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Automaton transformation of the space of all one-side

in�nite words over the alphabet {0, 1, . . . , p− 1}, where p is

a prime number, is continuous transformation (w.r.t. the

p-adic metric) of the ring of p-adic integers Zp.

Moreover, a mappings that are realized by (synchronous)

automata satisfy the p-adic Lipschitz condition with

constant equal 1.

In the p-adic ergodic theory automata are p-adic dynamical

systems and automata mappings, in their turn, are a

continuous (in particular, 1-Lipschitz) transformations of the

space Zp.
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The objects of the study are mappings with delay realized by

asynchronous automata in the context of the p-adic
dynamics. The ergodic and more generally

measure-preserving p-adic dynamical systems are explored.
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Automata

An (synchronous) automaton (or, letter-to-letter transducer)

is a 6-tuple A = (I,S,O, h, g, so), where
I is a non-empty �nite set, the input alphabet,

O is a non-empty �nite set, the output alphabet,

S is a non-empty (possibly, in�nite) set of states,

h : I × S → S is a state update function,

g : I × S → O is an output function, and

s0 ∈ S is �xed; s0 is called the initial state.
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Automata

Asynchronous automaton is de�ned in a similar way, except

for output function. Denote the set of �nite output words

via O∗.

An asynchronous automaton is a 6-tuple

B = (I,S,O, h, g, s0), where
I, O are �nite alphabets, S is a set of states,

h : I × S → S is a state update function,

g : I × S → O∗ is an output function, and

s0 is an initial state.

Note that set of states S could be an in�nite, and in this

case an automaton is called in�nite.
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Automata

Roughly speaking, asynchronous automaton is an

letter-to-word transducer that converts an input string of

arbitrary length to an output string. The transducer reads

one symbol at a time, changing its internal state and

outputting a �nite sequence of symbols at each step.

Asynchronous transducers are a natural generalization of

synchronous transducers, which are required to output

exactly one symbol for every symbol read.
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Automata

For example, the asynchronous automaton represented by

Moor diagram: Starting in initial state, automaton converts

any �rst input symbol to empty word.

Figure : Example of an asynchronous automaton
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Automata

We consider only accessible automata: where any state s ∈ S
is reachable from initial state s0; that is, given state s ∈ S,
there exist a �nite input word u such that after the word u
has been fed to the automaton, the automaton reaches the

state s ∈ S.

We assume further that both alphabets I and O are

p-elements: I = O = Fp = {0, 1, . . . , p− 1}. A simple

example of an automaton is the 2-adic adding machine:

x 7→ x+ 1, A = (I = F2,S = {s0, s1},O = F2, h, g, s0), where

h(0, s0) = s1;h(1, s0) = s0,

g(0, s0) = 1; g(1, s0) = 0,

h(i, s1) = s1; g(i, s1) = i,

for i ∈ I = F2.
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Automata

An automaton A = (I,S,O, h, g, s0) transforms input words

(w.r.t the alphabet Fp) of length n into output words of

length n, that is, an automaton A maps the set Wn of all

words of length n into Wn.

We identify n-letter words over
Fp = {0, 1, . . . , p− 1} with non-negative integers: Given an

n-letter string x = xn−1 . . . x1x0, xi ∈ Fp for

i = 0, 1, 2, . . . , n− 1, we consider x as a base-p expansion of

the natural number

x = x0 + x1 · p+ . . .+ xn−1 · pn−1 =

n−1∑
i=0

xi · pi.

This number x can be considered as an element of the

residue ring Z/pnZ modulo pn. Thus, every automaton A
corresponds a map fn from Z/pnZ to Z/pnZ, for every
n = 1, 2, 3 . . ..
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Automata functions

The function fn : Z/pnZ→ Z/pnZ can be considering as the

mapping in the space of in�nite words over the alphabet Fp.

The latter can be identi�ed with the ring of p-adic integers
Zp.

