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Goal of the Talk and Introduction

• We introduce basics of dynamics on non-Archimedean local rings
(Zp or Fq[[T ]] ). Non-Archimedean dynamical systems are
classified as a dichotomy between 1-Lipschitz functions and
expansive functions.

• We formulate a conjecture for the measure-preservation of a
1-Lipschitz function on Zp in Mahler’s expansion.

• In this talk, we provide evidence for this conjecture by verifying
that it holds for a wider class of 1-Lipschitz functions that are
uniformly differentiable modulo p on Zp of N1(f ) = 1.
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Goal of the Talk and Introduction

• Also we formulate a conjecture for a Bernoullicity of expansive
maps on Zp in Mahler’s expansion and then verify that this
conjecture holds for a wider class of expansive maps satisfying
certain assumptions.

• If time permits, we will use the results of Yurova and Khrennikov
to provide a generalized Hensel’s lifting lemma for 1-Lipschitz
functions on Zp in terms of Mahler’s coefficients.
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Non-Archimedean dynamical systems

What are non-Archimedean dynamical systems?
• Non-Archimedean dynamical system is made up of a triple
(R, f , µ) where
−R: a compact discrete valuation domain with a uniformizer π;
i) Zp is the ring of p-adic integers.
ii) Fq[[T ]] is the ring of power series in one variable T over a finite
field Fq.
−f : a measurable(continuous) function f : R → R.
−µ: a normalized measure on R so that µ(R) = 1.
• Recall that the measure of a ball a + πnR is defined as its radius;
µ(a + πnR) = 1/rn, r = #R/(π), where r is given by

r =

{
p if R = Zp;
q if R = Fq[[T ]].



Dichotomy: 1-Lipschitz functions vs expansive functions

Fix a nonnegative integer α.
• [Definition] rα-Lipschitz functions on R :
We say that f : R → R is rα-Lipschitz if one of the equivalent
statements is satisfied:
(1) |f (x)− f (y)|π ≤ rα · |x − y |π for all x , y ∈ R.
(2) f (x) ≡ f (y) (mod πn) whenever x ≡ y (mod πn+α) for any
integer n ≥ 1.
(3) f (x + πn+αR) ⊂ f (x) + πnR for all x ∈ R and any integer
n ≥ 1.
(4) |Φ1(f ) := 1

x (f (x + y)− f (y))|π ≤ rα for all x 6=∈ R and all
y ∈ R.
(5) ||Φ1(f )||sup ≤ rα for all x 6= 0 ∈ R.
Then, every rα-Lipschitz function induces reduced functions, for all
integers n ≥ 1

f/n : R/πn+αR → R/πnR,

x + πn+αR 7→ f (x) + πnR.



Dichotomy: 1-Lipschitz vs expansive functions

[Definition] • f : Zp → Zp is said to be a 1 -Lipschitz function if
α = 0, pα-expansive/Lipschitz if α > 0.

• Examples of 1-Lipschitz functions on Zp.
1. Zp[x ].
2. B(Zp) := the set of locally analytic functions of order 1 from
Zp to itself.
3. Udm(Zp)(1) := the set of 1-Lipschitz, uniformly differentiable
modulo p functions on Zp of N1(f ) = 1.

• Examples of pα-expansive functions on Zp.
1.
(x
n

)
is a pblogp(n)c-expansive function.

2. Fermat quotient map on Zp defined by F (x) = xp−x
p is a

p-expansive function.
3. The generalised Collatz map φp,q(x) is p-expansive, where

φp,q(x) =

{
x
p if p | x
qx−ε0(qx)

p otherwise
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Basic Facts in π-adic dynamical systems

For two cases (R, π, |?|π) = (Zp, p, |?|p) or (Fq[[T ]],T , |?|T )
[Definition] (1) A function f : R → R is measure-preserving if
µ(f −1(M)) = µ(M) for each measurable subset M ⊂ R, especially,
M = a + πnR(n ≥ 0).

(2) A measure-preserving function f : R → R is called ergodic if it
has no proper invariant subsets, i.e., if, for an invariant measurable
subset M ⊂ R, i.e., f −1(M) = M, either µ(M) = 1 or µ(M) = 0
holds.

