Rigorous nonperturbative results related to p-adic AdS/CFT

Abdelmalek Abdesselam Mathematics Department, University of Virginia

Eighth International Conference on p-Adic Mathematical Physics and Its Applications, May 21, 2021

Introduction

- The hierarchical continuum
- The rigorous hierarchical space-dependent renormalization group

QFT basics:

A quantum field theory model on \mathbb{R}^d (example) can be seen as a sequence indexed by $n \ge 0$ of (correlation) functions $\langle \phi(x_1) \cdots \phi(x_n) \rangle$ which depend on *n* points in \mathbb{R}^d . Such functions would be given nonrigorously by

$$\langle \phi(x_1) \cdots \phi(x_n) \rangle = \frac{1}{\mathcal{Z}} \int_{\Omega} \phi(x_1) \cdots \phi(x_n) \times$$

 $\exp\left(-\int_{\mathbb{R}^d} \{(\partial \phi)^2(x) + \mu \phi^2(x) + g \phi^4(x)\} d^d x\right) D\phi$

where Ω (probability space) is a space of functions from \mathbb{R}^d to \mathbb{R} , $D\phi$ is the Lebesgue measure on Ω and \mathcal{Z} (the partition function) is a normalization constant. Namely,

$$\mathcal{Z} = \int_{\Omega} \exp\left(-\int_{\mathbb{R}^d} \{(\partial \phi)^2(x) + \mu \phi^2(x) + g \phi^4(x)\} d^d x\right) D\phi$$

Of particular interest is the case where the correlations satisfy conformal invariance, i.e., the QFT is a CFT. $AB \to AB \to AB$

There is no $D\phi$ because Ω is infinite dimensional. To make sense of the wanted probability measure: discretize, work in finite volume, and then take weak limits. Fix some number L > 1. For $r, s \in \mathbb{Z}$, replace \mathbb{R}^d by a finite set of points, namely, the points in a lattice of mesh L^r , which fit in a box of linear size L^s . This replaces Ω by a finite dimensional space $\mathbb{R}^{L^{d(s-r)}}$.

The goal is to obtain the wanted probability measure ν , whose moments are the $\langle \phi(x_1) \cdots \phi(x_n) \rangle$ as a (double) weak limit of well defined probability measures $\nu_{r,s}$, namely

$$\nu = \lim_{r \to -\infty} \lim_{s \to \infty} \nu_{r,s} \; .$$

Similar in spirit to numerical approximations by Monte-Carlo methods...

Fig. 17. Ratio of the SPP computed correlation function to the exact continuum limit function for L = 1024.

500

From Talapov et al. IJMP 1993 (Thanks to S. Rychkov for this reference)

A touristic view of AdS/CFT:

Let $\widehat{\mathbb{R}^d} = \mathbb{R}^d \cup \{\infty\} \simeq \mathbb{S}^d$. The Möbius group $\mathcal{M}(\mathbb{R}^d)$ is the group of bijective transformations of $\widehat{\mathbb{R}^d}$ generated by isometries, dilations and the unit sphere inversion $J(x) = |x|^{-2}x$. This is also the invariance group of the absolute cross-ratio

$$CR(x_1, x_2, x_3, x_4) = \frac{|x_1 - x_3| |x_2 - x_4|}{|x_1 - x_4| |x_2 - x_3|}$$

Conformal ball model: $\widehat{\mathbb{R}^d} \simeq \mathbb{S}^d$ seen as boundary of \mathbb{B}^{d+1} with metric $ds = \frac{2|dx|}{1-|x|^2}$. Half-space model: \mathbb{R}^d seen as boundary of $\mathbb{H}^{d+1} = \mathbb{R}^d \times (0, \infty)$ with metric $ds = \frac{|dx|}{x_{d+1}}$. Bijection: $f \in \mathcal{M}(\mathbb{R}^d) \leftrightarrow$ hyperbolic isometry of the interior \mathbb{B}^{d+1} or \mathbb{H}^{d+1} , the Euclidean AdS space. A scalar field \mathcal{O} of scaling dimension Δ in a CFT on \mathbb{R}^d has pointwise correlations which satisfy

$$\langle \mathcal{O}(x_1)\cdots \mathcal{O}(x_n)\rangle = \left(\prod_{i=1}^n |J_f(x_i)|^{\frac{\Delta}{d}}\right) \times \langle \mathcal{O}(f(x_1))\cdots \mathcal{O}(f(x_n))\rangle$$

