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Introduction
The theory of linear partial pseudo-differential equations for
complex-valued functions over non-Archimedean fields is a

well-established branch of mathematical analysis. By this time,
there is a description of various equations whose properties

resemble those of classical equations of mathematical physics,
there are constructions of fundamental solutions, information on

spectral properties of related operators. For equations of evolution
type, there are results on initial value problems etc. (Khrennikov,

Kochubei, Shelkovich, Vladimirov, Zúñiga-Galindo, ...).
Meanwhile very little is known about nonlinear p-adic equations.
We can mention only some semilinear evolution equations solved
using p-adic wavelets (Khrennikov and Shelkovich, 2010) and a

kind of equations of reaction-diffusion type studied by
Zúñiga-Galindo, 2016.



In this work, we consider a p-adic analog of one of the most
important classical nonlinear equations, the porous medium
equation, that is the equation

∂u

∂t
+ Dα(ϕ(u)) = 0, u = u(t, x), t > 0, x ∈ Qp, (1)

where Qp is the field of p-adic numbers, Dα, α > 0, is
Vladimirov’s fractional differentiation operator, ϕ is a strictly
monotone increasing continuous real function, |ϕ(s)| ≤ C |s|m for
s ∈ R (C > 0, m ≥ 1). A typical example of the latter is
ϕ(u) = u|u|m−1, m > 1. We see Eq. (1) as the simplest model
example of an equation of this kind for the non-Archimedean
situation. Therefore in order to understand specific features of this
case, we confine ourselves to the simplest pseudo-differential
operator on Qp and the simplest kind of nonlinearity. On the other
hand, this setting has some common features with recent work on
fractional porous medium equation on Rn (de Pablo, Quiros,
Rodŕıguez and Vázquez, 2012). Another motivation is the p-adic
model of a porous medium proposed by Khrennikov, Oleschko and
Correa Lopez (2016).



Our strategy for studying Eq. (1) is as follows. There exists an
abstract theory of the equations

∂u

∂t
+ A(ϕ(u)) = 0. (2)

developed by Crandall and Pierre (1982) and based on the theory
of stationary equations

u + Aϕ(u) = f (3)

developed by Brézis and Strauss (1973). In Eq. (2) and (3), A is a
linear m-accretive operator in L1(Ω) where Ω is a σ-finite measure
space. Under some natural assumptions, the nonlinear
operatorAϕ = A ◦ ϕ is accretive and admits an m-accretive
extension Aϕ, the generator of a contraction semigroup of
nonlinear operators. This result gives information on a kind of
generalized solvability of Eq. (2), though the available description
of Aϕ is not quite explicit.



In order to use this method for Eq. (1), we need an L1-theory of
the Vladimirov operator Dα, which is a subject of independent
interest.
In the classical situation where Ω = Rn, A is the Laplacian, there
are stronger results (Bénilan, Brézis and Crandall, 1975) based on
the study of Eq. (3), showing that Aϕ is m-accretive itself. This
employs some delicate tools of local analysis of solutions, such as
imbedding theorems for Marcinkiewicz and Sobolev spaces in
bounded domains.
For our p-adic situation, we prove a little weaker result, namely the
m-accretivity of the closure of the operator Aϕ. Our tool is the
L1-theory of the Vladimirov type operator on a p-adic ball.
Finally, we give an example of an explicit solution of Eq. (1)
resembling the “Quadratic Pressure Solution” of the porous
medium equation on Rn.



Preliminaries
1. p-Adic numbers and the Vladimirov operator.

Let p be a prime number. The field of p-adic numbers is the
completion Qp of the field Q of rational numbers, with respect to

the absolute value |x |p defined by setting |0|p = 0,

|x |p = p−ν if x = pν
m

n
,

where ν,m, n ∈ Z, and m, n are prime to p. Qp is a locally
compact topological field.

Note that by Ostrowski’s theorem there are no absolute values on
Q, which are not equivalent to the “Euclidean” one, or one of | · |p.

We denote Zp = {x ∈ Qp : |x |p ≤ 1}. Zp, as well as all balls in
Qp, is simultaneously open and closed.



The absolute value |x |p, x ∈ Qp, has the following properties:

|x |p = 0 if and only if x = 0;

|xy |p = |x |p · |y |p;

|x + y |p ≤ max(|x |p, |y |p).

The latter property called the ultra-metric inequality (or the
non-Archimedean property) implies the total disconnectedness of
Qp in the topology determined by the metric |x − y |p, as well as
many unusual geometric properties. Note also the following
consequence of the ultra-metric inequality:

|x + y |p = max(|x |p, |y |p) if |x |p 6= |y |p.

Denote by dx the Haar measure on the additive group of K
normalized by the equality

∫
Zp

dx = 1.