Proposition 1
Let f : R → R be a 1-Lipschitz function.
Then f : R → R is measure-preserving.
⇔ its reduced functions f/n : R/πnR → R/πnR are bijective for all
integers n ≥ 1.
⇔ f is an isometry; |f (x)− f (y)|π = |x − y |π for all x , y ∈ R.
⇔ f is onto.
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Equivalent statements for ergodic functions

Proposition 2
A 1-Lipschitz function f : R → R is ergodic if and only if its
reduced functions f/n : R/πnR → R/πnR are transitive for all
integers n ≥ 1.
(• transitive = forming a cycle by repeating f )

Proposition 3
Let f : Zp → Zp be an onto(MP-preserving) 1-Lipschitz function.
Then the following are equivalent:
(1) f is minimal, meaning Of (x) is dense in Zp for every ∈ Zp.
(2) f is ergodic.
(3) f is conjugate to the translation t(x) = x + 1 on Zp.
(4) f is uniquely ergodic, meaning there is only one ergodic
measure.
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pα-Bernoulli functions:=(p−α, pα)-locally scaling functions

Definition

We say that for a positive integer α, a pα-expansive function
f : Zp → Zp is pα-Bernoulli if, for all x , y ∈ Zp such that x ≡ y
(mod pα),

|f (x)− f (y)| = pα|x − y |.

Examples of Bernoulli functions on Zp:
1.
( x
pα

)
is pα-Bernoulli.

2. Fermat quotient map F (x) = xp−x
p is p-Bernoulli.

3. The generalised Collatz map φp,q(x) defined by

φp,q(x) =

{
x
p if p | x
qx−ε0(qx)

p otherwise

is p-Bernoulli.
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Dynamical properies of pα-Bernoulli functions

Theorem (Kingsbery et al.)

If f is a pα-Bernoulli function on Zp, then f is topologically and
measurably isomorphic to S (α), where S (α) is the αth iterate of the
shift map S on Zp defined by S(x) = x−x0

p , where
x = x0 + x1p + · · · ,

Definition

Two functions f : Zp → Zp and g : Zp → Zp are said to be
topologically isomorphic if there exists a homeomorphism
Φ : Zp → Zp such that, for all x ∈ Zp,

Φ ◦ f (x) = g ◦ Φ(x). (1)

The maps are measurably isomorphic if there exists an invertible,
measure-preserving map Φ such that (1) holds for almost all
x ∈ Zp.
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Applications from relations with other areas

• Non-Archimedean dynamical system(NADS) has many
applications to mathematical physics, computer science,
cryptography, and so on. In particular, it can be applied to
cryptography in order to generate pseudo-random
numbers(PRNG).

• Reference: ”Applied Algebraic Dynamics” by Vladimir
Anashin and Andrei Khrennikov

• One-to-one correspondence between NADS and other area(in
a broad sense)

NADS Automata Theory Cryptography Quantum M.

1-Lipschitz fun. Autonomous fun. T-fun. Causality law

MP fun. Reversible transd. Bijective fun. Reversible law

Ergodic fun. ? Transitive fun. ?



Problems in non-Archimedean dynamics

Problems to be tackled:

For (R, π, |?|π) = (Zp, p, |?|p) or (Fq[[T ]],T , |?|T ),
we want to characterize dynamical properties of two types of
functions f : R → R;
(1) Measure-preservation/Ergodicity of a 1-Lipschitz function f
(2) Bernoullicity/Measure-preservation/Ergodicity of an expansive
function f
in terms of expansion coefficients {an}n≥0 of f expressed as

f (x) =
∞∑
n=0

anen(x)

where {en}n≥0 is an orthonormal basis of the space C (R,K ) of
continuous functions on R to K .



Bases for the space C (R ,K )

• R: the integer ring of a local field K :
Here we are interested in two cases (R, π, |?|π) = (Zp, p, |?|p) or
(Fq[[T ]],T , |?|T )

• C (R,K ) : the space of all continuous functions from R to K

It is a K -Banach space under ||f ||sup = max{|f (x)| : x ∈ R}

• We say that a sequence of functions {en}n≥0 in C (R,K ) is an
orthonormal basis for C (R,K ) if and only if the following two
conditions are satisfied:
(1) Every f ∈ C (R,K ) can be expanded uniquely as
f =

∑∞
n=0 anen, with an ∈ K → 0 as n→∞.

