Rigorous nonperturbative results related to p-adic AdS/CFT

Abdelmalek Abdesselam
Mathematics Department, University of Virginia

Eighth International Conference on p-Adic Mathematical Physics and Its Applications, May 21, 2021
(1) Introduction
(2) The hierarchical continuum
(3) The rigorous hierarchical space-dependent renormalization group

QFT basics:

A quantum field theory model on \mathbb{R}^{d} (example) can be seen as a sequence indexed by $n \geq 0$ of (correlation) functions $\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right\rangle$ which depend on n points in \mathbb{R}^{d}. Such functions would be given nonrigorously by

$$
\begin{gathered}
\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right\rangle=\frac{1}{\mathcal{Z}} \int_{\Omega} \phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right) \times \\
\exp \left(-\int_{\mathbb{R}^{d}}\left\{(\partial \phi)^{2}(x)+\mu \phi^{2}(x)+g \phi^{4}(x)\right\} d^{d} x\right) D \phi
\end{gathered}
$$

where Ω (probability space) is a space of functions from \mathbb{R}^{d} to $\mathbb{R}, D \phi$ is the Lebesgue measure on Ω and \mathcal{Z} (the partition function) is a normalization constant. Namely,

$$
\mathcal{Z}=\int_{\Omega} \exp \left(-\int_{\mathbb{R}^{d}}\left\{(\partial \phi)^{2}(x)+\mu \phi^{2}(x)+g \phi^{4}(x)\right\} d^{d} x\right) D \phi
$$

Of particular interest is the case where the correlations satisfy conformal invariance, i.e., the QFT is a CFT.

There is no $D \phi$ because Ω is infinite dimensional. To make sense of the wanted probability measure: discretize, work in finite volume, and then take weak limits. Fix some number $L>1$. For $r, s \in \mathbb{Z}$, replace \mathbb{R}^{d} by a finite set of points, namely, the points in a lattice of mesh L^{r}, which fit in a box of linear size L^{s}. This replaces Ω by a finite dimensional space $\mathbb{R}^{d^{d(s-r)}}$
The goal is to obtain the wanted probability measure ν, whose moments are the $\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right\rangle$ as a (double) weak limit of well defined probability measures $\nu_{r, s}$, namely

$$
\nu=\lim _{r \rightarrow-\infty} \lim _{s \rightarrow \infty} \nu_{r, s} .
$$

Similar in spirit to numerical approximations by Monte-Carlo methods...

802 A. L. Talapov et al.

Fig. 17. Ratio of the SPP computed correlation function to the exact continuum limit function for $L=1024$.

From Talapov et al. IJMP 1993 (Thanks to S. Rychkov for this reference)

A touristic view of AdS/CFT:

Let $\widehat{\mathbb{R}^{d}}=\mathbb{R}^{d} \cup\{\infty\} \simeq \mathbb{S}^{d}$.
The Möbius group $\mathcal{M}\left(\mathbb{R}^{d}\right)$ is the group of bijective
transformations of $\widehat{\mathbb{R}^{d}}$ generated by isometries, dilations and the unit sphere inversion $J(x)=|x|^{-2} x$.
This is also the invariance group of the absolute cross-ratio

$$
C R\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\frac{\left|x_{1}-x_{3}\right|\left|x_{2}-x_{4}\right|}{\left|x_{1}-x_{4}\right|\left|x_{2}-x_{3}\right|} .
$$

Conformal ball model: $\widehat{\mathbb{R}^{d}} \simeq \mathbb{S}^{d}$ seen as boundary of \mathbb{B}^{d+1} with metric $d s=\frac{2|d x|}{1-|x|^{2}}$.
Half-space model: \mathbb{R}^{d} seen as boundary of
$\mathbb{H}^{d+1}=\mathbb{R}^{d} \times(0, \infty)$ with metric $d s=\frac{|d x|}{x_{d+1}}$.
Bijection: $f \in \mathcal{M}\left(\mathbb{R}^{d}\right) \leftrightarrow$ hyperbolic isometry of the interior \mathbb{B}^{d+1} or \mathbb{H}^{d+1}, the Euclidean AdS space.