The Fourier transform of a complex-valued function f ∈ L1(Qp) is
again a function on Qp defined as

f̃ (ξ) = (F f )(ξ) =

∫
Qp

χ(xξ)f (x) dx

where χ is the canonical additive character.
If F f ∈ L1(Qp), then we have the inversion formula

f (x) =

∫
K

χ(−xξ)f̃ (ξ) dξ.

It is possible to extend F from L1(Qp) ∩ L2(Qp) to a unitary
operator on L2(Qp), so that the Plancherel identity holds in this
case.



In order to define distributions on Qp, we need a class of test
functions. A function f : Qp → C is called locally constant if
there exists such an integer l ≥ 0 that for any x ∈ Qp

f (x + x ′) = f (x) if ‖x ′‖ ≤ p−l .

The smallest number l with this property is called the exponent of
local constancy of the function f .
Typical examples of locally constant functions are additive
characters, and also cutoff functions like

Ω(x) =

{
1, if ‖x‖ ≤ 1;

0, if ‖x‖ > 1.

In particular, Ω is continuous, which is an expression of the
non-Archimedean properties of Qp.



Denote by D(Qp) the vector space of all locally constant functions
with compact supports. Note that D(Qp) is dense in Lq(Qp) for
each q ∈ [1,∞). In order to furnish D(Qp) with a topology,
consider first the subspace D l

N ⊂ D(Qp) consisting of functions
with supports in a ball

BN = {x ∈ Qp : |x |p ≤ pN}, N ∈ Z,

and the exponents of local constancy ≤ l . This space is
finite-dimensional and possesses a natural direct product topology.
Then the topology in D(Qp) is defined as the double inductive
limit topology, so that

D(Qp) = lim−→
N→∞

lim−→
l→∞

D l
N .

If V ⊂ Qp is an open set, the space D(V ) of test functions on V
is defined as a subspace of D(Qp) consisting of functions with
supports in V .



The space D′(Qp) of Bruhat-Schwartz distributions on Qp is
defined as a strong conjugate space to D(Qp). In contrast to the
classical situation, the Fourier transform is a linear automorphism
of the space D(Qp). By duality, F is extended to a linear
automorphism of D′(Qp). There exists a detailed theory of
convolutions and direct products of distributions on Qp closely
connected with the theory of their Fourier transforms.



The Vladimirov operator Dα, α > 0, of fractional differentiation, is
defined first as a pseudo-differential operator with the symbol |ξαp :

(Dαu)(x) = F−1ξ→x

[
|ξ|αpFy→ξu

]
, u ∈ D(Qp),

where we show arguments of functions and their direct/inverse
Fourier transforms. There is also a hypersingular integral
representation giving the same result on D(Qp) but making sense
on much wider classes of functions (for example, bounded locally
constant functions):

(Dαu) (x) =
1− pα

1− p−α−1

∫
Qp

|y |−α−1p [u(x − y)− u(x)] dy .



Heat kernel for Dα:

Z (t, x) =
∞∑

k=−∞
pkck(t)∆−k(x)

where ∆l(x) is the indicator function of the ball Bl ,

ck(t) = exp
(
−pkαt

)
− exp

(
−p(k+1)αt

)
.

Another expression for Z (t, x), valid for x 6= 0, is

Z (t, x) =
∞∑

m=1

(−1)m

m!
· 1− pαm

1− p−αm−1
tm|x |−αm−1p .

Z is a probability density and

0 < Z (t, x) ≤ Ct(t1/α + |x |p)−α−1, t > 0, x ∈ Qp.



2. A Heat-Like Equation on a p-Adic Ball

Let us consider the Cauchy problem

∂u(t, x)

∂t
+ (Dα

Nu) (t, x)− λu(t, x) = 0, x ∈ BN , t > 0; (4)

u(0, x) = ψ(x), x ∈ BN , (5)

where N ∈ Z, BN = {x ∈ Qp, |x |p ≤ pN}, ψ ∈ D(BN),

λ =
p − 1

pα+1 − 1
pα(1−N), the operator Dα

N is defined by restricting

Dα to functions uN supported in BN and considering the resulting
function DαuN only on BN . Here and below we often identify a
function on BN with its extension by zero onto Qp. Note that Dα

N

defines a positive definite operator on L2(BN), λ is its smallest
eigenvalue.



The solution:

u(x , t) =

∫
BN

ZN(t, x − y)ψ(y) dy , t > 0, x ∈ BN ,

where

ZN(t, x) = eλtZ (x , t) + c(t), x ∈ BN ,

c(t) = p−N − p−N(1− p−1)eλt
∞∑
n=0

(−1)n

n!
tn

p−Nαn

1− p−αn−1
,

The kernel ZN is a transition density of a Markov process on BN .