(2) The sup-norm of f is given by ‖f ‖ = max{|an|}.



Well-known bases for C (R ,K )

• The table below is a list of bases for C (R,K ) which are being
used in non-Archimedean dynamical systems.

Rings Classical case Zp Function fields Fq[[T ]]]

Bases Mahler polynomials Carlitz-Wagner polynomials

van der Put Analogue of van der Put

q-Mahler No analogue

No analogue Digit derivatives

Digit shifts (NA) Digit shifts

• Mahlar baisis on Zp = binomial coefficient polynomials

(
x

m

)
=

x(x − 1) · · · (x −m + 1)

m!
∈ Q[x ] (m ≥ 1) and

(
x

0

)
= 1.



Mahler’s theorem

Theorem

(1) {
(x
m

)
}m≥0 is an orthonormal basis of C (Zp,Qp). Every

f ∈ C (Zp,Qp) can be expanded uniquely as f (x) =
∑∞

m=0 am
(x
m

)
with am ∈ Qp → 0 as m→∞, with the sup-norm given by
‖f ‖sup = maxm≥0{|am|p}.
(2) The coefficients {am}m≥0 can be recovered by the formula:

am = 4mf (0) =
m∑

k=0

(−1)m−k
(

m

k

)
f (k).

• Difference operator: 4f (x) := f (x + 1)− f (x).

•4n f (x) =
∞∑

m=0

am+n

(
x

m

)
; 4nf (x) =

n∑
k=0

(−1)n−k
(

n

k

)
f (x + k).



Van der Put’s Theorem

• Van der Put functions {χ(m, x)}m≥0 are defined as the
characteristic functions of certain balls B

p−blogp mc−1(m) in Zp:

χ(m, x) =

{
1 if |x −m| ≤ p−blogp mc−1;
0 otherwise.

Theorem

(1) {χ(m, x)}m≥0 is an orthonormal basis for C (Zp,Qp). That is,
every f ∈ C (Zp,Qp) can be expanded uniquely as
f (x) =

∑∞
m=0 Bmχ(m, x), with Bm ∈ Qp → 0 as m→∞, whose

sup-norm is given by ||f ||sup = maxm≥0{|Bm|}.
(2) The coefficients Bm are determined by

Bm =

{
f (m)− f (m−) if m ≥ p;
f (m) otherwise.



Ergodicity of f on Z2 in Mahler’s expansion

Theorem 1.(Anashin 1994, J 2013)

Let f (x) =
∑∞

m=0 pblogpmccm
(x
m

)
: Zp → Zp be a 1-Lipschitz

function.
(1) f is measure-preserving if c1 6≡ 0 (mod p) and

cm ≡ 0 (mod p) for all m ≥ 2.

(2) f is ergodic whenever the following conditions are satisfied:
(i) c0 6≡ 0 (mod p).
(ii)

c1 ≡
{

1 (mod p) if p > 2;
1 (mod 4) if p = 2.

(iii) cm ≡ 0 (mod pblogp(m+1)c+1−blogp(m)c) for all m ≥ 2.
Moreover, in the case p = 2 these conditions are necessary.

• This result also works for the q-Mahler basis.



Ergodicity of f on Z2 in van der Put’s expansion

Theorem 2.(Anashin, Khrennikov and Yurova 2011, J 2013)

A 1- Lipschitz function f : Z2 → Z2 represented as

f (x) =
∞∑

m=0

2blog2mcbmχ(n, x) (bm ∈ Z2)

is ergodic if and only if the following conditions are satisfied:
(1) b0 ≡ 1 (mod 2); b0 + b1 ≡ 3 (mod 4); b2 + b3 ≡ 2 (mod 4);
(2) bm ≡ 1 (mod 2) for all m ≥ 2;
(3)

∑2m−1
i=2m−1 bi ≡ 0 (mod 4) for all m ≥ 3.