for all $f \in \mathcal{M}(\mathbb{R}^d)$ and all collection of distinct points in $\mathbb{R}^d \setminus \{f^{-1}(\infty)\}$. Here, $J_f(x)$ denotes the Jacobian of f at x. The AdS/CFT correspondence, discovered by Maldacena 1997 and made more precise by Gubser, Klebanov, Polyakov and Witten 1998, postulates a relation of the form:

$$\left\langle \left. e^{\int_{\mathbb{R}^d} j(x) \mathcal{O}(x) d^d x} \right.
ight
angle_{ ext{CFT}} = e^{-\mathcal{S}[\phi_{ ext{ext}}]}$$

where $S[\phi]$ is an action for a field $\phi(x, x_{d+1})$ on AdS space and ϕ_{ext} makes it extremal for a boundary condition $\phi(x, x_{d+1}) \sim (x_{d+1})^{d-\Delta} j(x)$ when $x_{d+1} \rightarrow 0$. AdS/CFT or holographic correspondence not yet known explicitly, i.e., exact $S[\phi]$ still mysterious. However, physicists have been experimenting with toy actions of the form:

$$\int_{\mathbb{R}^d\times(0,\infty)} d^d x \, dx_{d+1} \, \sqrt{\det g_{\mu\nu}} \, \left\{ \frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + \frac{1}{2} m^2 \phi^2 + \cdots \right\}$$

where m^2 is related to Δ and is allowed to be (not too) negative.

This gives an expansion for connected CFT correlations in terms of tree-level Feynman diagrams (Witten diagrams). The simplest "Mercedes logo" 3-point Witten diagram reproduces the correct CFT prediction

$$O(1) \ |x_1-x_2|^{\Delta_1+\Delta_2-\Delta_3}|x_1-x_3|^{\Delta_1+\Delta_3-\Delta_2}|x_2-x_3|^{\Delta_2+\Delta_3-\Delta_1}$$

for $\langle \mathcal{O}_1(x_1)\mathcal{O}_2(x_2)\mathcal{O}_3(x_3) \rangle$ by a calculation of Freedman, Mathur, Matusis and Rastelli 1999.

The good news:

All of the above makes sense for the hierarchical model, i.e., *p*-adic analogue.

See in particular:

- Melzer, IJMP 1989.
- Lerner, Missarov, LMP 1991.
- Gubser et al. "p-Adic AdS/CFT", CMP 2017.
- Gubser et al. "O(N) and O(N) and O(N)", JHEP 2017.

The calculations of the last reference for scaling dimensions of Φ and Φ^2 , for N = 1 in hierarchical case were made nonperturbatively rigorous in:

"Rigorous quantum field theory functional integrals over the p-adics I: anomalous dimensions", arXiv 2013, by A.A., Ajay Chandra (Imperial College), Gianluca Guadagni (UVa).

Introduction

The hierarchical continuum

 The rigorous hierarchical space-dependent renormalization group

The hierarchical or *p*-adic continuum:

Let p be a prime number. We will replace \mathbb{R}^d by \mathbb{Q}_p^d , so now Ω becomes a space of functions from \mathbb{Q}_p^d to \mathbb{R} . For $x = (x_1, \ldots, x_d) \in \mathbb{Q}_p^d$ we let

$$|x|_p = \max(|x_1|_p, \ldots, |x_d|_p) .$$

We equip \mathbb{Q}_p^d with the distance $|x - y|_p$.

Let \mathbb{L}_k , $k \in \mathbb{Z}$, be the set of closed balls of radius p^k in \mathbb{Q}_p^d , i.e., $\mathbb{L}_k = \mathbb{Q}_p^d / p^{-k} \mathbb{Z}_p^d$.

Hence $\mathbb{T} = \bigcup_{k \in \mathbb{Z}} \mathbb{L}_k$ naturally has the structure of a doubly infinite tree which is organized into layers or generations \mathbb{L}_k :

▲□▶▲□▶▲□▶▲□▶ = のへの

Picture for d = 1, p = 2

<ロト < 部 ト < 注 ト < 注 ト 三 三 のへで</p>

The hierarchical continuum $\mathbb{Q}_p^d = \text{leafs at infinity "}\mathbb{L}_{-\infty}$ ". More precisely, these leafs at infinity are the infinite bottom-up paths in the tree. \mathbb{T} , with the graph distance, will play the role of hyperbolic space \mathbb{H}^{d+1} of AdS bulk space.

