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Automaton transformation of the space of all one-side
infinite words over the alphabet {0,1,...,p — 1}, where p is
a prime number, is continuous transformation (w.r.t. the
p-adic metric) of the ring of p-adic integers Z,.

Moreover, a mappings that are realized by (synchronous)

automata satisfy the p-adic Lipschitz condition with
constant equal 1.
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LA Automaton transformation of the space of all one-side
Bl infinite words over the alphabet {0,1,...,p — 1}, where p is
a prime number, is continuous transformation (w.r.t. the
p-adic metric) of the ring of p-adic integers Z,.
Moreover, a mappings that are realized by (synchronous)
automata satisfy the p-adic Lipschitz condition with
Rt constant equal 1.

In the p-adic ergodic theory automata are p-adic dynamical
systems and automata mappings, in their turn, are a
continuous (in particular, 1-Lipschitz) transformations of the

space Zp.
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The objects of the study are mappings with delay realized by
asynchronous automata in the context of the p-adic
dynamics. The ergodic and more generally

Part I: measure-preserving p-adic dynamical systems are explored.
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An (synchronous) automaton (or, letter-to-letter transducer)
is a 6-tuple A= (Z,S,0,h,g,s,), where

m 7 is a non-empty finite set, the input alphabet,

m O is a non-empty finite set, the output alphabet,
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m S is a non-empty (possibly, infinite) set of states,
m h:Z xS — S is a state update function,

mg:Z xS — O is an output function, and

[

so € S is fixed; sg is called the initial state.
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s . .
Mapnings for output function. Denote the set of finite output words

with Delay : *
via O*.

|
An asynchronous automaton is a 6-tuple
B=(Z,5,0,h,g,s), where

m Z, O are finite alphabets, S is a set of states,

Automata

mh:Z xS — S is a state update function,
mg:7Z xS — OF is an output function, and

m Sg is an initial state.

Note that set of states S could be an infinite, and in this
case an automaton is called infinite.
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Roughly speaking, asynchronous automaton is an
letter-to-word transducer that converts an input string of
arbitrary length to an output string. The transducer reads
one symbol at a time, changing its internal state and
outputting a finite sequence of symbols at each step.
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Roughly speaking, asynchronous automaton is an
letter-to-word transducer that converts an input string of
arbitrary length to an output string. The transducer reads
one symbol at a time, changing its internal state and

outputting a finite sequence of symbols at each step.
Aliomata Asynchronous transducers are a natural generalization of
synchronous transducers, which are required to output
exactly one symbol for every symbol read.

Livat
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gl For example, the asynchronous automaton represented by
: Moor diagram: Starting in initial state, automaton converts
Mappinga any first input symbol to empty word.
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Figure : Example of an asynchronous automaton
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We consider only accessible automata: where any state s € S
is reachable from initial state sg; that is, given state s € S,
there exist a finite input word u such that after the word
has been fed to the automaton, the automaton reaches the
state s € S.
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Bl We consider only accessible automata: where any state s € S
B is reachable from initial state so; that is, given state s € S,

v there exist a finite input word u such that after the word
has been fed to the automaton, the automaton reaches the
state s € S.

] We assume further that both alphabets Z and O are
Part I: p—elements: T=0= ]Fp = {07 17 Y 2 1}

Automata
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We consider only accessible automata: where any state s € S
is reachable from initial state sg; that is, given state s € S,
there exist a finite input word u such that after the word
has been fed to the automaton, the automaton reaches the
state s € S.
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We assume further that both alphabets Z and O are
p-elements: Z=0 =F, ={0,1,...,p — 1}. A simple
example of an automaton is the 2-adic adding machine:
r—=ax+1, A= (Z=TFy,S = {so,s1},0 =Fa,h,g,s0), where

h(0,s0) = s1;h(1,50) = s0,

9(0750) = 1;.9(1330) = Oa
h’(i781) = Sl;g(i,51) = 7:7

Automata

for i € Z =Ts.
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An automaton A = (Z,S,0, h, g, sop) transforms input words
(w.r.t the alphabet F)) of length n into output words of
Mappings length n, that is, an automaton A maps the set W,, of all
with Delay .