From now on, we assume that p is an odd prime.



Measure-preservation criterion in van der Put’s expansion

Theorem 3.(Khrennikov and Yurova 2013) Let f : Zp → Zp be a
1-Lipschitz function in van der Put’s expansion represented as

f (x) =
∞∑

m=0

Bmχ(m, x) =
∞∑

m=0

pblogp mcbmχ(m, x).

Then, f is measure-preserving if and only if the following
conditions are satisfied:

(MP1) {b0 = f (0), · · · , bp−1 = f (p − 1)} is a complete set of
all distinct residues modulo p;

(MP2) For any integer s ≥ 1, 0 ≤ k < ps , {bk+`ps}1≤`≤p−1

is a complete set of all distinct nonzero residues modulo p.

Remark: We give an alternative proof of this result using the
arguments in the function field analog of the criterion of
Khrennikov and Yurova.



Bernoullicity criterion in van der Put’s expansion

Theorem 4. Let f be a pα-Lipschitz function represented in van
der Put’s expansion as

f (x) =

pα−1∑
m=0

Bm(f )χ(m, x) +
∞∑

m≥pα
pblogpmc−αbm(f )χ(m, x),

where bm(f ) ∈ Zp. Then, f is pα-Bernoulli if and only if the
following conditions are satisfied:

(B1) For all 0 ≤ i < pα, {f (i + `pα)}0≤`≤p−1 is a complete
set of all distinct residues modulo p;

(B2) For all s ≥ 1, and all 0 ≤ i < pα+s ,
{bi+`pα+s (f )}1≤`≤p−1 is a complete set of distinct nonzero
residues modulo p.



Sketch of Proof of Theorem 4.

Lemma 1.

A function f : Zp → Zp is pα-Lipschitz(expansive) if and only if,
for every integer 0 ≤ i < pα, fi : Zp → Zp is a 1-Lipschitz
function, where fi is defined by fi (x) = f (i + pαx).

Lemma 2.

Let f : Zp → Zp be a pα-Lipschitz function. Then, the following
are equivalent:
(1) f is a pα-Bernoulli function.
(2) For every integer 0 ≤ i < pα, |fi (x)− fi (y)| = |x − y | for all
x , y ∈ Zp.
(3) For every integer 0 ≤ i < pα, fi is a measure-preserving
1-Lipschitz function on Zp.

• Use Theorem 3 and Lemma 2.(2) to prove Theorem 4.
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Conjecture for measure-preservation of 1-Lipschitz
functions in Mahler’s expansion

Conjecture A. Let f : Zp → Zp be a 1-Lipschitz function
represented in Mahler’s expansion as

f (x) =
∞∑

m=0

pblogpmccm

(
x

m

)
(cm ∈ Zp).

Then, f is measure-preserving if and only if the following
conditions are satisfied:

(i) {f (0), f (1), · · · , f (p − 1)} is a complete set of all distinct
residues modulo p;

(ii) For all s ≥ 1 and all m = m− + msps with 0 ≤ m− < ps

and 2 ≤ ms ≤ p − 1, cm ≡ 0 (mod p).

(iii) For all s ≥ 1 and all 0 ≤ k < ps ,

s∑
r=0

pr−1∑
i=0

(
k

i

)
ci+pr 6≡ 0 (mod p).



Known Results for Conjecture A

• What we proved for Conjecture A;
1. Conjecture A holds for p = 3.
2. The sufficiency of Conjecture A holds.
3. Conjecture A holds for functions in B(Zp).
• Subclasses of 1-Lischitz dynamical systems:

Zp[x ] ⊂ B(Zp) ⊂ Udm(1)(Zp) ⊂ Lip1(Zp),

where B(Zp) := the set of B-functions or locally analytic functions
of order 1 on Zp :

B(Zp) := {f (x) =
∞∑

m=0

λm

(
x

m

)
:
λm
m!
∈ Zp, m = 0, 1, · · · }.

Udm(1)(Zp) := the set of 1-Lipschitz, uniformly differentiable
modulo p functions on Zp of N1(f ) = 1.
• Try to prove that Conjecture A holds for functions in
Udm(1)(Zp).