A scalar field \mathcal{O} of scaling dimension Δ in a CFT on \mathbb{R}^{d} has pointwise correlations which satisfy
$\left\langle\mathcal{O}\left(x_{1}\right) \cdots \mathcal{O}\left(x_{n}\right)\right\rangle=\left(\prod_{i=1}^{n}\left|J_{f}\left(x_{i}\right)\right|^{\frac{\Delta}{d}}\right) \times\left\langle\mathcal{O}\left(f\left(x_{1}\right)\right) \cdots \mathcal{O}\left(f\left(x_{n}\right)\right)\right\rangle$
for all $f \in \mathcal{M}\left(\mathbb{R}^{d}\right)$ and all collection of distinct points in $\mathbb{R}^{d} \backslash\left\{f^{-1}(\infty)\right\}$.
Here, $J_{f}(x)$ denotes the Jacobian of f at x.
The AdS/CFT correspondence, discovered by Maldacena 1997 and made more precise by Gubser, Klebanov, Polyakov and Witten 1998, postulates a relation of the form:

$$
\left\langle e^{\int_{\mathbb{R}^{d}} j(x) \mathcal{O}(x) d^{d} x}\right\rangle_{\mathrm{CFT}}=e^{-S\left[\phi_{\mathrm{exx}}\right]}
$$

where $S[\phi]$ is an action for a field $\phi\left(x, x_{d+1}\right)$ on AdS space and $\phi_{\text {ext }}$ makes it extremal for a boundary condition $\phi\left(x, x_{d+1}\right) \sim\left(x_{d+1}\right)^{d-\Delta} j(x)$ when $x_{d+1} \rightarrow 0$.

AdS/CFT or holographic correspondence not yet known explicitly, i.e., exact $S[\phi]$ still mysterious. However, physicists have been experimenting with toy actions of the form:
$\int_{\mathbb{R}^{d} \times(0, \infty)} d^{d} x d x_{d+1} \sqrt{\operatorname{det} g_{\mu \nu}}\left\{\frac{1}{2} g^{\mu \nu} \partial_{\mu} \phi \partial_{\nu} \phi+\frac{1}{2} m^{2} \phi^{2}+\cdots\right\}$
where m^{2} is related to Δ and is allowed to be (not too) negative.
This gives an expansion for connected CFT correlations in terms of tree-level Feynman diagrams (Witten diagrams). The simplest "Mercedes logo" 3-point Witten diagram reproduces the correct CFT prediction

$$
\frac{O(1)}{\left|x_{1}-x_{2}\right|^{\Delta_{1}+\Delta_{2}-\Delta_{3}}\left|x_{1}-x_{3}\right|^{\Delta_{1}+\Delta_{3}-\Delta_{2}}\left|x_{2}-x_{3}\right|^{\Delta_{2}+\Delta_{3}-\Delta_{1}}}
$$

for $\left\langle\mathcal{O}_{1}\left(x_{1}\right) \mathcal{O}_{2}\left(x_{2}\right) \mathcal{O}_{3}\left(x_{3}\right)\right\rangle$ by a calculation of Freedman, Mathur, Matusis and Rastelli 1999.

The good news:

All of the above makes sense for the hierarchical model, i.e., p-adic analogue.
See in particular:

- Melzer, IJMP 1989.
- Lerner, Missarov, LMP 1991.
- Gubser et al. "p-Adic AdS/CFT", CMP 2017.
- Gubser et al. " $O(N)$ and $O(N)$ and $O(N)$ ", JHEP 2017.

The calculations of the last reference for scaling dimensions of Φ and ϕ^{2}, for $N=1$ in hierarchical case were made nonperturbatively rigorous in:
"Rigorous quantum field theory functional integrals over the p-adics I: anomalous dimensions", arXiv 2013, by A.A., Ajay Chandra (Imperial College), Gianluca Guadagni (UVa).
(1) Introduction

- The hierarchical continuum
- The rigorous hierarchical space-dependent renormalization group

The hierarchical or p-adic continuum:

Let p be a prime number. We will replace \mathbb{R}^{d} by \mathbb{Q}_{p}^{d}, so now Ω becomes a space of functions from \mathbb{Q}_{p}^{d} to \mathbb{R}. For $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{Q}_{p}^{d}$ we let

$$
|x|_{p}=\max \left(\left|x_{1}\right|_{p}, \ldots,\left|x_{d}\right|_{p}\right) .
$$

We equip \mathbb{Q}_{p}^{d} with the distance $|x-y|_{p}$.
Let $\mathbb{L}_{k}, k \in \mathbb{Z}$, be the set of closed balls of radius p^{k} in \mathbb{Q}_{p}^{d}, i.e., $\mathbb{L}_{k}=\mathbb{Q}_{p}^{d} / p^{-k} \mathbb{Z}_{p}^{d}$.

Hence $\mathbb{T}=\cup_{k \in \mathbb{Z}} \mathbb{L}_{k}$ naturally has the structure of a doubly infinite tree which is organized into layers or generations \mathbb{L}_{k} :

Picture for $d=1, p=2$

The hierarchical continuum $\mathbb{Q}_{p}^{d}=$ leafs at infinity " $\mathbb{L}_{-\infty}$ ". More precisely, these leafs at infinity are the infinite bottom-up paths in the tree. \mathbb{T}, with the graph distance, will play the role of hyperbolic space \mathbb{H}^{d+1} of AdS bulk space.