A path representing an element $x \in \mathbb{Q}_p^d$

< ロ > < 回 > < 三 > < 三 > < 三 > < 三 > < ○ < ○</p>

A point $x = (x_1, \ldots, x_d) \in \mathbb{Q}_p^d$ is encoded by a sequence $(a_n)_{n \in \mathbb{Z}}$, $a_n \in \{0, 1, \ldots, p-1\}^d$. For each n, $a_n = (a_{n,1}, \ldots, a_{n,d})$ and these are the digits of the *p*-adic expansions $x_i = \sum_{n \in \mathbb{Z}} a_{n,i} p^n$.

 a_n represents the local coordinates for a cube of \mathbb{L}_{-n-1} inside a cube of \mathbb{L}_{-n} .

nac

Moreover, rescaling is defined as follows.

If $x = (a_n)_{n \in \mathbb{Z}}$ then $px := (a_{n-1})_{n \in \mathbb{Z}}$, i.e., upward shift.

Likewise $p^{-1}x$ is downward shift, and so on for the definition of $p^k x$, $k \in \mathbb{Z}$.

Distance:

If $x, y \in \mathbb{Q}_p^d$, their distance can be visualized as $|x - y|_p = p^k$ where k is the depth where the two paths merge.

Keep in mind that

 $|px|_p = p^{-1}|x|_p$

< ロ > < 回 > < 三 > < 三 > < 三 > < 回 > < ○ < ○</p>

Closed balls Δ of radius p^k correspond to the nodes $\mathbf{x} \in \mathbb{L}_k$

Lebesgue measure:

Metric space $\mathbb{Q}_p^d \to \text{Borel } \sigma\text{-algebra} \to \text{Lebesgue}$ (or additive Haar) measure $d^d x$ which gives a volume p^{dk} to closed balls of radius p^k .

The hierarchical unit lattice:

Truncate the tree at level zero and take $\mathbb{L} := \mathbb{L}_0$. Using the identification of nodes with balls, define the hierarchical distance as

$$d(\mathbf{x}, \mathbf{y}) = \inf\{|x - y|_{p} \mid x \in \mathbf{x}, y \in \mathbf{y}\}$$

The massless Gaussian measure:

To every group of offsprings G of a vertex $\mathbf{z} \in \mathbb{L}_{k+1}$ associate a centered Gaussian random vector $(\zeta_{\mathbf{x}})_{\mathbf{x}\in G}$ with $p^d \times p^d$ covariance matrix made of $1 - p^{-d}$'s on the diagonal and $-p^{-d}$'s everywhere else. We impose that Gaussian vectors corresponding to different layers or different groups are independent. We have $\sum_{\mathbf{x}\in G} \zeta_{\mathbf{x}} = 0$ a.s. The ancestor function: for k < k', $\mathbf{x} \in \mathbb{L}_k$, let $\operatorname{anc}_{k'}(\mathbf{x})$ denote the ancestor in $\mathbb{L}_{k'}$.

Ditto for $\operatorname{anc}_{k'}(x)$ when $x \in \mathbb{Q}_p^d$. The massless Gaussian field $\phi(x)$, $x \in \mathbb{Q}_p^d$ of scaling dimension $[\phi]$ is given by

$$egin{aligned} \phi(x) &= \sum_{k \in \mathbb{Z}} p^{-k[\phi]} \zeta_{\mathrm{anc}_k(x)} \ \langle \phi(x) \phi(y)
angle &= rac{c}{|x-y|^{2[\phi]}} \end{aligned}$$

This is heuristic since ϕ is not well-defined in a pointwise manner. We need random Schwartz(-Bruhat) distributions. I will now drop the *p* from $|\cdot|_p$.

- ロ ト - 4 日 ト - 4 日 ト - 4 日 ト - 9 0 0

Test functions:

 $f: \mathbb{Q}_p^d \to \mathbb{R}$ is smooth if it is locally constant. Define $S(\mathbb{Q}_p^d)$ as the space of compactly supported smooth functions.