Definition of Udm(1)(Zp)-functions

Definition.(Due to Anashin) A function f : Zp → Zp is uniformly
differentiable modulo pk if there exists a positive integer N and
∂k f (u) ∈ Qp such that for any u ∈ Zp, the congruence

f (u + prh) ≡ f (u) + prh∂k f (u) (mod pk+r )

holds for any integer r ≥ N and any h ∈ Zp, where ∂k f (u) does
not depend on r and h. The smallest of these N is denoted by
Nk(f ).
• Udm(1)(Zp) := the set of a 1-Lipschitz, uniformly differentiable
modulo p function on Zp of N1(f ) = 1.
• f ∈ Udm(1)(Zp) if and only if for any u ∈ Zp, any integer r ≥ 1
and any h ∈ Zp, the congruence holds:

f (u + prh) ≡ f (u) + prh∂1f (u) (mod p1+r ),

with ∂1f (u) ∈ Zp. Note that B(Zp) ⊂ Udm(1)(Zp).



Conjecture A holds for Udm(1)(Zp)-functions

Theorem 5. Let f : Zp → Zp be a Udm(1)(Zp)-function
represented in Mahler’s expansion

f (x) =
∞∑

m=0

pblogpmccm

(
x

m

)
(cm ∈ Zp).

Then, f is measure-preserving if and only if

(a) {f (0), f (1), · · · , f (p − 1)} is a complete set of all distinct
residues modulo p;

(b) For all 0 ≤ k < p,

c1 +

p−1∑
i=0

(
k

i

)
ci+p 6≡ 0 (mod p).

Remarks: 1. Condition (ii) of Conjecture A is redundant for
functions in Udm(1)(Zp).
2. Any integer s ≥ 1 in Condition (iii) equivalently reduces s = 1.



Key idea: interplay between coefficients of van der Put and
Mahler

• What we need to do is to compute the following congruence
sums: for all s ≥ 1 and all 0 ≤ k < ps ,
(1) For all 0 ≤ i ≤ p − 3,

p−1∑
`=1

`iσ(`) :=

p−1∑
`=1

`ibk+`ps ≡ 0 (mod p);

(2)
p−1∑
`=1

`p−2σ(`) :=

p−1∑
`=1

`p−2bk+`ps 6≡ 0 (mod p).

where σ : F∗p → F∗p, ` 7→ bk+`ps := p−sBk+`ps (mod p).
• From K-Y criterion and Lagrange interpolation,
f is MP if and only if σ is a permutation on F∗p, together with
condition (i) of Conjecture A.



Properties of 1-Lipschitz functions

• Gregory-Newton formula: For all integers n ≥ 0 and all functions
f with coefficients in an extension field of Q,

f (x + n) =
∞∑
i=0

4i f (x)

(
n

i

)

Proposition.(V. Anashin) (1) A continuous function f : Zp → Zp

is 1-Lipschitz if and only if, for every integer n ≥ 1, 4
nf (x)
n is an

integer-valued function.
(2) Let f : Zp → Zp be a 1-Lipschitz function, let k ∈ Zp, and let
a base-p expansion of n contain more than one nonzero digits (i.e.,
n 6= tpr for r ∈ {0, 1, 2, . . .}, t ∈ {1, 2, . . . p − 1}). Then,

4nf (k)

n
≡ 0 (mod p).



More properties of 1-Lipschitz functions

• What is 4
tps f (k)
ps if n = tps , where 1 ≤ t ≤ p − 1?

Lemma 3. Let f : Zp → Zp be a 1-Lipschitz function in van der
Put’s expansion represented as

f (x) =
∞∑

m=0

Bmχ(m, x) =
∞∑

m=0

pblogp mcbmχ(m, x).

Let s ≥ 1 be an integer and k be an integer such that 0 ≤ k < ps .
Then the following hold: (1) For all 2 ≤ t ≤ p − 1,

4tps f (k)

ps
≡

t∑
`=1

(−1)t+`

(
t

`

)
bk+`ps (mod p).

