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The automaton transformation of infinite words over alphabet Fp =
{0, 1, . . . , p − 1}, where p prime number coincide with the continuous
transformation of a ring of p-adic integers Zp. The object of this study is
dynamical system associated with automata maps that is important for
cryptography. We prove criterion of measure-preserving for an n-unit-
delay mappings associated with asynchronous automata. Moreover, we
give a sufficient condition of ergodicity of such mappings.
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Introduction

An automaton (letter–to–letter transducer) is tupleA = (I,S,O, S,O, s0)
where I is an input alphabet, S is a set of states,O is an output alphabet,
S : I× S → S is a state update map, O : I× S → O is an output map,
s0 ∈ S is an initial state. Note that I,O are finite alphabets, however S
could be an infinite set of states.

Let’s consider only accessible automata: where any state s ∈ S of
automaton A is reachable from initial state s0 after a finite input word
u was fed to the automaton. We assume further that I = O = Fp =
{0, 1, . . . , p − 1}, where p is prime. We identify n-letter words over Fp
with non-negative integers: Given an n-letter word u = αn−1 . . . α1α0,
αi ∈ Fp for i = 0, 1, 2, . . . , n− 1, we consider u as a base-p expansion of
the number α0 + α1 · p + . . . + αn−1 · pn−1. In turn, the latter number
can be considered as an element of the residue ring Z/pnZ modulo pn.
Thus, every automaton A the corresponds a map from Z/pnZ to Z/pnZ,
for every n = 1, 2, 3 . . .. Moreover, every automaton A defines a map
fA from ring of p-adic integers Zp to itself : Given an infinite word α =
. . . αn−1 . . . α1α0 (that is, an infinite sequence) over Fp we consider a p-
adic integer x whose canonical expansion is x = x(α) = α0+α1 ·p+ . . .+
αn−1 ·pn−1+. . . =

∑∞
i=0 δi(x) · pi, where δi(x) ∈ Fp; so, by the definition,

for every x ∈ Zp we put δi(fA(x)) = O(δi(x), si), i = 0, 1, 2, . . . where
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si = S(δi−1(x), si−1), i = 1, 2, . . .. We say then that map fA is automaton
function (or, automaton map) of the automaton A.

The automaton function fA : Zp → Zp of the automaton A is 1-
Lipschitz. Conversely, for every 1-Lipschitz function f : Zp → Zp there
exists an automaton A = (Fp,S,Fp, S,O, s0) such that f = fA, see [1].
The automata functions were studied in context of metric and affine
equivalence of geometrical images of automata, see [4–9]. A transitive
families of such mappings by means of geometrical images were described
in [10].

Dynamical systems

Dynamics is a mathematical science that studies action of a semigroup H
on a phase space S, which is a measure space: that is, S is endowed with
a measure µ, and H acts on S by transformations that are measurable
with respect to µ. A transformation f : S → S is said to be measurable
whenever given a measurable subset S ⊂ S, the pre-image f−1(S) is also
measurable. Often it is additionally assumed that S is endowed also with
a metric ρ, and that H acts by transformations that are continuous with
respect to ρ.

We speak about algebraic dynamics whenever we additionally assume
that space S is endowed not only with a metric and with a measure, but
also with a certain algebraic structure (i.e., S is a universal algebra).

A dynamical system on a measuarable spase S is understood as a
triple (S, µ, f), where S is a set endowed with a measure µ, and f : S→ S
is a measurable function. A dynamical system is also topological since
configuration space S are not only measure space but also metric space,
and corresponding transformation f are not only measurable but also
continuous.

The orbit(or, the trajectory) of a piont x0 of the dynamical system
is a sequense

x0 = f0(x0), x1 = f(x0), x2 = f(x1) = f2(x0) . . . , xi = f(xi−1) =
f i(x0), . . .

of points of the space S; that is, the orbit of the point x0 is just sequence
of iterates (f i(x0))∞i=0. The point x0 is called an initial point of the tra-
jectory. A mapping F : S → S of measurable space S into a measurable
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space Y endowed with probabilistic measure µ and ν, respectively, is said
to be measure-preserving whenever µ(F−1(S)) = ν(S) for each measur-
able subset S ⊆ S. Also in this case once S = Y and µ = ν the measure
µ is said to be invariant with respect to F (or simply invariant when
it is clear from the context what F is meant). In the case when S = Y
and µ = ν, a measure-preserving map F is said to be ergodic if for each
measurable subset S such that F−1(S) = S holds either µ(S) = 1 or
µ(S) = 0. A measurable subset S ⊂ S is called invariant subset of the
map F : S→ S (or, F -invariant) if F−1(S) = S; so ergodicity of the map
F just means that F has no proper invariant subsets; that is, invariant
subsets whose measure is neither 0 nor 1.