Take locally convex topology generated by the set of all semi-norms on $S(\mathbb{Q}_p^d)$.

Distributions:

 $S'(\mathbb{Q}_p^d)$ is the dual space with strong topology (happens to be same as weak-*).

$$S(\mathbb{Q}_p^d)\simeq \oplus_{\mathbb{N}}\mathbb{R}$$
 .

Thus

$$S'(\mathbb{Q}_p^d)\simeq \mathbb{R}^{\mathbb{N}}$$

with product topology. $\Omega := S'(\mathbb{Q}_p^d)$ is a Polish space.

The p-adic CFT toy model:

- d = 3, $[\phi] = \frac{3-\epsilon}{4}$, $L = p^{\ell}$ zooming-out factor
- $r\in\mathbb{Z}$ UV cut-off, $r
 ightarrow -\infty$
- $s\in\mathbb{Z}$ IR cut-off, $s
 ightarrow\infty$

The regularized Gaussian measure μ_{C_r} is the law of

$$\phi_r(x) = \sum_{k=\ell r}^{\infty} p^{-k[\phi]} \zeta_{\mathrm{anc}_k(x)}$$

Sample fields are true fonctions that are locally constant on scale L^r . These measures are scaled copies of each other.

If the law of $\phi(\cdot)$ is μ_{C_0} , then that of $L^{-r[\phi]}\phi(L^r\cdot)$ is μ_{C_r} .

The same Gaussian measures can be defined using (the less intuitive) Fourier representation:

$$\langle \phi(x_1)\phi(x_2) \rangle_{\mu_{C_{-\infty}}} = \int_{\mathbb{Q}^d} \frac{e^{2\pi i \{\xi(x_1-x_2)\}_p}}{|\xi|^{d-2[\phi]}} d^d \xi$$

and

$$\langle \phi(\mathbf{x}_1)\phi(\mathbf{x}_2)\rangle_{\mu_{C_r}} = \int_{\mathbb{Q}^d} \frac{\chi_r(\xi)e^{2\pi i\{\xi(\mathbf{x}_1-\mathbf{x}_2)\}_p}}{|\xi|^{d-2[\phi]}} d^d\xi$$

where $\chi_r(\xi) = \mathbb{1}\{|\xi| \le L^{-r}\}$ is a sharp UV cutoff.

Fix the dimensionless parameters g, μ and let $g_r = L^{-(3-4[\phi])r}g$ and $\mu_r = L^{-(3-2[\phi])r}\mu$. Same as strict scaling limit of fixed critical probability measure on unit lattice. Bare/dimensionful couplings g_r, μ_r go to ∞ .

Let $\Lambda_s = \overline{B}(0, L^s)$, IR (or volume) cut-off.

Let

$$V_{r,s}(\phi) = \int_{\Lambda_s} \{g_r : \phi^4 :_r (x) + \mu_r : \phi^2 :_r (x)\} d^3x$$

where : ϕ^k :_r is Wick ordering using $d\mu_{C_r}$. Define the probability measure

$$d\nu_{r,s}(\phi) = rac{1}{\mathcal{Z}_{r,s}} e^{-V_{r,s}(\phi)} d\mu_{C_r}(\phi) \; .$$

Let $\phi_{r,s}$ be the random distribution in $S'(\mathbb{Q}_p^3)$ sampled according to $\nu_{r,s}$ and define the squared field $N_r[\phi_{r,s}^2]$ which is a deterministic function(al) of $\phi_{r,s}$, with values in $S'(\mathbb{Q}_p^3)$, given by

$$N_{r}[\phi_{r,s}^{2}](j) = (Z_{2})^{r} \int_{\mathbb{Q}_{p}^{3}} \{Y_{2} : \phi_{r,s}^{2} : r(x) - Y_{0}L^{-2r[\phi]}\} j(x) d^{3}x$$

for suitable parameters Z_2 , Y_0 , Y_2 . We also need a Y_1 .

Our main result concerns the limit law of the pair $(Y_1\phi_{r,s}, N_r[\phi_{r,s}^2])$ in $S'(\mathbb{Q}_p^3) \times S'(\mathbb{Q}_p^3)$ when $r \to -\infty$, $s \to \infty$ (in any order).