(2) 4
ps f (k)
ps ≡ bk+ps +

∑p−1
`=1

f (k+`ps−1)−f (k)
`ps−1 (mod p).



More properties of 1-Lipschitz functions

• In light of Lemma 3, we have the following inversion formula

between 4
tps f (k)
ps and bk+tps .

Lemma 4. Let f : Zp → Zp be a 1-Lipschitz function in van der
Put’s expansion represented as before. Let s ≥ 1 be an integer and
k be an integer such that 0 ≤ k < ps . For all 1 ≤ t ≤ p − 1,

bk+tps ≡ tA0 +
t∑
`=1

(
t

`

)
4`ps f (k)

ps
(mod p),

where

A0 ≡
s−1∑
r=0

p−1∑
`=1

(−1)`−14`pr f (k)

`pr
(mod p).



More properties of 1-Lipschitz functions

• We are now ready to compute the sums in question: for
0 ≤ i ≤ p − 3 or i = p − 2,

∑p−1
`=1 `ibk+`ps .

Lemma 5. Let f : Zp → Zp be a 1-Lipschitz function represented
in van der Put’s expansion as before.
(1) For all 0 ≤ i ≤ p − 3, all s ≥ 1 and all 0 ≤ k < ps ,

p−1∑
`=1

`ibk+`ps ≡
p−1∑
t=2

p−1∑
`=t

`i
(
`

t

)
4tps f (k)

ps
(mod p).

(2)

p−1∑
`=1

`p−2bk+`ps ≡
s∑

r=0

p−1∑
`=1

(−1)`
4`pr f (k)

`pr
(mod p)

≡
s∑

r=0

p−1∑
`=1

k∑
i=0

(−1)`

`

(
k

i

)
c`pr+i (mod p)



Equivalent properties for 1-Lipschitz functions

Lemma 6. Let f : Zp → Zp be a 1-Lipschitz function represented
in the expansions of van der Put and Mahler.

f (x) =
∞∑

m=0

pblogpmccm

(
x

m

)
(cm ∈ Zp);

f (x) =
∞∑

m=0

pblogp mcbmχ(m, x) (bm ∈ Zp).

The following are equivalent:
For all s ≥ 1 and 0 ≤ k < ps , and 2 ≤ ` ≤ p − 1.
(1)

∑p−1
`=1 `ibk+`ps ≡ 0 (mod p) for all i = 0, · · · , p − 3.

(2) 4
`ps f (k)
ps ≡ 0 (mod p).

(3) ck+`ps ≡ 0 (mod p).
(4) bk+`ps ≡ `bk+ps (mod p).

(5)
∑`

j=1(−1)j
(
`
j

)
bk+jps ≡ 0 (mod p).



Conjecture A holds for Udm(1)(Zp)-functions

Theorem 5. Let f : Zp → Zp be a Udm(1)(Zp)-function
represented in Mahler’s expansion

f (x) =
∞∑

m=0

pblogpmccm

(
x

m

)
(cm ∈ Zp).

Then, f is measure-preserving if and only if

(a) {f (0), f (1), · · · , f (p − 1)} is a complete set of all distinct
residues modulo p;

(b) For all 0 ≤ k < p,

c1 +

p−1∑
i=0

(
k

i

)
ci+p 6≡ 0 (mod p).



Sketch of Proof of Theorem 5.

Proof(of reduction of any s ≥ 1 to 1) Let f be in Udm(1)(Zp). For
all s ≥ 1, 0 ≤ k < ps , and 1 ≤ ` < p,

bk+`ps ≡ `bk+ps (mod p) (2)

bk+`ps ≡ `∂1f (k) (mod p). (3)

⇒ bk+ps ≡ ∂1f (k) ≡ ∂1(k̄) ≡ bk̄+p (mod p)

(becasue ∂1f (u) is 1− Lipschitz in the middle and (7) with s = 1.)

⇒
p−1∑
`=1

`p−2bk+`ps ≡
p−1∑
`=1

`p−2bk̄+`p ≡ −bk̄+p (mod p) (by FLT )

≡ c1 +

p−1∑
i=0

(
k̄

i

)
ci+p (mod p) (by Lemma 5(2))

(2) ⇒
∑p−1

`=1 `ibk+`ps ≡
∑p−1

`=1 `
i+1bk̄+p ≡ 0 (mod p), for

0 ≤ i ≤ p − 3.