’ words of length n into W,,.
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An automaton A = (Z,S,0, h, g, sop) transforms input words
(w.r.t the alphabet F)) of length n into output words of
Mappings length n, that is, an automaton A maps the set W,, of all
el words of length n into W,,.We identify n-letter words over

F, ={0,1,...,p — 1} with non-negative integers: Given an
n-letter string © = x,,_1 ... 2120, x; € Fp, for
1=0,1,2,...,n— 1, we consider x as a base-p expansion of

the natural number
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n—1
x:xo+ﬂc1-p—l—...+$nf1-pn_lZzﬂii'pi-
i=0
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DIl An automaton A = (Z,S,0, h, g, o) transforms input words
nerate (w.r.t the alphabet F)) of length n into output words of
Mappings length n, that is, an automaton A maps the set W,, of all
el words of length n into W,,.We identify n-letter words over
F, ={0,1,...,p — 1} with non-negative integers: Given an
n-letter string © = x,,_1 ... 2120, x; € Fp, for
1=0,1,2,...,n— 1, we consider x as a base-p expansion of

the natural number
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n—1
x:xo+ﬂc1-p—l—...+$nf1-p”_1Zzﬂii'pi-
i=0

This number x can be considered as an element of the
residue ring Z/p"Z modulo p™. Thus, every automaton A
corresponds a map f,, from Z/p"Z to Z/p"Z, for every
n=1,23...



Automata functions

The function f,,: Z/p"Z — 7Z/p"Z can be considering as the
mapping in the space of infinite words over the alphabet F,,.

e The latter can be identified with the ring of p-adic integers
~ L.
Liva D
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The function f,,: Z/p"Z — 7Z/p"Z can be considering as the
mapping in the space of infinite words over the alphabet F,,.
The latter can be identified with the ring of p-adic integers
L.

Every automaton A defines a map f4 from ring of p-adic
integers Z, to itself: Given an infinite string

T =...Tp_1...2170 over [, we consider a p-adic integer
T=20+T1 P+ ...+ Ty P H =00 0i(2) - P
where 0; are coordinate functions valued in F,,. Here ¢;
depends only on the coordinates zg, x1, ..., z; of the variable
x: 51 = (5i($0, Tlye-o- ,a:i).
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Automata functions

The function f,,: Z/p"Z — 7Z/p"Z can be considering as the
mapping in the space of infinite words over the alphabet F,,.
The latter can be identified with the ring of p-adic integers
L.

Every automaton A defines a map f4 from ring of p-adic
integers Z, to itself: Given an infinite string

T =...Tp_1...2170 over [, we consider a p-adic integer
T=20+T1 P+ ...+ Ty P H =00 0i(2) - P
where 0; are coordinate functions valued in F,,. Here ¢;
depends only on the coordinates zg, x1, ..., z; of the variable
x: 51 = (5i($0, Tlye-o- ,a:i).

For every = € Z,, we put 0;(fa(z)) = g(di(z), s:),

1= 0, 1, 2, ... Where S; = h(éi_l(x), Si_1)7 1= 1, 2, e

So, we say, that map f4 is automaton function (or,
automaton map) of the automaton A.
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Similar way, we can consider asynchronous automata: An
asynchronous automaton B = (F,,S,Fp, h, g, so) performs a
Part I transformation fz: Z, — Zp.
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Synchronous automaton function f: Z, — Z, satisfies
1-Lipschitz condition:

I1f(z) = FW)llp < ||z — yl|, for any =,y € Z;,, where || - ||, is
the p-adic norm.

Part I:
Automata
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1-Lipschitz condition:

|
I1f(z) = FW)llp < ||z — yl|, for any =,y € Z;,, where || - ||, is
the p-adic norm.
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For 1-Lipschitz functions the following natural question
arises: Can any 1-Lipschitz mapping be generated by some
(synchronous) automaton?
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RS  The answer is “yes” The class of all (synchronous) automata
functions coincides with the class of all 1-Lipschitz mappings
from Zj to Zy.

Theorem (V.S. Anashin)

The automaton function f4: Z, — Z, of the synchronous
Antiazte automaton A = (Fp,,S,F, S, 0, s¢) is 1-Lipschitz.
Conversely, for every 1-Lipschitz function f: Z, — Z, there
exists an synchronous automaton A = (F,, S,F,, S, 0, so)
such that f = f4.
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We note, that in general case 1-Lipschitz function generated
by some infinite automaton, i.e. the space of states S of
automaton is infinite.
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We note, that in general case 1-Lipschitz function generated

by some infinite automaton, i.e. the space of states S of

automaton is infinite.