Every automaton A de�nes a map fA from ring of p-adic
integers Zp to itself : Given an in�nite string

x = . . . xn−1 . . . x1x0 over Fp we consider a p-adic integer
x = x0 + x1 · p+ . . .+ xn−1 · pn−1 + . . . =

∑∞
i=0 δi(x) · pi,

where δi are coordinate functions valued in Fp. Here δi
depends only on the coordinates x0, x1, . . . , xi of the variable
x: δi = δi(x0, x1, . . . , xi).
For every x ∈ Zp, we put δi(fA(x)) = g(δi(x), si),
i = 0, 1, 2, . . . where si = h(δi−1(x), si−1), i = 1, 2, . . ..
So, we say, that map fA is automaton function (or,

automaton map) of the automaton A.
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Automata functions

Similar way, we can consider asynchronous automata: An

asynchronous automaton B = (Fp,S,Fp, h, g, s0) performs a

transformation fB : Zp → Zp.
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Automata functions

Synchronous automaton function f : Zp → Zp satis�es

1-Lipschitz condition:

||f(x)− f(y)||p ≤ ||x− y||p for any x, y ∈ Zp, where || · ||p is

the p-adic norm.

For 1-Lipschitz functions the following natural question

arises: Can any 1-Lipschitz mapping be generated by some

(synchronous) automaton?
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Automata functions

The answer is �yes�: The class of all (synchronous) automata

functions coincides with the class of all 1-Lipschitz mappings

from Zp to Zp.

Theorem (V.S. Anashin)

The automaton function fA : Zp → Zp of the synchronous

automaton A = (Fp,S,Fp, S,O, s0) is 1-Lipschitz.
Conversely, for every 1-Lipschitz function f : Zp → Zp there

exists an synchronous automaton A = (Fp,S,Fp, S,O, s0)
such that f = fA.
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Automata functions

We note, that in general case 1-Lipschitz function generated

by some in�nite automaton, i.e. the space of states S of

automaton is in�nite.

The description of �nite automata functions was given by

Vuillemin, althought only for p = 2. V.S. Anashin and

T.Smyshlyaeva solved this problem for arbitary p, using a

coordinate functions and van der Put series, respectively.
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Automata functions

Denote via I∞ and O∞ the sets of in�nite words over input

alphabet I and output alphabet O, respectively.

Theorem (R.I. Grigorchuk, V.V.Nekrashevich, V.I.

Sushchanskii)

The mapping f : I∞ → O∞ is continuous if and only if it is

de�ned by a certain asynchronous automaton.

Note, in general case, an asynchronous automaton de�ned a

continuous mapping is in�nite.

If the mapping f : I∞ → O∞ is bijective, then this mapping

is a homeomorphism, and the inverse mapping f−1 is also

de�ned by a certain asynchronous automaton.
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Automata functions

So, if the input and output alphabets of automaton coincide

(i.e. I = O = Fp) and the automaton is initial (i.e., has an

initial state s0), then it induces a transformation of the

space of words into itself. These words may be either �nite

or in�nite. In the latter case, we have a continuous (in

particular, 1-Lipschitz) transformation of the space of in�nite

words (i.e., the space of p-adic integers Zp). Conversely, any

continuous transformation is de�ned by a certain automaton.
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Mappings with delay

A mapping fB : Zp → Zp is called n-unit delay whenever

given an asynchronous automaton B = (Fp,S,Fp, S,O, s0)
traslated in�nite input string α = . . . α2α1α0 over Fp into

in�nite output string β = . . . β2β1β0 over Fp such that

g(δi(α), si) = Ø, where Ø is empty word, for

i = 0, 1, 2 . . . , n− 1, si = h(δi−1(α), si−1), i = 1, 2, . . . , n− 1;
and g(δn+i(α), sn+i) = βi, i = 0, 1, . . .,
sn+i = h(δn+i−1(α), sn+i−1) for i = 0, 1, 2, . . ..

Example of unit-delay map (n = 1):

Figure : Example of an asynchronous automaton
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Mappings with delay

In general case, an n-unit delay mappings form a class of a

continuous functions, that in turn, contains a class of shifts.

For example, a class of unit-delay mappings contains

unilateral shift de�ned by �nite asynchronous automaton,

that is irrespective of the �rst incomming letter x ∈ Fp,

outputs an empty word Ø; after that, an automaton outputs

the incoming word without changes:
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For example, a class of unit-delay mappings contains

unilateral shift de�ned by �nite asynchronous automaton,

that is irrespective of the �rst incomming letter x ∈ Fp,

outputs an empty word Ø; after that, an automaton outputs

the incoming word without changes:
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Shifts

The p-adic shift S : Zp → Zp is de�ned as follows.

If x = x0 + x1p+ x2p
2 + . . ., where the

xi ∈ Fp = {0, 1, . . . , p− 1}, we let S(x) = x1 + x2p+ x3p
2 . . ..