Probabilistic interpretation. Let ξα(t) be the stochastic process
with independent increments corresponding to the generator Dα.

Suppose that ξα(0) ∈ BN . Denote by ξ
(N)
α (t) the sum of all jumps

of the process ξα(τ), τ ∈ [0, t], whose absolute values exceed pN .

Since ξα is right continuous with left limits, ξ
(N)
α (t) is finite a.s.,

ξ
(N)
α (0) = 0. Let us consider the process

ηα(t) = ξα(t)− ξ(N)
α (t).

Since the jumps of ηα never exceed pN by absolute value, this
process remains a.s. in BN (due to the ultra-metric inequality).
The above Cauchy problem corresponds to this process.



Harmonic analysis on the additive group of a p-adic ball

Let us consider the p-adic ball BN as a compact subgroup of Qp.
Any continuous additive character of Qp has the form x 7→ χ(ξx),
ξ ∈ Qp. The annihilator {ξ ∈ Qp : χ(ξx) = 1 for all x ∈ BN}

coincides with the ball B−N . By the Pontryagin duality theorem,

the dual group B̂N to BN is isomorphic to the discrete group
Qp/B−N consisting of the cosets

pm
(
r0 + r1p + · · ·+ rN−m−1p

N−m−1
)

+B−N , rj ∈ {0, 1, . . . , p−1},

m ∈ Z,m < N. Analytically, this isomorphism means that any
nontrivial continuous character of BN has the form χ(ξx), x ∈ BN ,
where |ξ|p > p−N and ξ ∈ Qp is considered as a representative of
the class ξ + B−N . Note that |ξ|p does not depend on the choice

of a representative of the class.



The Fourier transform on BN is given by the formula

(FN f )(ξ) = p−N
∫
BN

χ(xξ)f (x) dx , ξ ∈ (Qp \ B−N) ∪ {0},

where the right-hand side, thus also FN f , can be understood as a
function on Qp/B−N .



The Riesz kernel

f (N)
α (x) =

1− p−α

1− pα−1
|x |α−1p , Reα > 0, α 6≡ 1 (mod

2πi

log p
Z).

generates a distribution on BN extended analytically in α to〈
f
(N)
−α , ϕ

〉
= λϕ(0) +

1− pα

1− p−α−1

∫
BN

[ϕ(x)− ϕ(0)]|x |−α−1p dx .

The emergence of λ in the last formula “explains” its role in the
probabilistic construction of a process on BN .



Theorem
The operator Dα

N , α > 0, acts from D(BN) to D(BN) and admits,
for each ϕ ∈ D(BN), the representations:

(i) Dα
Nϕ = f

(N)
−α ∗ ϕ where the convolution is understood in the

sense of harmonic analysis on the additive group of BN ;

(ii)

(Dα
Nϕ) (x) = λϕ(x)+

1− pα

1− p−α−1

∫
BN

|y |−α−1p [ϕ(x−y)−ϕ(x)] dy .

(iii) On D(BN), Dα
N − λI coincides with the pseudo-differential

operator ϕ 7→ F−1N (PN,αFNϕ) where

PN,α(ξ) =
1− pα

1− p−α−1

∫
BN

|y |−α−1p [χ(yξ)− 1] dy .

This symbol is extended uniquely from (Qp \ B−N) ∪ {0} onto
Qp/B−N .



The Vladimirov Operator in L1(Qp)

The Heat-Like Equation and the Corresponding Semigroup of
Operators.

Using the fundamental solution Z , we define the operator family

(S(t)ψ)(x) =

∫
Qp

Z (t, x − ξ)ψ(ξ) dξ, ψ ∈ L1(Qp),

t > 0. S is a contraction semigroup in L1(Qp).

Proposition

S(t) has the C0-property.



Definition
We define the realization A of Dα in L1(Qp) as the generator of
the semigroup S(t).

Let D(A) be the domain of the operator A.

Proposition

If u ∈ D(Qp), then u ∈ D(A) and Au = Dαu where the right-hand
side is understood as usual in terms of the Fourier transform or the
hypersingular integral representation.

The proof is based on the detailed analysis of actions of Dα and
S(t) on characteristic functions of open-closed sets.



The Green function.

Since the operator A in L1(Qp) is defined as the generator of the
contraction semigroup S(t) = e−tA, then by the Hille-Yosida
theorem, we can find the resolvent Rµ(A) = (A + µI )−1, µ > 0, by
the formula

Rµ(A)ψ = −
∞∫
0

e−µtS(t)ψ dt, ψ ∈ L1(Qp).

We will consider below the case where α > 1, in which the
resolvent is an integral operator with a kernel possessing some
smoothness properties. Thus, from now on,

α > 1.



