.

Not too far, if one boldly extrapolates to ε = 1, from the most
precise available estimates concerning the short range 3D Ising
model: [φ2]− 2[φ] = 0.376327 . . . (JHEP 2016 by Kos,
Poland, Simmons-Duffin and Vichi, using conformal
bootstrap).



We also proved the law νφ×φ2 of (φ,N[φ2]), is independent of

g in the interval (ḡ∗ − ρε
3
2 , ḡ∗ + ρε

3
2 ). This also holds if one

also adds φ6, φ8,. . . terms in the potential, with small
couplings. We proved strong local universality for a
non-Gaussian scaling limit.

Theorem 2: A.A.-Chandra-Guadagni 2013

νφ×φ2 is fully scale invariant, i.e., invariant under the action of
the scaling group pZ instead of the subgroup LZ. Moreover,
µ(g) and [φ2] are independent of the arbitrary factor L.

The two-point correlations are given in the sense of
distributions by

〈φ(x)φ(y)〉 =
c1

|x − y |2[φ]

〈N[φ2](x) N[φ2](y)〉 =
c2

|x − y |2[φ2]



Note that 2[φ2] = 3− 1
3
ε + o(ε) → still L1,loc !

Theorem 3: A.A., May 2015

Use ψi to denote the scaling limits φ or N[φ2]. Then, for all
mixed correlation ∃ a smooth (i.e., locally constant) fonction
〈ψ1(z1) · · ·ψn(zn)〉 on (Q3

p)n\Diag which is locally integrable
(on the big diagonal Diag) and such that

E ψ1(f1) · · ·ψn(fn) =∫
(Q3

p)n\Diag

〈ψ1(z1) · · ·ψn(zn)〉 f1(z1) · · · fn(zn) d3z1 · · · d3zn

for all test functions f1, . . . , fn ∈ S(Q3
p).



This hinges on showing the BNNFB (basic nearest neighbor
factorized bound) of A.A., “A Second-Quantized
Kolmogorov-Chentsov Theorem via the Operator Product
Expansion”, CMP 2020. The BNNFB is

| 〈ψ1(z1) · · ·ψn(zn)〉 | ≤ O(1)×
n∏

i=1

1

|zi − n.n.|[ψi ]

when z1, . . . , zn are confined to a compact set.

This follows from the use of the SDRG (space-dependent
renormalization group) to derive an explicit representation of
pointwise correlations in terms of very close analogues of tree
Witten diagrams. Hence, the emergent connection to the
AdS/CFT correspondence.
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The renormalization group idea in a nutshell:

Want to study feature Z( ~V ) of some object ~V ∈ E but too
hard!

Find “simplifying” transformation RG : E → E , such that
Z(RG ( ~V )) = Z( ~V ), and limn→∞ RG n( ~V ) = ~V∗ with Z( ~V∗)
easy.

Example: ~V = (a, b) ∈ E = (0,∞)2

Z( ~V ) =

∫ π
2

0

dθ√
a2 cos2 θ + b2 sin2 θ

.

Take RG (a, b) =
(

a+b
2
,
√
ab
)

.

(Landen-Gauss)



1st step: rescale to unit lattice/cut-off

ST
r ,s(f ) := logEνr,seφ(f ) = log∫

dµCr (φ) exp
(
−
∫

Λs
{gr : φ4 :r (x) + µr : φ2 :r}dx +

∫
φ(x)f (x)dx

)
∫
dµCr (φ) exp

(
−
∫

Λs
{gr : φ4 :r (x) + µr : φ2 :r}dx

)
= log

∫
dµC0(φ) I(r ,r)[f ](φ)∫
dµC0(φ) I(r ,r)[0](φ)

=: log
Z( ~V (r ,r)[f ])

Z( ~V (r ,r)[0])

with

I(r ,r)[f ](φ) = exp

(
−
∫

Λs−r

{g : φ4 :0 (x) + µ : φ2 :0}d3x

+L(3−[φ])r

∫
φ(x)f (L−rx)d3x

)



2nd step: define inhomogeneous RG
Fluctuation covariance Γ := C0 − C1.
Associated Gaussian measure is the law of the fluctuation field

ζ(x) =
∑

0≤k<`

p−k[φ]ζanck (x)

L-blocks (closed balls of radius L) are independent. Hence∫
I(r ,r)[f ](φ) dµC0(φ) =

∫ ∫
I(r ,r)[f ](ζ +ψ) dµΓ(ζ)dµC1(ψ)

=

∫
I(r ,r+1)[f ](φ) dµC0(φ)

with new integrand

I(r ,r+1)[f ](φ) :=

∫
I(r ,r)[f ](ζ + L−[φ]φ(L·)) dµΓ(ζ)