For the precise statement we need the approximate fixed point value

$$\bar{g}_* = \frac{p^\epsilon - 1}{36L^\epsilon(1-p^{-3})}$$

< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < < つ < ○

Theorems:

Theorem 1: A.A.-Chandra-Guadagni 2013

 $\exists \rho > 0, \ \exists L_0, \ \forall L \ge L_0, \ \exists \epsilon_0 > 0, \ \forall \epsilon \in (0, \epsilon_0], \ \exists [\phi^2] > 2[\phi], \\ \exists \text{ fonctions } \mu(g), \ Y_0(g), \ Y_2(g) \text{ on } (\bar{g}_* - \rho \epsilon^{\frac{3}{2}}, \bar{g}_* + \rho \epsilon^{\frac{3}{2}}) \text{ such } \\ \text{that if one lets } \mu = \mu(g), \ Y_0 = Y_0(g), \ Y_2 = Y_2(g) \text{ and } \\ Z_2 = L^{-([\phi^2] - 2[\phi])} \text{ then the joint law of } (Y_1 \phi_{r,s}, N_r[\phi^2_{r,s}]) \text{ converge weakly and in the sense of moments to that of a pair } (\phi, N[\phi^2]) \text{ such that:}$

- $\begin{array}{l} \textcircled{2} \quad \langle \phi(\mathbf{1}_{\mathbb{Z}_p^3}), \phi(\mathbf{1}_{\mathbb{Z}_p^3}), \phi(\mathbf{1}_{\mathbb{Z}_p^3}), \phi(\mathbf{1}_{\mathbb{Z}_p^3}) \rangle^{\mathrm{T}} < 0 \text{ i.e., } \phi \text{ is} \\ \begin{array}{c} \mathsf{non-Gaussian.} & \mathsf{Here, } \mathbf{1}_{\mathbb{Z}_p^3} \text{ denotes the indicator function of} \\ \hline \overline{B}(0,1). \end{array} \end{array}$
- $(N[\phi^2](\mathbf{1}_{\mathbb{Z}^3_{\rho}}), N[\phi^2](\mathbf{1}_{\mathbb{Z}^3_{\rho}}))^{\mathrm{T}} = 1.$

The mixed correlation functions satisfy, in the sense of distributions,

$$\langle \phi(L^{-k}x_1)\cdots\phi(L^{-k}x_n) N[\phi^2](L^{-k}y_1)\cdots N[\phi^2](L^{-k}y_m) \rangle$$
$$= L^{-(n[\phi]+m[\phi^2])k} \langle \phi(x_1)\cdots\phi(x_n) N[\phi^2](y_1)\cdots N[\phi^2](y_m) \rangle$$

For our hierarchical version of the 3D fractional ϕ^4 model we also proved $[\phi^2] - 2[\phi] = \frac{1}{3}\epsilon + o(\epsilon)$.

This was predicted by Wilson in "Renormalization of a scalar field theory in strong coupling", PRD 1972.

This is also what is expected for the Euclidean model on \mathbb{R}^3 .

Not too far, if one boldly extrapolates to $\epsilon = 1$, from the most precise available estimates concerning the short range 3D Ising model: $[\phi^2] - 2[\phi] = 0.376327...$ (JHEP 2016 by Kos, Poland, Simmons-Duffin and Vichi, using conformal bootstrap).

We also proved the law $\nu_{\phi \times \phi^2}$ of $(\phi, N[\phi^2])$, is independent of g in the interval $(\bar{g}_* - \rho \epsilon^{\frac{3}{2}}, \bar{g}_* + \rho \epsilon^{\frac{3}{2}})$. This also holds if one also adds ϕ^6 , ϕ^8, \ldots terms in the potential, with small couplings. We proved strong local universality for a non-Gaussian scaling limit.

Theorem 2: A.A.-Chandra-Guadagni 2013

 $\nu_{\phi \times \phi^2}$ is fully scale invariant, i.e., invariant under the action of the scaling group $p^{\mathbb{Z}}$ instead of the subgroup $L^{\mathbb{Z}}$. Moreover, $\mu(g)$ and $[\phi^2]$ are independent of the arbitrary factor L.

The two-point correlations are given in the sense of distributions by

Note that $2[\phi^2] = 3 - \frac{1}{3}\epsilon + o(\epsilon) \rightarrow \text{still } L^{1,\text{loc}}$!