A path representing an element $x \in \mathbb{Q}_{p}^{d}$

A point $x=\left(x_{1}, \ldots, x_{d}\right) \in \mathbb{Q}_{p}^{d}$ is encoded by a sequence $\left(a_{n}\right)_{n \in \mathbb{Z}}, a_{n} \in\{0,1, \ldots, p-1\}^{d}$. For each n, $a_{n}=\left(a_{n, 1}, \ldots, a_{n, d}\right)$ and these are the digits of the p-adic expansions $x_{i}=\sum_{n \in \mathbb{Z}} a_{n, i} p^{n}$.
a_{n} represents the local coordinates for a cube of \mathbb{L}_{-n-1} inside a cube of \mathbb{L}_{-n}.

Moreover, rescaling is defined as follows.
If $x=\left(a_{n}\right)_{n \in \mathbb{Z}}$ then $p x:=\left(a_{n-1}\right)_{n \in \mathbb{Z}}$, i.e., upward shift.

Likewise $p^{-1} x$ is downward shift, and so on for the definition of $p^{k} x, k \in \mathbb{Z}$.

Distance:

If $x, y \in \mathbb{Q}_{p}^{d}$, their distance can be visualized as $|x-y|_{p}=p^{k}$ where k is the depth where the two paths merge.

Keep in mind that

$$
|p x|_{p}=p^{-1}|x|_{p}
$$

Closed balls Δ of radius p^{k} correspond to the nodes $\mathbf{x} \in \mathbb{L}_{k}$

Lebesgue measure:

Metric space $\mathbb{Q}_{p}^{d} \rightarrow$ Borel σ-algebra \rightarrow Lebesgue (or additive Haar) measure $d^{d} x$ which gives a volume $p^{d k}$ to closed balls of radius p^{k}.

The hierarchical unit lattice:
Truncate the tree at level zero and take $\mathbb{L}:=\mathbb{L}_{0}$. Using the identification of nodes with balls, define the hierarchical distance as

$$
d(\mathbf{x}, \mathbf{y})=\inf \left\{|x-y|_{p} \mid x \in \mathbf{x}, y \in \mathbf{y}\right\}
$$

The massless Gaussian measure:

To every group of offsprings G of a vertex $\mathbf{z} \in \mathbb{L}_{k+1}$ associate a centered Gaussian random vector $\left(\zeta_{\mathrm{x}}\right)_{\mathrm{x} \in \mathrm{G}}$ with $p^{d} \times p^{d}$ covariance matrix made of $1-p^{-d}$'s on the diagonal and $-p^{-d}$'s everywhere else. We impose that Gaussian vectors corresponding to different layers or different groups are independent. We have $\sum_{x \in G} \zeta_{x}=0$ a.s.

The ancestor function: for $k<k^{\prime}, \mathbf{x} \in \mathbb{L}_{k}$, let anc $k_{k^{\prime}}(\mathbf{x})$ denote the ancestor in $\mathbb{L}_{k^{\prime}}$.
Ditto for $\operatorname{anc}_{k^{\prime}}(x)$ when $x \in \mathbb{Q}_{p}^{d}$.
The massless Gaussian field $\phi(x), x \in \mathbb{Q}_{p}^{d}$ of scaling dimention [ϕ] is given by

$$
\begin{aligned}
& \phi(x)=\sum_{k \in \mathbb{Z}} p^{-k[\phi]} \zeta_{\text {anc }_{k}(x)} \\
& \langle\phi(x) \phi(y)\rangle=\frac{c}{|x-y|^{2[\phi]}}
\end{aligned}
$$

This is heuristic since ϕ is not well-defined in a pointwise manner. We need random Schwartz(-Bruhat) distributions. I will now drop the p from $|\cdot|_{p}$.

Test functions:

$f: \mathbb{Q}_{p}^{d} \rightarrow \mathbb{R}$ is smooth if it is locally constant.
Define $S\left(\mathbb{Q}_{p}^{d}\right)$ as the space of compactly supported smooth functions.
Take locally convex topology generated by the set of all semi-norms on $S\left(\mathbb{Q}_{p}^{d}\right)$.

Distributions:

$S^{\prime}\left(\mathbb{Q}_{p}^{d}\right)$ is the dual space with strong topology (happens to be same as weak-*).

$$
S\left(\mathbb{Q}_{p}^{d}\right) \simeq \oplus_{\mathbb{N}} \mathbb{R}
$$

Thus

$$
S^{\prime}\left(\mathbb{Q}_{p}^{d}\right) \simeq \mathbb{R}^{\mathbb{N}}
$$

with product topology. $\Omega:=S^{\prime}\left(\mathbb{Q}_{p}^{d}\right)$ is a Polish space.