Bernoullicity of 2α-Lipschitz functions

• We turn to Bernoullicity of pα-Lipschitz functions on Zp.
Theorem 6. Let f : Z2 → Z2 be a 2α-Lipschitz function
represented in Mahler’s expansion as

f (x) =
2α−1∑
m=0

am

(
x

m

)
+
∑
m≥2α

2blog2mc−αcm

(
x

m

)
.

The function f is 2α -Bernoulli if and only if the following
conditions are satisfied: For all s ≥ 0 and 0 ≤ i < 2α+s ,

α+s∑
r=α

2r−1∑
j=0

(
i

j

)
c2r+j ≡ 1 (mod 2).

• Proof follows from the following corollary using Bernoullicity
criteria (Theorem 4):
Corollary. A function f : Z2 → Z2 is 2k -Bernoulli if and only if, for
all s ≥ 0 and 0 ≤ i < 2k+s ,

f (i + 2k+s) ≡ f (i) + 2s (mod 2s+1).



Bernoullicity of pα-Lipschitz functions where p is an odd
prime

Theorem 7. Let f : Zp → Zp be a pα-Lipschitz function
represented in Mahler’s expansion as
f (x) =

∑pα−1
m=0 am

(x
m

)
+
∑

m≥pα pblogpmc−αcm
(x
m

)
. The function f

is pα-Bernoulli whenever the following conditions are satisfied:

(1) For all 0 ≤ i < pα, {f (i + `pα)}0≤`≤p−1 is a complete set
of all distinct residues modulo p;

(2) For all m = m− + msps ≥ pα+1 with 1 < ms < p,
cm ≡ 0 (mod p);

(3) For all s ≥ 1 and 0 ≤ i < pα+s ,

α+s∑
r=α

pr−1∑
m=0

(
i

m

)
cpr+m 6≡ 0 (mod p).

Conversely, if f is a pα-Bernoulli function satisfying a certain
hypothesis (H), these conditions are necessary.



Bernoullicity of pα-Lipschitz functions where p is odd
prime

Hypothesis (H) For all s ≥ 1, 0 ≤ i < pα+s and 1 ≤ ` < p,

f (i + `pα+s)− f (i) ≡ ε`ps (mod ps+1)

for some integer ε with p - ε that does not depend on `.
Such functions include
(i) beta-transformations Tβ on Zp with |β| = pα(α ≥ 1), which
are complete generalizations of the shift maps on Zp;
(ii) pα-Bernoulli polynomial functions f ∈ Qp[x ] with additional
assumptions that |f (j)(x)| ≤ pjα for all j ≥ 1, where f (j) denotes
the jth derivative of f .



Root existence of 1-Lipschitz functions on Zp

Recall Hensel’s Lemma: Zp[x ] ⊂ Lip1(Zp)

Hensel’s Lemma for polynomials

Let f (x) ∈ Zp[x ] be a polynomial. Suppose there exists
h̄ ∈ {0, 1, . . . , p − 1} such that

f (h̄) ≡ 0 (mod p) and f ′(h̄) 6≡ 0 (mod p).

Then there exists a unique h ∈ Zp such that

f (h) = 0 and h ≡ h̄ (mod p).

Hensel’s Lemma for analytic functions

Let f (x) =
∑

n≥0 cnxn ∈ Zp[[x ]] be an analytic function on Zp.

Suppose there exists h̄ ∈ {0, 1, . . . , p − 1} such that f (h̄) ≡ 0
(mod p) and f ′(h̄) 6≡ 0 (mod p). Then there exists a unique
h ∈ Zp such that

f (h) = 0 and h ≡ h̄ (mod p).



Root existence of 1-Lipschitz functions on Zp

Recall Hensel’s Lemma: Zp[x ] ⊂ Lip1(Zp)

Hensel’s Lemma for polynomials

Let f (x) ∈ Zp[x ] be a polynomial. Suppose there exists
h̄ ∈ {0, 1, . . . , p − 1} such that

f (h̄) ≡ 0 (mod p) and f ′(h̄) 6≡ 0 (mod p).