We can consider an automaton function f : Zp → Zp of the au-
tomaton A = (Fp,S,Fp, S,O, so) as an algebraic dynamical system on a
mesuarable and a metric space Zp of p-adic integers, which, actally, is a
profinite algebra with the structure of an inverse limit: The ring Zp is
an inverse limit of residue rings Z/pkZ, k = 1, 2, 3 . . .. As any profinite
algebra can be endowed with a metric and a measure, it is reasonable
to ask what continuous with respect to the metric transformations are
measure-preserving or ergodic with respect to the mentioned measure.
Besides, the same question can be asked in the case of mappings for
asynchronous automata.

Measure-preserving an n-unit delay mappings

An asynchronous automaton (transducer) is a 6-tuple

B = (I,S,O, S,O, so),

where I, O are finite alphabets, S is a set of states, S : I × S → S is
the state update function, O : I×S → O∗ is output function, where O∗
denotes the set of all finite strings over O, and s0 is the initial state.
Denote I∞ and O∞ the sets of all infinite sequences over I (over O,
resp.).

We assume that an asynchronous transducer works in a framework of
discrete time steps. The transducer reads one symbol at a time, changing
its internal state and outputting a finite sequence of symbols at each step.
Asynchronous transducers are a natural generalization of synchronous
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transducers, which are required to output exactly one symbol for every
symbol read.

Let’s define a function of special type for asynchronous transducer
where input and output alphabets are same. Moreover, let’s I = O =
Fp = {0, 1, . . . p − 1}. A mapping fB : Zp → Zp is called n-unit de-
lay whenever given an asynchronous transducer B = (Fp,S,Fp, S,O, s0)
traslated input string α = . . . αnαn−1 . . . α1α0 (viewed as p-adic integer)
into infinite output string β = . . . βn+1βn (viewed as p-adic integer): So,
that is

O(δi(αn−1 . . . α1α0), si) = e,

where e is empty word, for i = 0, 1, 2 . . . , n− 1, and

si = S(δi(αn−1 . . . α1α0), si−1),

i = 1, 2, . . . , n− 1.
An n-unit delay transducer is one that produces the some output n

times unit later. Note that usually the term n-unit delay is used in a nar-
rower meaning, cf. [3] when n-unit delay transducer is defined by fininite
automaton, that is the initial state of the automaton, irrespective of the
incomming letter, outputs an empty word, that transducer produces no
output for the first n times slots; after that, the automaton outputs the
incoming words without changes. Specifically, if the transducer reads as
input a symbol δi(α) at time i, it will produce this symbol as output
at time i + 1. At time i = 0, the transducer outputs nothing. For ex-
ample, an unilateral shift, see e.g. [2], is defined by finite asynchronous
automaton with unit-delay, in the narrow sense.

Theorem. An n-unit delay mapping fB : Zp → Zp is a continuous.
The ring of p-adic integers Zp can be endowed with a probability mea-

sure µ, e.g. normalized Haar measure: The base of the corresponding σ-
algebra of measurable subsets of Zp, the elementary measurable subsets,
are all balls of non-zero radii. That is, every element of the σ-algebra,
the measurable subset of Zp, can be constructed from the elementary
measurable subsets by taking complements and countable unions.

Recall, that open (resp., closed) ball of radius ε centered at the point
a ∈ M in a metric space (M,ρ) is a set B−ε (a) = {x ∈ M : ρ(x, a) < ε}
(resp., Bε(a) = {x ∈M : ρ(x, a) ≤ ε}).

As the absolute value | · |p may be only p−` for some ` ∈ N
⋃
{0},

for p-adic balls (i.e., for balls of field Qp of p-adic numbers) we see that
B−
p−`(a) = Bp−`(a). We put µ(Bp−`(a)) = p−`.
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Let Fk be a reduction of function f modulo pn·(k−1) on the elements
of the ring Z/pn·kZ for k = 2, 3, . . ..

Theorem An n-unit delay mapping f : Zp → Zp is measure-preserving
if and only if the number #F−1k (x) of Fk-pre-images of the point x ∈
Z/pn·(k−1)Z is equal pn, k = 2, 3, . . ..

A point x0 ∈ Zp is said to be a periodic point if there exists r ∈ N
such that fr(x0) = x0. The least r with this property is called the length
of period of x0. If x0 has period r, it is called an r-periodic point. The
orbit of an r-periodic point x0 is {x0, x1, . . . , xr−1}, where xj = f j(x0),
0 ≤ j ≤ r − 1. This orbit is called an r-cycle.

Let γ(k) be an r(k)-cycle {x0, x1, . . . , xr(k)−1}, where

xj = (f mod pk·n)j(x0),

0 ≤ j ≤ r(k)− 1, k = 1, 2, 3, . . ..
Theorem. A measure-preserving an n-unit delay mapping f : Zp →

Zp is ergodic if a γ(k) is an unique cycle, for all k ∈ N.
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