The p-adic CFT toy model:

$d=3,[\phi]=\frac{3-\epsilon}{4}, L=p^{\ell}$ zooming-out factor
$r \in \mathbb{Z}$ UV cut-off, $r \rightarrow-\infty$
$s \in \mathbb{Z}$ IR cut-off, $s \rightarrow \infty$
The regularized Gaussian measure μC_{r} is the law of

$$
\phi_{r}(x)=\sum_{k=\ell r}^{\infty} p^{-k[\phi]} \zeta_{\operatorname{anc}_{k}(x)}
$$

Sample fields are true fonctions that are locally constant on scale L^{r}. These measures are scaled copies of each other. If the law of $\phi(\cdot)$ is μc_{0}, then that of $L^{-r[\phi]} \phi\left(L^{r} \cdot\right)$ is $\mu_{c_{r}}$.

The same Gaussian measures can be defined using (the less intuitive) Fourier representation:

$$
\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right)\right\rangle_{\mu_{-\infty}}=\int_{\mathbb{Q}^{d}} \frac{e^{2 \pi i\left\{\xi\left(x_{1}-x_{2}\right)\right\}_{\rho}}}{|\xi|^{d-2[\phi]}} d^{d} \xi
$$

and

$$
\left\langle\phi\left(x_{1}\right) \phi\left(x_{2}\right)\right\rangle_{\mu_{c_{r}}}=\int_{\mathbb{Q}^{d}} \frac{\chi_{r}(\xi) e^{2 \pi i\left\{\xi\left(x_{1}-x_{2}\right)\right\}_{p}}}{|\xi|^{d-2[\phi]}} d^{d} \xi
$$

where $\chi_{r}(\xi)=\mathbb{1}\left\{|\xi| \leq L^{-r}\right\}$ is a sharp UV cutoff.

Fix the dimensionless parameters g, μ and let $g_{r}=L^{-(3-4[\phi]) r} g$ and $\mu_{r}=L^{-(3-2[\phi]) r} \mu$. Same as strict scaling limit of fixed critical probability measure on unit lattice. Bare/dimensionful couplings g_{r}, μ_{r} go to ∞.

Let $\Lambda_{s}=\bar{B}\left(0, L^{s}\right)$, IR (or volume) cut-off.
Let

$$
V_{r, s}(\phi)=\int_{\Lambda_{s}}\left\{g_{r}: \phi^{4}:_{r}(x)+\mu_{r}: \phi^{2}:_{r}(x)\right\} d^{3} x
$$

where : $\phi^{k}:_{r}$ is Wick ordering using $d \mu c_{r}$.
Define the probability measure

$$
d \nu_{r, s}(\phi)=\frac{1}{\mathcal{Z}_{r, s}} e^{-V_{r, s}(\phi)} d \mu_{c_{r}}(\phi) .
$$

Let $\phi_{r, s}$ be the random distribution in $S^{\prime}\left(\mathbb{Q}_{p}^{3}\right)$ sampled according to $\nu_{r, s}$ and define the squared field $N_{r}\left[\phi_{r, s}^{2}\right]$ which is a deterministic function (al) of $\phi_{r, s}$, with values in $S^{\prime}\left(\mathbb{Q}_{p}^{3}\right)$, given by

$$
N_{r}\left[\phi_{r, s}^{2}\right](j)=\left(Z_{2}\right)^{r} \int_{\mathbb{Q}_{r}^{3}}\left\{Y_{2}: \phi_{r, s}^{2}: r(x)-Y_{0} L^{-2 r[\phi]}\right\} j(x) d^{3} x
$$

for suitable parameters Z_{2}, Y_{0}, Y_{2}. We also need a Y_{1}.
Our main result concerns the limit law of the pair $\left(Y_{1} \phi_{r, s}, N_{r}\left[\phi_{r, s}^{2}\right]\right)$ in $S^{\prime}\left(\mathbb{Q}_{p}^{3}\right) \times S^{\prime}\left(\mathbb{Q}_{p}^{3}\right)$ when $r \rightarrow-\infty, s \rightarrow \infty$ (in any order).
For the precise statement we need the approximate fixed point value

$$
\bar{g}_{*}=\frac{p^{\epsilon}-1}{36 L^{\epsilon}\left(1-p^{-3}\right)} .
$$

Theorems:

Theorem 1: A.A.-Chandra-Guadagni 2013
$\exists \rho>0, \exists L_{0}, \forall L \geq L_{0}, \exists \epsilon_{0}>0, \forall \epsilon \in\left(0, \epsilon_{0}\right], \exists\left[\phi^{2}\right]>2[\phi]$, \exists fonctions $\mu(g), Y_{0}(g), Y_{2}(g)$ on ($\bar{g}_{*}-\rho \epsilon^{\frac{3}{2}}, \bar{g}_{*}+\rho \epsilon^{\frac{3}{2}}$) such that if one lets $\mu=\mu(g), Y_{0}=Y_{0}(g), Y_{2}=Y_{2}(g)$ and $Z_{2}=L^{-\left(\left[\phi^{2}\right]-2[\phi]\right)}$ then the joint law of ($Y_{1} \phi_{r, s}, N_{r}\left[\phi_{r, s}^{2}\right)$) converge weakly and in the sense of moments to that of a pair ($\phi, N\left[\phi^{2}\right]$) such that:
(1) $\forall k \in \mathbb{Z},\left(L^{-k[\phi]} \phi\left(L^{k} \cdot\right), L^{-k\left[\phi^{2}\right]} N\left[\phi^{2}\right]\left(L^{k} \cdot\right)\right) \stackrel{d}{=}\left(\phi, N\left[\phi^{2}\right]\right)$.
(2) $\left\langle\phi\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right), \phi\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right), \phi\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right), \phi\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right)\right\rangle^{\mathrm{T}}<0$ i.e., ϕ is non-Gaussian. Here, $\mathbf{1}_{\mathbb{Z}_{p}^{3}}$ denotes the indicator function of $\bar{B}(0,1)$.
(3) $\left\langle N\left[\phi^{2}\right]\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right), N\left[\phi^{2}\right]\left(\mathbf{1}_{\mathbb{Z}_{p}^{\mathbb{Z}}}\right)\right\rangle^{\mathrm{T}}=1$.
(4) $\left\langle\phi\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right)^{2}\right\rangle=1$.

The mixed correlation functions satisfy, in the sense of distributions,

$$
\begin{aligned}
& \left\langle\phi\left(L^{-k} x_{1}\right) \cdots \phi\left(L^{-k} x_{n}\right) N\left[\phi^{2}\right]\left(L^{-k} y_{1}\right) \cdots N\left[\phi^{2}\right]\left(L^{-k} y_{m}\right)\right\rangle \\
= & L^{-\left(n[\phi]+m\left[\phi^{2}\right]\right) k}\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right) N\left[\phi^{2}\right]\left(y_{1}\right) \cdots N\left[\phi^{2}\right]\left(y_{m}\right)\right\rangle
\end{aligned}
$$

For our hierarchical version of the 3D fractional ϕ^{4} model we also proved $\left[\phi^{2}\right]-2[\phi]=\frac{1}{3} \epsilon+o(\epsilon)$.
This was predicted by Wilson in "Renormalization of a scalar field theory in strong coupling", PRD 1972.
This is also what is expected for the Euclidean model on \mathbb{R}^{3}.
Not too far, if one boldly extrapolates to $\epsilon=1$, from the most precise available estimates concerning the short range 3D Ising model: $\left[\phi^{2}\right]-2[\phi]=0.376327 \ldots$ (JHEP 2016 by Kos, Poland, Simmons-Duffin and Vichi, using conformal bootstrap).

We also proved the law $\nu_{\phi \times \phi^{2}}$ of $\left(\phi, N\left[\phi^{2}\right]\right)$, is independent of g in the interval $\left(\bar{g}_{*}-\rho \epsilon^{\frac{3}{2}}, \bar{g}_{*}+\rho \epsilon^{\frac{3}{2}}\right)$. This also holds if one also adds $\phi^{6}, \phi^{8}, \ldots$ terms in the potential, with small couplings. We proved strong local universality for a non-Gaussian scaling limit.

Theorem 2: A.A.-Chandra-Guadagni 2013

$\nu_{\phi \times \phi^{2}}$ is fully scale invariant, i.e., invariant under the action of the scaling group $p^{\mathbb{Z}}$ instead of the subgroup $L^{\mathbb{Z}}$. Moreover, $\mu(g)$ and $\left[\phi^{2}\right]$ are independent of the arbitrary factor L.

The two-point correlations are given in the sense of distributions by

$$
\begin{gathered}
\langle\phi(x) \phi(y)\rangle=\frac{c_{1}}{|x-y|^{2[\phi]}} \\
\left\langle N\left[\phi^{2}\right](x) N\left[\phi^{2}\right](y)\right\rangle=\frac{c_{2}}{\left.|x-y|^{2\left[\phi^{2}\right]}\right]}
\end{gathered}
$$

Note that $2\left[\phi^{2}\right]=3-\frac{1}{3} \epsilon+o(\epsilon) \rightarrow$ still $L^{1, \text { loc }}$!