The description of finite automata functions was given by

Part L Vuillemin, althought only for p = 2. V.S. Anashin and
T.Smyshlyaeva solved this problem for arbitary p, using a

coordinate functions and van der Put series, respectively.
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Theorem (R.I. Grigorchuk, V.V.Nekrashevich, V.I.

Sushchanskii)

The mapping f: Z°° — O is continuous if and only if it is
defined by a certain asynchronous automaton.
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Note, in general case, an asynchronous automaton defined a
continuous mapping is infinite.
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Theorem (R.I. Grigorchuk, V.V.Nekrashevich, V.I.

Sushchanskii)

The mapping f: Z°° — O is continuous if and only if it is
defined by a certain asynchronous automaton.

Automata

Note, in general case, an asynchronous automaton defined a
continuous mapping is infinite.

If the mapping f: Z°° — O is bijective, then this mapping
is a homeomorphism, and the inverse mapping f~! is also
defined by a certain asynchronous automaton.
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So, if the input and output alphabets of automaton coincide
(i.e. Z= O =T,) and the automaton is initial (i.e., has an
initial state sg), then it induces a transformation of the
space of words into itself. These words may be either finite
or infinite. In the latter case, we have a continuous (in
Aliomata particular, 1-Lipschitz) transformation of the space of infinite
words (i.e., the space of p-adic integers Z,). Conversely, any
continuous transformation is defined by a certain automaton.



Mappings with delay

Dynamical
A mapping fg: Z, — Z, is called n-unit delay whenever

by

i}fﬁf%gﬁj given an asynchronous automaton B = (F,,S,F,, S, O, so)
traslated infinite input string o = ... asa1g over [F), into
infinite output string 8 = ... 32315y over I, such that

9(0i(a), s;) = O, where 0 is empty word, for
i=0,1,2....,n—1, s; = h(dj-1(a),8i-1), 1 =1,2,...,n — 1;
and g(On+i(@), sn+i) = Bi, i =10,1,...,

Automata Sn4i = h(5n+i_1(a), Sn—i-i—l) fori=0,1,2,....
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A mapping fg: Z, — Z, is called n-unit delay whenever

by

i}fﬁf%gﬁj given an asynchronous automaton B = (F,,S,F,, S, O, so)
traslated infinite input string o = ... asa1g over [F), into
infinite output string 8 = ... 32315y over I, such that

9(0i(a), s;) = O, where 0 is empty word, for
i=0,1,2....,n—1, s; = h(dj-1(a),8i-1), 1 =1,2,...,n — 1;
and g(On+i(@), sn+i) = Bi, i =10,1,...,

Automata Sn4i = h(5n+i_1(a), Sn—i-i—l) fori=0,1,2,....

Example of unit-delay map (n = 1):
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In general case, an n-unit delay mappings form a class of a
continuous functions, that in turn, contains a class of shifts.




Mappings with delay

In general case, an n-unit delay mappings form a class of a
continuous functions, that in turn, contains a class of shifts.
For example, a class of unit-delay mappings contains
unilateral shift defined by finite asynchronous automaton,
that is irrespective of the first incomming letter x € I,
outputs an empty word ; after that, an automaton outputs
the incoming word without changes:
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Shifts

The p-adic shift S: Z, — Z, is defined as follows.

|
If £ = 29 + z1p + z2p? + . . ., where the
z; €Fp=1{0,1,...,p— 1}, we let S(z) = z1 + zop + x3p*. . ..

We see that if S¥ denotes the k-fold iterate of S, then we
have that S*(z) =z + 21p + . ... Moreover, for z € 7Z it is
the case that S¥(z) = Lﬁj where [-] is the greatest integer
function.



Shifts

The p-adic shift is continuous as a function of Zj: if
with Delay |z —yll, < p_(k'H) then ||S(z) — S(y)||, < p_k.

Livat
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by The p-adic shift is continuous as a function of Zj: if
R ([ — yl|, <p TV then [|S(z) — S(y)ll, <p 7.