Need to extract vacuum renormalization → better definition is

I(r ,r+1)[f ](φ) = e−δb(I(r,r)[f ])

∫
I(r ,r)[f ](ζ + L−[φ]φ(L·)) dµΓ(ζ)

so that we have the fundamental identity∫
I(r ,r)[f ](φ) dµC0(φ) = eδb(I(r,r)[f ])

∫
I(r ,r+1)[f ](φ) dµC0(φ)

Repeat: I(r ,r) → I(r ,r+1) → I(r ,r+2) → · · · → I(r ,s)

One must control

ST(f ) = lim
r→−∞
s→∞

∑
r≤q<s

(
δb(I(r ,q)[f ])− δb(I(r ,q)[0])

)
limit of logarithms of characteristic functions.



Use a Brydges-Yau lift

RGinhom

~V (r ,q) −→ ~V (r ,q+1)

↓ ↓
I(r ,q) −→ I(r ,q+1)

I(r ,q)(φ) =
∏
∆∈L0

∆⊂Λs−q

[
e f∆φ∆×

{
exp
(
−β4,∆ : φ4

∆ :C0 −β3,∆ : φ3
∆ :C0 −β2,∆ : φ2

∆ :C0 −β1,∆ : φ1
∆ :C0

)
×
(
1 + W5,∆ : φ5

∆ :C0 +W6,∆ : φ6
∆ :C0

)
+R∆(φ∆)}]

Dynamical variable is ~V = (V∆)∆∈L0 with

V∆ = (β4,∆, β3,∆, β2,∆, β1,∆,W5,∆,W6,∆, f∆,R∆)



RGinhom acts on Einhom, essentially,∏
∆∈L0

{
C7 × C 9(R,C)

}

Stable subspaces

Ehom ⊂ Einhom: spatially constant data.
E ⊂ Ehom: even potential, i.e., g , µ’s only and R even
function.
Let RG be induced action of RGinhom on E .



3rd step: stabilize bulk (homogeneous) evolution

Show that ∀q ∈ Z, limr→−∞ ~V (r ,q)[0]
exists, i.e.,

lim
r→−∞

RG q−r
(
~V (r ,r)[0]

)
exists.

RG


g ′ = Lεg − A1g

2 + · · ·
µ′ = L

3+ε
2 µ − A2g

2 − A3gµ + · · ·
R ′ = L(g ,µ)(R) + · · ·

Tadpole graph with mass insertion

A3 = 12L3−2[φ]

∫
Q3

p

Γ(0, x)2 d3x

is main culprit for anomalous scaling [φ2]− 2[φ] > 0.



Irwin’s proof → stable manifold W s

Restriction to W s → contraction → IR fixed point v∗.

Construct unstable manifold W u, intersect with W s,
transverse at v∗.

Here, ~V (r ,r)[0] is independent of r : strict scaling limit of fixed
model on unit lattice. (We can also do the Gaussian to
non-Gaussian crossover continuum limit).
~V (r ,r)[0] must be chosen in W s → µ(g) critical mass.

Thus
∀q ∈ Z, lim

r→−∞
~V (r ,q)[0] = v∗

Tangent spaces at fixed point: E s and E u.
E u = Ceu, with eu eigenvector of Dv∗RG for eigenvalue
αu = L3−2[φ] × Z2 =: L3−[φ2].



4th step: control deviation from homogeneous evolution
~V (r ,q)[f ]− ~V (r ,q)[0], for all effective scale q, uniformly in r .
1)
∑

x∈G ζx = 0 a.s. → deviation is 0 for q <local constancy
scale of test function f .
2) Deviation resides in closed unit ball containing origin for
q > radius of support of f → exponential decay for large q.
For source term with φ2 add

Y2Z
r
2

∫
: φ2 :Cr (x)j(x)d3x

to potential. ST
r ,s(f , j) now involves two test functions. After

rescaling to unit lattice/cut-off

Y2α
r
u

∫
: φ2 :C0 (x)j(L−rx)d3x

to be combined with µ into (β2,∆)∆∈L0 space-dependent mass.



5th step: partial linearization

In order to replay same sequence of moves with j present,
construct

Ψ(v ,w) = lim
n→∞

RG n(v + α−nu w)

for v ∈ W s and all direction w (especially
∫

: φ2 :).

For v fixed, Ψ(v , ·) is parametrization of W u satisfying
Ψ(v , αuw) = RG (Ψ(v ,w)).

If there were no W s directions (1D dynamics) then Ψ would
be conjugation → Poincaré-Kœnigs Theorem.

Ψ(v ,w) is holomorphic in v and w .

This is essential for probabilistic interpretation of (φ,N[φ2]) as
pair of random variables in S ′(Q3

p).

Thank you for your attention.