Theorem 3: A.A., May 2015

Use ψ_{i} to denote the scaling limits ϕ or $N\left[\phi^{2}\right]$. Then, for all mixed correlation \exists a smooth (i.e., locally constant) fonction $\left\langle\psi_{1}\left(z_{1}\right) \cdots \psi_{n}\left(z_{n}\right)\right\rangle$ on $\left(\mathbb{Q}_{p}^{3}\right)^{n} \backslash$ Diag which is locally integrable (on the big diagonal Diag) and such that

$$
\begin{aligned}
& \mathbb{E} \psi_{1}\left(f_{1}\right) \cdots \psi_{n}\left(f_{n}\right)= \\
& \quad \int_{\left(\mathbb{Q}_{)^{3}}\right) \backslash \text { Diag }}\left\langle\psi_{1}\left(z_{1}\right) \cdots \psi_{n}\left(z_{n}\right)\right\rangle f_{1}\left(z_{1}\right) \cdots f_{n}\left(z_{n}\right) d^{3} z_{1} \cdots d^{3} z_{n}
\end{aligned}
$$

for all test functions $f_{1}, \ldots, f_{n} \in S\left(\mathbb{Q}_{p}^{3}\right)$.

This hinges on showing the BNNFB (basic nearest neighbor factorized bound) of A.A., "A Second-Quantized Kolmogorov-Chentsov Theorem via the Operator Product Expansion", CMP 2020. The BNNFB is

$$
\left|\left\langle\psi_{1}\left(z_{1}\right) \cdots \psi_{n}\left(z_{n}\right)\right\rangle\right| \leq O(1) \times \prod_{i=1}^{n} \frac{1}{\mid z_{i}-\text { n.n. }\left.\right|^{\left[\psi_{i}\right]}}
$$

when z_{1}, \ldots, z_{n} are confined to a compact set.
This follows from the use of the SDRG (space-dependent renormalization group) to derive an explicit representation of pointwise correlations in terms of very close analogues of tree Witten diagrams. Hence, the emergent connection to the AdS/CFT correspondence.
(1) Introduction
(2) The hierarchical continuum
(3) The rigorous hierarchical space-dependent renormalization group

The renormalization group idea in a nutshell:

Want to study feature $\mathcal{Z}(\vec{V})$ of some object $\vec{V} \in \mathcal{E}$ but too hard!

Find "simplifying" transformation $R G: \mathcal{E} \rightarrow \mathcal{E}$, such that $\mathcal{Z}(R G(\vec{V}))=\mathcal{Z}(\vec{V})$, and $\lim _{n \rightarrow \infty} R G^{n}(\vec{V})=\vec{V}_{*}$ with $\mathcal{Z}\left(\vec{V}_{*}\right)$ easy.

Example: $\vec{V}=(a, b) \in \mathcal{E}=(0, \infty)^{2}$

$$
\mathcal{Z}(\vec{V})=\int_{0}^{\frac{\pi}{2}} \frac{d \theta}{\sqrt{a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta}}
$$

Take $R G(a, b)=\left(\frac{a+b}{2}, \sqrt{a b}\right)$.
(Landen-Gauss)

1st step: rescale to unit lattice/cut-off

$$
\mathcal{S}_{r, s}^{\mathrm{T}}(f):=\log \mathbb{E}_{\nu_{r, s}}{ }^{\phi(f)}=\log
$$

$$
\begin{gathered}
\frac{\int d \mu_{c_{r}}(\phi) \exp \left(-\int_{\Lambda_{s}}\left\{g_{r}: \phi^{4}:_{r}(x)+\mu_{r}: \phi^{2}:{ }_{r}\right\} d x+\int \phi(x) f(x) d x\right)}{\int d \mu_{c_{r}}(\phi) \exp \left(-\int_{\Lambda_{s}}\left\{g_{r}: \phi^{4}:_{r}(x)+\mu_{r}: \phi^{2}: r\right\} d x\right)} \\
=\log \frac{\int d \mu_{c_{0}}(\phi) \mathcal{I}^{(r, r)}[f](\phi)}{\int d \mu c_{0}(\phi) \mathcal{I}^{(r, r)}[0](\phi)}=: \log \frac{\mathcal{Z}\left(\vec{V}^{(r, r)}[f]\right)}{\mathcal{Z}\left(\vec{V}^{(r, r)}[0]\right)}
\end{gathered}
$$

with

$$
\begin{aligned}
\mathcal{I}^{(r, r)}[f](\phi)= & \exp \left(-\int_{\Lambda_{s-r}}\left\{g: \phi^{4}:_{0}(x)+\mu: \phi^{2}:_{0}\right\} d^{3} x\right. \\
& \left.+L^{(3-[\phi]) r} \int \phi(x) f\left(L^{-r} x\right) d^{3} x\right)
\end{aligned}
$$