We see that if Sk denotes the k-fold iterate of S, then we

have that Sk(x) = xk + xk+1p+ . . .. Moreover, for x ∈ Z it is

the case that Sk(x) = b x
pk
c where b·c is the greatest integer

function.
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Shifts

The p-adic shift is continuous as a function of Zp: if

||x− y||p < p−(k+1) then ||S(x)− S(y)||p < p−k.

By Mahler's Theorem, any continuous function T : Zp → Zp

can be expressed in the form of a uniformly convergent

series, called its Mahler Expansion:

T (x) =

∞∑
m=0

am

(
x

m

)
where

am =

m∑
i=0

(−1)i
(
m

i

)
T (m− i) ∈ Zp
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Shifts

The p-adic shift is continuous as a function of Zp: if

||x− y||p < p−(k+1) then ||S(x)− S(y)||p < p−k.
By Mahler's Theorem, any continuous function T : Zp → Zp

can be expressed in the form of a uniformly convergent

series, called its Mahler Expansion:

T (x) =

∞∑
m=0

am

(
x

m

)
where

am =

m∑
i=0

(−1)i
(
m

i

)
T (m− i) ∈ Zp
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Shifts

We let a
(k)
m be the mth Mahler coe�cient of Sk:

Sk(x) =

∞∑
m=0

a(k)m

(
x

m

)
.

Theorem. (J.Kingsbery, A. Levin, A. Preygel, C.E. Silva)

The coe�cients a
(k)
m satisfy the following properties:

1 a
(k)
m = 0 for 0 ≤ m < pk;

2 a
(k)
m = 1 for m = pk;

3 Suppose j ≥ 0. Then pj divides a
(k)
m for m > jpk − j + 1

(and so, ||a(k)m ||p ≤ p−j).
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1-Lipschitz functions

This theorem describes synchronous automata (in other

words, 1-Lipschitz functions) in terms of Mahler expansion.

Theorem. (A.S. Anashin)

A function f : Zp → Zp represented by Mahler expansion is

1-Lipschitz if and only if

||ai||p ≤ p−blogp ic

for all i = 1, 2, . . ..

Recall that for i ∈ N a number blogp ic is reduced by 1 a

number of digits in a base-p expansion for i.
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n-unit delay functions

For n-unit delay mapping, n ∈ N, we gets next theorem.

Theorem 1

A function f : Zp → Zp represented by Mahler expansion

f(x) =

∞∑
m=0

am

(
x

m

)
,

where am ∈ Zp, m = 0, 1, 2 . . ., is an n-unit delay if and only

if

||ai||p ≤ p−blogpn ic+1

for all i ≥ 1.
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Dynamics

Dynamical system on a measuarable spase S is understood

as a triple (S, µ, f), where S is a set endowed with a measure

µ, and f : S→ S is a measurable function.

A dynamical

system is also may be topological since con�guration space S
is not only measure space but also may be metric space, and

corresponding transformation f is not only measurable but

also will be continuous. A orbit of the dynamical system is a

sequense x0, x1 = f(x0), . . . , xi = f(xi−1) = f i(x0), . . . of
points of the space S, x0 is called an initial point of the

orbit. Dymanics studies a behavior of such orbits.
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Dynamics

Dynamical system on a measuarable spase S is understood

as a triple (S, µ, f), where S is a set endowed with a measure

µ, and f : S→ S is a measurable function. A dynamical

system is also may be topological since con�guration space S
is not only measure space but also may be metric space, and

corresponding transformation f is not only measurable but

also will be continuous.

A orbit of the dynamical system is a

sequense x0, x1 = f(x0), . . . , xi = f(xi−1) = f i(x0), . . . of
points of the space S, x0 is called an initial point of the

orbit. Dymanics studies a behavior of such orbits.
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Dynamics

Dynamical system on a measuarable spase S is understood

as a triple (S, µ, f), where S is a set endowed with a measure

µ, and f : S→ S is a measurable function. A dynamical

system is also may be topological since con�guration space S
is not only measure space but also may be metric space, and

corresponding transformation f is not only measurable but

also will be continuous. A orbit of the dynamical system is a

sequense x0, x1 = f(x0), . . . , xi = f(xi−1) = f i(x0), . . . of
points of the space S, x0 is called an initial point of the

orbit. Dymanics studies a behavior of such orbits.
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Measure-preservation and ergodicity

A mapping F : S→ S of measurable space S onto S endowed

with probabilistic measure µ, is said to be

measure-preserving whenever µ(F−1(S)) = µ(S) for each
measurable subset S ⊆ S.