Theorem 3: A.A., May 2015

Use ψ_i to denote the scaling limits ϕ or $N[\phi^2]$. Then, for all mixed correlation \exists a smooth (i.e., locally constant) fonction $\langle \psi_1(z_1) \cdots \psi_n(z_n) \rangle$ on $(\mathbb{Q}_p^3)^n \backslash \text{Diag}$ which is locally integrable (on the big diagonal Diag) and such that

$$\mathbb{E} \psi_1(f_1) \cdots \psi_n(f_n) = \int_{(\mathbb{Q}_p^3)^n \setminus \text{Diag}} \langle \psi_1(z_1) \cdots \psi_n(z_n) \rangle f_1(z_1) \cdots f_n(z_n) d^3 z_1 \cdots d^3 z_n$$

- ロ ト - 4 日 ト - 4 日 ト - 4 日 ト - 9 0 0

for all test functions $f_1, \ldots, f_n \in S(\mathbb{Q}_p^3)$.

This hinges on showing the BNNFB (basic nearest neighbor factorized bound) of A.A., "A Second-Quantized Kolmogorov-Chentsov Theorem via the Operator Product Expansion", CMP 2020. The BNNFB is

$$|\langle \psi_1(z_1)\cdots\psi_n(z_n)\rangle| \leq O(1) imes \prod_{i=1}^n rac{1}{|z_i-\mathrm{n.n.}|^{[\psi_i]}}$$

when z_1, \ldots, z_n are confined to a compact set.

This follows from the use of the SDRG (space-dependent renormalization group) to derive an explicit representation of pointwise correlations in terms of very close analogues of tree Witten diagrams. Hence, the emergent connection to the AdS/CFT correspondence.

- Introduction
- The hierarchical continuum
- The rigorous hierarchical space-dependent renormalization group

The renormalization group idea in a nutshell:

Want to study feature $\mathcal{Z}(\vec{V})$ of some object $\vec{V} \in \mathcal{E}$ but too hard!

Find "simplifying" transformation $RG : \mathcal{E} \to \mathcal{E}$, such that $\mathcal{Z}(RG(\vec{V})) = \mathcal{Z}(\vec{V})$, and $\lim_{n\to\infty} RG^n(\vec{V}) = \vec{V}_*$ with $\mathcal{Z}(\vec{V}_*)$ easy.

Example: $\vec{V} = (a, b) \in \mathcal{E} = (0, \infty)^2$

$$\mathcal{Z}(ec{V}) = \int_0^{rac{\pi}{2}} rac{d heta}{\sqrt{a^2\cos^2 heta + b^2\sin^2 heta}}$$

- ロ ト - 4 日 ト - 4 日 ト - 4 日 ト - 9 0 0

Take $RG(a, b) = \left(\frac{a+b}{2}, \sqrt{ab}\right)$. (Landen-Gauss)

1st step: rescale to unit lattice/cut-off

$$\begin{split} \mathcal{S}_{r,s}^{\mathrm{T}}(f) &:= \log \mathbb{E}_{\nu_{r,s}} e^{\phi(f)} = \log \\ \frac{\int d\mu_{C_r}(\phi) \exp\left(-\int_{\Lambda_s} \{g_r : \phi^4 :_r (x) + \mu_r : \phi^2 :_r\} dx + \int \phi(x) f(x) dx\right)}{\int d\mu_{C_r}(\phi) \exp\left(-\int_{\Lambda_s} \{g_r : \phi^4 :_r (x) + \mu_r : \phi^2 :_r\} dx\right)} \\ &= \log \frac{\int d\mu_{C_0}(\phi) \ \mathcal{I}^{(r,r)}[f](\phi)}{\int d\mu_{C_0}(\phi) \ \mathcal{I}^{(r,r)}[0](\phi)} =: \log \frac{\mathcal{Z}(\vec{V}^{(r,r)}[f])}{\mathcal{Z}(\vec{V}^{(r,r)}[0])} \\ \end{split}$$
 with

$$\mathcal{I}^{(r,r)}[f](\phi) = \exp\left(-\int_{\Lambda_{s-r}} \{g:\phi^4:_0(x) + \mu:\phi^2:_0\}d^3x + L^{(3-[\phi])r}\int\phi(x)f(L^{-r}x)d^3x\right)$$

2nd step: define inhomogeneous RG

Fluctuation covariance $\Gamma := C_0 - C_1$.