2nd step: define inhomogeneous RG

Fluctuation covariance $\Gamma:=C_{0}-C_{1}$.
Associated Gaussian measure is the law of the fluctuation field

$$
\zeta(x)=\sum_{0 \leq k<\ell} p^{-k[\phi]} \zeta_{\operatorname{anc}_{k}(x)}
$$

L-blocks (closed balls of radius L) are independent. Hence

$$
\begin{gathered}
\int \mathcal{I}^{(r, r)}[f](\phi) d \mu_{c_{0}}(\phi)=\iint \mathcal{I}^{(r, r)}[f](\zeta+\psi) d \mu_{\Gamma}(\zeta) d \mu_{c_{1}}(\psi) \\
=\int \mathcal{I}^{(r, r+1)}[f](\phi) d \mu_{c_{0}}(\phi)
\end{gathered}
$$

with new integrand

$$
\mathcal{I}^{(r, r+1)}[f](\phi):=\int \mathcal{I}^{(r, r)}[f]\left(\zeta+L^{-[\phi]} \phi(L \cdot)\right) d \mu_{\Gamma}(\zeta)
$$

Need to extract vacuum renormalization \rightarrow better definition is

$$
\mathcal{I}^{(r, r+1)}[f](\phi)=e^{-\delta b\left(\mathcal{I}^{(r, r)}[f]\right)} \int \mathcal{I}^{(r, r)}[f]\left(\zeta+L^{-[\phi]} \phi(L \cdot)\right) d \mu_{\Gamma}(\zeta)
$$

so that we have the fundamental identity
$\int \mathcal{I}^{(r, r)}[f](\phi) d \mu c_{0}(\phi)=e^{\delta b\left(\mathcal{I}^{(r, r)}[f]\right)} \int \mathcal{I}^{(r, r+1)}[f](\phi) d \mu c_{0}(\phi)$
Repeat: $\mathcal{I}^{(r, r)} \rightarrow \mathcal{I}^{(r, r+1)} \rightarrow \mathcal{I}^{(r, r+2)} \rightarrow \cdots \rightarrow \mathcal{I}^{(r, s)}$
One must control

$$
\mathcal{S}^{\mathrm{T}}(f)=\lim _{\substack{r \rightarrow-\infty \\ s \rightarrow \infty}} \sum_{r \leq q<s}\left(\delta b\left(\mathcal{I}^{(r, q)}[f]\right)-\delta b\left(\mathcal{I}^{(r, q)}[0]\right)\right)
$$

limit of logarithms of characteristic functions.

Use a Brydges-Yau lift

$$
\begin{aligned}
& R G_{\text {inhom }} \\
& \vec{V}^{(r, q)} \quad \longrightarrow \quad \vec{V}^{(r, q+1)} \\
& \begin{array}{ccc}
\downarrow \\
\mathcal{I}^{(r, q)}
\end{array} \quad \longrightarrow \quad \begin{array}{c}
\downarrow \\
\mathcal{I}^{(r, q+1)}
\end{array} \\
& \mathcal{I}^{(r, q)}(\phi)=\prod_{\substack{\Delta \in \mathbb{L}_{0} \\
\Delta \subset \Lambda_{s-q}}}\left[e^{f_{\Delta} \phi_{\Delta}} \times\right. \\
& \left\{\exp \left(-\beta_{4, \Delta}: \phi_{\Delta}^{4}: c_{0}-\beta_{3, \Delta}: \phi_{\Delta}^{3}: c_{0}-\beta_{2, \Delta}: \phi_{\Delta}^{2}: c_{0}-\beta_{1, \Delta}: \phi_{\Delta}^{1}: c_{0}\right)\right. \\
& \times\left(1+W_{5, \Delta}: \phi_{\Delta}^{5}: c_{0}+W_{6, \Delta}: \phi_{\Delta}^{6}: c_{0}\right) \\
& \left.\left.+R_{\Delta}\left(\phi_{\Delta}\right)\right\}\right]
\end{aligned}
$$

Dynamical variable is $\vec{V}=\left(V_{\Delta}\right)_{\Delta \in \mathbb{L}_{0}}$ with

$$
V_{\Delta}=\left(\beta_{4, \Delta}, \beta_{3, \Delta}, \beta_{2, \Delta}, \beta_{1, \Delta}, W_{5, \Delta}, W_{6, \Delta}, f_{\Delta}, R_{\Delta}\right)
$$