A measure-preserving map F : S→ S is said to be ergodic if

for each measurable subset S such that F−1(S) = S holds

either µ(S) = 1 or µ(S) = 0.
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Automata as p-adic dynamical systems

We study dynamical system (Zp, µ, f) on Zp, where map

f : Zp → Zp de�ned by some asynchronous automaton

B = (Fp,S,Fp, S,O, s0). The ring Zp can be endowed with a

probability measure µp. The measure µp is a normalized

Haar measure. The base of elementary measurable subsets

are all balls Bp−k(a) of non-zero radii p−k; and we put

µp(Bp−k(a)) = p−k.
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Measure-preservation and ergodicity of 1-Lipschitz

functions in terms of Mahler expansion

Theorem. (V.S. Anashin)

The function f de�nes a 1-Lipschitz measure-preserving

transformation on Zp whenever the following conditions hold

simultaneously:

1 a1 6≡ 0 (mod p);

2 ai ≡ 0 (mod pblogp ic+1), i = 2, 3, . . ..

The function f de�nes a 1-Lipschitz ergodic transformation

on Zp whenever the following conditions hold

simultaneously:

1 a0 6≡ 0 (mod p);

2 a1 ≡ 1 (mod p), for p odd;

3 a1 ≡ 1 (mod 4), for p = 2;

4 ai ≡ 0 (mod pblogp(i+1)c+1), i = 2, 3, . . ..

Moreover, in the case p = 2 these conditions are necessary.
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Preserve the meausure for n-unit delay mappings

Let Fk be a reduction of function f mod pn·(k−1) on the

elements of the ring Z/pn·kZ for k = 2, 3, . . ..

Theorem 2

A n-unit delay mapping f : Zp → Zp is measure-preserving if

and only if the number #F−1k (x) of Fk-pre-images of the

point x ∈ Z/pn·(k−1)Z is equal pn, k = 2, 3, . . ..
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Ergodicity

A point x0 ∈ Zp is said to be a periodic point if there exists

r ∈ N such that f r(x0) = x0. The least r with this property

is called the length of period of x0. If x0 has period r, it is
called an r-periodic point. The orbit of an r-periodic point
x0 is {x0, x1, . . . , xr−1}, where xj = f j(x0), 0 ≤ j ≤ r − 1.
This orbit is called an r-cycle.
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Ergodicity

Let γ(k) be an r(k)-cycle {x0, x1, . . . , xr(k)−1}, where

xj = (f mod pk·n)j(x0), 0 ≤ j ≤ r(k)− 1,

k = 1, 2, 3, . . ..

Theorem 3

A measure-preserving a n-unit delay mapping f : Zp → Zp is

ergodic if a γ(k) is an unique cycle, for all k ∈ N.



Dynamical
Systems
Generated

by
Mappings
with Delay

Livat
Tyapaev

Automata
as p-adic
dynamical
systems

Part I:
Automata

Part II:
Dynamical
systems

Part III:
Ergodicity

Measure-preservation and ergodicity in terms of

Mahler expansion

Let n-unit delay function f : Zp → Zp be represented by

Mahler expansion

f(x) =

∞∑
m=0

am

(
x

m

)
,

where am ∈ Zp, m = 0, 1, 2 . . ..

Theorem 4

A n-unit delay mapping f : Zp → Zp is measure-preserving

whenever the following conditions hold simultaneously:

1 ai 6≡ 0 (mod p) for i = pn;

2 ai ≡ 0 (mod pblogpn ic), i > pn.
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Measure-preservation and ergodicity in terms of

Mahler expansion

Let n-unit delay function f : Zp → Zp be represented by

Mahler expansion

f(x) =

∞∑
m=0

am

(
x

m

)
,

where am ∈ Zp, m = 0, 1, 2 . . ..

Theorem 5

Let p = 3. Then a n-unit delay mapping f : Zp → Zp is

ergodic on Zp whenever the following conditions hold

simultaneously:

1 a1 + a2 + . . .+ apn−1 ≡ 0 (mod p);

2 ai ≡ 1 (mod p) for i = pn;

3 ai ≡ 0 (mod pblogpn ic), i > pn.
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Thank you!
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Asynchronous automaton

x
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Unilateral shift

x