Then there exists a unique h ∈ Zp such that

f (h) = 0 and h ≡ h̄ (mod p).

Hensel’s Lemma for analytic functions

Let f (x) =
∑

n≥0 cnxn ∈ Zp[[x ]] be an analytic function on Zp.

Suppose there exists h̄ ∈ {0, 1, . . . , p − 1} such that f (h̄) ≡ 0
(mod p) and f ′(h̄) 6≡ 0 (mod p). Then there exists a unique
h ∈ Zp such that

f (h) = 0 and h ≡ h̄ (mod p).



Root of 1-Lipschitz functions on Zp in van der Put’s
expansion

• Generalization of Hensel’s lemma for 1-Lipschitz(not necessarily
differentiable) functions on Zp.( Because the Theorem implies HL.)
Theorem 8.(Yurova and Khrennikov 2016) Let f : Zp → Zp be a
1-Lipschitz function represented in van der Put’s expansion as

f (x) =
∞∑

m=0

pblogp mcbmχ(m, x) (bm ∈ Zp).

Suppose that f satisfies the following two assumptions:
(1) For some natural number R, there exists
h̄ ∈ {0, 1, · · · , pR − 1} such that f (h̄) ≡ 0 (mod pR).
(2) For any m ≥ pR such that m ≡ h̄ (mod pR),
{b

m+tp1+blogpmc}1≤t≤p−1 is a complete set of nonzero residues
modulo p.
Then there exists a unique h ∈ Zp such that f (h) = 0 and h ≡ h̄
(mod pR).



Root of 1-Lipschitz functions on Zp in Mahler’s expansion

Theorem 9. Let f : Zp → Zp be 1-Lipschitz function represented
in Mahler’s expansion as

f (x) =
∞∑

m=0

pblogpmccm

(
x

m

)
(cm ∈ Zp).

Suppose f satisfies the following conditions:

(1) For some natural number R, there exists
h̄ ∈ {0, 1, · · · , pR − 1} such that f (h̄) ≡ 0 (mod pR).
(2) For all s ≥ 1 and all m = m− + msps with 0 ≤ m− < ps

and 2 ≤ ms ≤ p − 1,

cm ≡ 0 (mod p).

(3) For all m ≥ pR such that m ≡ h̄ (mod pR),

1+blogpmc∑
r=0

pr−1∑
i=0

(
m

i

)
ci+pr 6≡ 0 (mod p).

Then, there exists a unique h ∈ Zp such that f (h) = 0 and h ≡ h̄
(mod pR).



Root of 1-Lipschitz functions on Zp in Mahler’s expansion

Corollary

Let f : Zp → Zp be a 1-Lipschitz, uniformly differentiable modulo
p function of N1(f ) = 1, represented in Mahler’s expansion as
before. Suppose f satisfies the following conditions:

(1) There exists h̄ ∈ {0, 1, · · · , p − 1} such that f (h̄) ≡ 0
(mod p)

(2) For only h̄,

c1 +

p−1∑
i=0

(
h̄

i

)
ci+p 6≡ 0 (mod p).

Then, there exists a unique h ∈ Zp such that f (h) = 0 and h ≡ h̄
(mod p).



Thank you for your attention !!!



Properties of B-functions

B(Zp) := {f (x) =
∞∑

m=0

λm

(
x

m

)
:
λm
m!
∈ Zp, m = 0, 1, · · · }.

Proposition

(1) The class B(Zp) is the space of differentiable everywhere,
1-Lipschitz functions on Zp.
(2) This class is closed under addition, multiplication,
differentiation, and composition.
(3) The countable set of all polynomials with non-negative rational
integer coefficients is a dense subset of B(Zp).
(4) Every f ∈ B(Zp) has a Taylor expansion at all points
x = a ∈ Zp: for a, h ∈ Zp and s = 1, · · · , we have

f (a + psh) =
∞∑

m=0

f (m)(a)

m!
(psh)m,

where f (m)(a)
m! are p-adic integers for all m ≥ 0.
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