$R G_{\text {inhom }}$ acts on $\mathcal{E}_{\text {inhom }}$, essentially,

$$
\prod_{\Delta \in \mathbb{L}_{0}}\left\{\mathbb{C}^{7} \times C^{9}(\mathbb{R}, \mathbb{C})\right\}
$$

Stable subspaces

$\mathcal{E}_{\text {hom }} \subset \mathcal{E}_{\text {inhom }}:$ spatially constant data.
$\mathcal{E} \subset \mathcal{E}_{\text {hom }}$: even potential, i.e., g, μ 's only and R even function.
Let $R G$ be induced action of $R G_{\text {inhom }}$ on \mathcal{E}.

3rd step: stabilize bulk (homogeneous) evolution

Show that $\forall q \in \mathbb{Z}, \lim _{r \rightarrow-\infty} \vec{V}^{(r, q)}[0]$ exists, i.e.,

$$
\lim _{r \rightarrow-\infty} R G^{q-r}\left(\vec{V}^{(r, r)}[0]\right)
$$

exists.

Tadpole graph with mass insertion

$$
A_{3}=12 L^{3-2[\phi]} \int_{\mathbb{Q}_{p}^{3}} \Gamma(0, x)^{2} d^{3} x
$$

is main culprit for anomalous scaling $\left[\phi^{2}\right]-2[\phi]>0$.

Irwin's proof \rightarrow stable manifold $W^{\text {s }}$
Restriction to $W^{s} \rightarrow$ contraction \rightarrow IR fixed point v_{*}.
Construct unstable manifold W^{u}, intersect with W^{s}, transverse at v_{*}.
Here, $\vec{V}^{(r, r)}[0]$ is independent of r : strict scaling limit of fixed model on unit lattice. (We can also do the Gaussian to non-Gaussian crossover continuum limit).
$\vec{V}^{(r, r)}[0]$ must be chosen in $W^{s} \rightarrow \mu(g)$ critical mass.
Thus

$$
\forall q \in \mathbb{Z}, \quad \lim _{r \rightarrow-\infty} \vec{V}^{(r, q)}[0]=v_{*}
$$

Tangent spaces at fixed point: E^{s} and E^{u}. $E^{u}=\mathbb{C} e_{u}$, with e_{u} eigenvector of $D_{v_{*}} R G$ for eigenvalue $\alpha_{u}=L^{3-2[\phi]} \times Z_{2}=: L^{3-\left[\phi^{2}\right]}$.

4th step: control deviation from homogeneous evolution $\overrightarrow{V^{(r, q)}}[f]-\vec{V}^{(r, q)}[0]$, for all effective scale q, uniformly in r. 1) $\sum_{x \in G} \zeta_{x}=0$ a.s. \rightarrow deviation is 0 for $q<$ local constancy scale of test function f.
2) Deviation resides in closed unit ball containing origin for $q>$ radius of support of $f \rightarrow$ exponential decay for large q. For source term with ϕ^{2} add

$$
Y_{2} Z_{2}^{r} \int: \phi^{2}: c_{r}(x) j(x) d^{3} x
$$

to potential. $\mathcal{S}_{r, s}^{\mathrm{T}}(f, j)$ now involves two test functions. After rescaling to unit lattice/cut-off

$$
Y_{2} \alpha_{\mathrm{u}}^{r} \int: \phi^{2}: c_{0}(x) j\left(L^{-r} x\right) d^{3} x
$$

to be combined with μ into $\left(\beta_{2, \Delta}\right)_{\Delta \in \mathbb{L}_{0}}$ space-dependent mass.

5th step: partial linearization

In order to replay same sequence of moves with j present, construct

$$
\Psi(v, w)=\lim _{n \rightarrow \infty} R G^{n}\left(v+\alpha_{u}^{-n} w\right)
$$

for $v \in W^{s}$ and all direction w (especially $\int: \phi^{2}:$).
For v fixed, $\Psi(v, \cdot)$ is parametrization of W^{u} satisfying $\Psi\left(v, \alpha_{u} w\right)=R G(\Psi(v, w))$.

If there were no W^{s} directions (1D dynamics) then Ψ would be conjugation \rightarrow Poincaré-Kœnigs Theorem.
$\Psi(v, w)$ is holomorphic in v and w.
This is essential for probabilistic interpretation of ($\phi, N\left[\phi^{2}\right]$) as pair of random variables in $S^{\prime}\left(\mathbb{Q}_{p}^{3}\right)$.

Thank you for your attention.