Associated Gaussian measure is the law of the fluctuation field

$$\zeta(x) = \sum_{0 \le k < \ell} p^{-k[\phi]} \zeta_{\mathrm{anc}_k(x)}$$

L-blocks (closed balls of radius L) are independent. Hence

$$\begin{split} \int \mathcal{I}^{(r,r)}[f](\phi) \ d\mu_{C_0}(\phi) &= \int \int \mathcal{I}^{(r,r)}[f](\zeta + \psi) \ d\mu_{\Gamma}(\zeta) d\mu_{C_1}(\psi) \\ &= \int \mathcal{I}^{(r,r+1)}[f](\phi) \ d\mu_{C_0}(\phi) \end{split}$$

with new integrand

$$\mathcal{I}^{(r,r+1)}[f](\phi) := \int \mathcal{I}^{(r,r)}[f](\zeta + L^{-[\phi]}\phi(L \cdot)) \ d\mu_{\Gamma}(\zeta)$$

・ロト (四) (ボン・(ボン・(ロ))

Need to extract vacuum renormalization \rightarrow better definition is

$$\mathcal{I}^{(r,r+1)}[f](\phi) = e^{-\delta b(\mathcal{I}^{(r,r)}[f])} \int \mathcal{I}^{(r,r)}[f](\zeta + L^{-[\phi]}\phi(L \cdot)) \ d\mu_{\Gamma}(\zeta)$$

so that we have the fundamental identity

$$\int \mathcal{I}^{(r,r)}[f](\phi) \ d\mu_{C_0}(\phi) = e^{\delta b(\mathcal{I}^{(r,r)}[f])} \int \mathcal{I}^{(r,r+1)}[f](\phi) \ d\mu_{C_0}(\phi)$$

Repeat: $\mathcal{I}^{(r,r)} \to \mathcal{I}^{(r,r+1)} \to \mathcal{I}^{(r,r+2)} \to \cdots \to \mathcal{I}^{(r,s)}$

One must control

$$\mathcal{S}^{\mathrm{T}}(f) = \lim_{r \to -\infty \atop s \to \infty} \sum_{r \le q < s} \left(\delta b(\mathcal{I}^{(r,q)}[f]) - \delta b(\mathcal{I}^{(r,q)}[0]) \right)$$

limit of logarithms of characteristic functions.

Use a Brydges-Yau lift

 $\vec{V}^{(r,q)} \xrightarrow{RG_{\text{inhom}}} \vec{V}^{(r,q+1)}$ $\begin{array}{ccc} \downarrow & & \downarrow \\ \mathcal{T}^{(r,q)} & \longrightarrow & \mathcal{T}^{(r,q+1)} \end{array}$ $\mathcal{I}^{(r,q)}(\phi) = \prod \left[e^{f_{\Delta}\phi_{\Delta}} \times \right]$ $\Delta \subset \Lambda_{s-c}$ $\{\exp\left(-\beta_{4,\Delta}:\phi_{\Delta}^{4}:c_{0}-\beta_{3,\Delta}:\phi_{\Delta}^{3}:c_{0}-\beta_{2,\Delta}:\phi_{\Delta}^{2}:c_{0}-\beta_{1,\Delta}:\phi_{\Delta}^{1}:c_{0}\right)\}$ $\times (1 + W_{5\Lambda} : \phi_{\Lambda}^5 : c_0 + W_{6\Lambda} : \phi_{\Lambda}^6 : c_0)$ $+R_{\Lambda}(\phi_{\Lambda})\}]$

Dynamical variable is $ec{V} = (V_{\Delta})_{\Delta \in \mathbb{L}_0}$ with

 $V_{\Delta} = (\beta_{4,\Delta}, \beta_{3,\Delta}, \beta_{2,\Delta}, \beta_{1,\Delta}, W_{5,\Delta}, W_{6,\Delta}, f_{\Delta}, R_{\Delta})$

- ロ ト 4 回 ト 4 三 ト 4 三 ト 9 4 で

RG_{inhom} acts on \mathcal{E}_{inhom} , essentially,

$$\prod_{\Delta \in \mathbb{L}_0} \left\{ \mathbb{C}^7 \times C^9(\mathbb{R}, \mathbb{C}) \right\}$$

Stable subspaces

 $\mathcal{E}_{\text{hom}} \subset \mathcal{E}_{\text{inhom}}$: spatially constant data. $\mathcal{E} \subset \mathcal{E}_{\text{hom}}$: even potential, i.e., g, μ 's only and R even function.