In this case, Rµ is a convolution operator with the continuous
integral kernel Eµ(x − ξ), such that Eµ(x) ∼ const ·|x |−α−1p ,
|x |p →∞. The function Eµ is represented by the uniformly
convergent series

Eµ(x) =
∞∑

N=−∞
e(N)
µ (x),

e(N)
µ (x) =

∫
|ξ|p=pN

χ(−xξ)

|ξ|αp + µ
dξ.



Description of A in the distribution sense.
Let u ∈ L1(Qp). Then Dαu can be defined as a distribution from

D′(Qp), a convolution u ∗ f−α, f−α(x) =
|x |−α−1p

Γp(−α)
,

Γp(z) =
1− pz−1

1− p−z
.

f−α defines a distribution by analytic continuation.

Proposition

The operator A defined as a semigroup generator has the domain
D(A) = {u ∈ L1(Qp) : Dαu ∈ L1(Qp)} where Au = Dαu
(understood in the distribution sense).



L1-Theory of the Vladimirov Type Operator on a p-Adic Ball

The Heat-Like Semigroup.

On a ball BN , N ∈ Z, we consider the Cauchy problem (4)-(5). Its
fundamental solution ZN defines a contraction semigroup

(TN(t)u)(x) =

∫
BN

ZN(t, x − ξ)u(ξ) dξ

on L1(BN).

Proposition

The semigroup TN is strongly continuous.



The Generator.

Denote by AN the generator of the contraction semigroup TN on
L1(BN). By the Hille-Yosida theorem, AN has a bounded resolvent
(AN + µI )−1 for each µ > 0. In order to study the domain D(AN),
we need the following auxiliary result.

Proposition

Let the support of a function u ∈ L1(Qp) be contained in Qp \ BN .
Then the restriction to BN of the distribution Dαu ∈ D′(Qp)
coincides with the constant

RN = RN(u) =
1− pα

1− p−α−1

∫
|x |p>pN

|x |−α−1p u(x) dx .

The following main result of this section is based on this property.
As before, A denotes the generator of the semigroup S(t) on
L1(Qp).



Proposition

If ψ ∈ D(A), then the restriction ψN of the function ψ to BN

belongs to D(AN), and ANψN = (Dα
N − λ)ψN where Dα

NψN is
understood in the sense of D′(BN), that is ψN is extended by zero
to a function on Qp, Dα is applied to it in the distribution sense,
and the resulting distribution is restricted to BN .

In the study of nonlinear equations, this result makes it possible to
use the operator AN in the investigation of local properties of
functions. This is a substitute for the local Sobolev and
Marcinkiewicz spaces used in the classical literature.



Nonlinear Equations: the Main Result
Let us return to Eq. (1) interpreted as Eq. (2) on L1(Qp), where
the linear operator A is a generator of the semigroup S(t), ϕ is a

strictly monotone increasing continuous real function,
|ϕ(s)| ≤ C |s|m, m ≥ 1. Below we re-interpret Eq. (1) as the

equation

∂u

∂t
+ Aϕ(u) = 0 (6)

where Aϕ is the closure of Aϕ.
Recall that a mild solution of the Cauchy problem for a nonlinear
equation with the initial condition u(0, x) = u0(x) is defined as a
function given by a limit, uniformly on compact time intervals, of

solutions of the problem for the difference equations approximating
the differential one. This the usual “nonlinear version” of the

notion of a generalized solution.



Theorem
The operator Aϕ is m-accretive, so that, for any initial function
u0 ∈ L1(Qp), the Cauchy problem for Eq. (6) has a unique mild
solution.

Idea of Proof. By the general results of Crandall and Pierre, the
operator Aϕ is accretive. Therefore it is sufficient to show that
I + Aϕ has a dense range. This property is proved using a priori
estimates by Brézis and Strauss, relative local compactness
criterion for subsets of L1(Qp) and the local compactness
considerations based on properties of the operator AN .



Explicit Solution: an Example
Let us consider Eq. (1) with α > 0, ϕ(u) = |u|m, m > 1. We look

for a solution of the form

u(t, x) = ρ

(
|x |γp
t0 − t

)ν
, 0 < t < t0, x ∈ Qp,

where t0 > 0, γ > 0, ν > 0, 0 6= ρ ∈ R.
After investigating possible values of parameters, we come to the

solution

u(t, x) = ρ(t0 − t)−
1

m−1 |x |
α

m−1
p

where

ρ = −

[
Γp(1 + α

m−1)

(m − 1)Γp(1 + αm
m−1)

] 1
m−1

.



In a similar way, we can obtain another solution

u(t, x) = µ(t0 + t)−
1

m−1 |x |
α

m−1
p , t > 0, x ∈ Qp,

where µ = −ρ.
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