Let RG be induced action of RG_{inhom} on \mathcal{E} .

3rd step: stabilize bulk (homogeneous) evolution Show that $\forall q \in \mathbb{Z}$, $\lim_{r \to -\infty} \vec{V}^{(r,q)}[0]$ exists, i.e.,

$$\lim_{r \to -\infty} RG^{q-r} \left(\vec{V}^{(r,r)}[0] \right)$$

exists.

$$RG \begin{cases} g' = L^{\epsilon}g - A_{1}g^{2} + \cdots \\ \mu' = L^{\frac{3+\epsilon}{2}}\mu - A_{2}g^{2} - A_{3}g\mu + \cdots \\ R' = \mathcal{L}^{(g,\mu)}(R) + \cdots \end{cases}$$

Tadpole graph with mass insertion

$$A_{3} = 12L^{3-2[\phi]} \int_{\mathbb{Q}_{p}^{3}} \Gamma(0, x)^{2} d^{3}x$$

is main culprit for anomalous scaling $[\phi^2] - 2[\phi] > 0$.

Irwin's proof \rightarrow stable manifold $W^{\rm s}$

Restriction to $W^{s} \rightarrow \text{contraction} \rightarrow \text{IR fixed point } v_{*}$.

Construct unstable manifold W^{u} , intersect with W^{s} , transverse at v_{*} .

Here, $\vec{V}^{(r,r)}[0]$ is independent of r: strict scaling limit of fixed model on unit lattice. (We can also do the Gaussian to non-Gaussian crossover continuum limit). $\vec{V}^{(r,r)}[0]$ must be chosen in $W^{s} \rightarrow \mu(g)$ critical mass. Thus

$$orall q \in \mathbb{Z}, \qquad \lim_{r o -\infty} ec{V}^{(r,q)}[0] = v_*$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Tangent spaces at fixed point: E^{s} and E^{u} . $E^{u} = \mathbb{C}e_{u}$, with e_{u} eigenvector of $D_{v_{*}}RG$ for eigenvalue $\alpha_{u} = L^{3-2[\phi]} \times Z_{2} =: L^{3-[\phi^{2}]}$. **4th step: control deviation from homogeneous evolution** $\vec{V}^{(r,q)}[f] - \vec{V}^{(r,q)}[0]$, for all effective scale q, uniformly in r. **1)** $\sum_{\mathbf{x} \in G} \zeta_{\mathbf{x}} = 0$ a.s. \rightarrow deviation is 0 for q <local constancy scale of test function f.

2) Deviation resides in closed unit ball containing origin for q > radius of support of $f \rightarrow$ exponential decay for large q. For source term with ϕ^2 add

$$Y_2 Z_2^r \int :\phi^2 :_{C_r} (x)j(x)d^3x$$

to potential. $S_{r,s}^{T}(f,j)$ now involves two test functions. After rescaling to unit lattice/cut-off

$$Y_2\alpha_{\mathrm{u}}^r\int:\phi^2:_{C_0}(x)j(L^{-r}x)d^3x$$

to be combined with μ into $(\beta_{2,\Delta})_{\Delta \in \mathbb{L}_0}$ space-dependent mass.

5th step: partial linearization

In order to replay same sequence of moves with j present, construct

$$\Psi(v,w) = \lim_{n\to\infty} RG^n(v + \alpha_{\rm u}^{-n}w)$$

for $v \in W^{s}$ and all direction w (especially $\int : \phi^{2} :$).

For v fixed, $\Psi(v, \cdot)$ is parametrization of W^{u} satisfying $\Psi(v, \alpha_{u}w) = RG(\Psi(v, w)).$

If there were no W^{s} directions (1D dynamics) then Ψ would be conjugation \rightarrow Poincaré-Kœnigs Theorem.

 $\Psi(v, w)$ is holomorphic in v and w.

This is essential for probabilistic interpretation of $(\phi, N[\phi^2])$ as pair of random variables in $S'(\mathbb{Q}^3_p)$.

Thank you for your attention.