By Mahler’s Theorem, any continuous function 1T': Z,, — Z,
can be expressed in the form of a uniformly convergent
series, called its Mahler Expansion:

Sy T(z) = i am (2)

Automata
m=0

where
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Sk(z) = i at®) (;)

m=0
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Theorem. (J.Kingsbery, A. Levin, A. Preygel, C.E. Silva)

Bemt b The coeflicients ag:) satisfy the following properties:
a$)20f0r0§m<pk;
(k)

am’ =1 for m = p*;
Suppose j > 0. Then p’ divides agf) for m > jpF —j+1
(and so, [las’||, < p)-
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S words, 1-Lipschitz functions) in terms of Mahler expansion.

Theorem. (A.S. Anashin)

“““ ata A function f: Z, — Z, represented by Mahler expansion is
‘ 1-Lipschitz if and only if

Automata ||al||p < p_ I_lng i)
foralli=1,2,....

Recall that for i € N a number |log,i] is reduced by 1 a
number of digits in a base-p expansion for i.
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A function f: Z, — 7, represented by Mahler expansion

0= an("),

Part L: m=0
Automata

where a,, € Zy, m =0,1,2..., is an n-unit delay if and only
if

||ai”p <p [log,n i]+1

for all i > 1.
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L as a triple (S, u, f), where S is a set endowed with a measure

w, and f:S — Sis a measurable function.
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\i}i{ﬁ?pﬁslii, Dynamical system on a measuarable spase S is understood
as a triple (S, u, f), where S is a set endowed with a measure
u, and f:S — S is a measurable function. A dynamical
system is also may be topological since configuration space S
is not only measure space but also may be metric space, and

corresponding transformation f is not only measurable but

also will be continuous.
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el Dynamical system on a measuarable spase S is understood
as a triple (S, u, f), where S is a set endowed with a measure
u, and f:S — S is a measurable function. A dynamical
system is also may be topological since configuration space S
is not only measure space but also may be metric space, and
corresponding transformation f is not only measurable but
also will be continuous. A orbit of the dynamical system is a
sequense wo,r1 = f(%0),..., % = f(xr;_1) = f'(w0),... of
points of the space S, xq is called an initial point of the
orbit. Dymanics studies a behavior of such orbits.
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A mapping F': S — S of measurable space S onto S endowed
with probabilistic measure p, is said to be
“““ : measure-preserving whenever u(EF~1(9)) = u(S) for each

measurable subset S C S.

A measure-preserving map F': S — S is said to be ergodic if
for each measurable subset S such that F~!(S) = S holds
either u(S) =1 or u(S) = 0.



Automata as p-adic dynamical systems

We study dynamical system (Zy, p, f) on Z,, where map
f: Zy — Zy defined by some asynchronous automaton
B=(F, S F,S O,so). The ring Z, can be endowed with a
probability measure j,. The measure p, is a normalized
Haar measure. The base of elementary measurable subsets

are all balls B,,-x(a) of non-zero radii p~F: and we put



Measure-preservation and ergodicity of 1-Lipschitz
functions in terms of Mahler expansion

Dynamical

Theorem. (V.S. Anashin)

Mall)gings The function f defines a 1-Lipschitz measure-preserving
Rl transformation on Z, whenever the following conditions hold

simultaneously:
a1 # 0 (mod p);
a; =0 (mod plo&r i+l j =23
The function f defines a 1-Lipschitz ergodic transformation

on Zj, whenever the following conditions hold
simultaneously:

Part III:

Fraadicity ap Z 0 (mod p)
a1 =1 (mod p), for p odd,;

a; =1 (mod 4), for p =2;

a; =0 (mod pllossG+DI+Ly v — 9 3

Moreover, in the case p = 2 these conditions are necessary.

Y
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Let Fj be a reduction of function f mod p" on the

elements of the ring Z/p"*Z for k = 2,3,.. ..

A n-unit delay mapping f: Z, — Zy is measure-preserving if
and only if the number #Fk_l(:c) of Fy-pre-images of the
point x € Z/p™* V7 is equal p*, k =2,3,....
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A point xg € Zy, is said to be a periodic point if there exists
r € N such that f"(xg) = xo. The least r with this property
is called the length of period of zg. If x¢ has period r, it is
called an r-periodic point. The orbit of an r-periodic point
zo is {wo,x1,..., 2,1}, where z; = fi(z0), 0 < j <r—1.
This orbit is called an r-cycle.

Part III
cit;
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Let (k) be an r(k)-cycle {zo, 21, ..., T x)—1}, where

zj = (f mod p*™)!(z), 0 < j < r(k) —1,
k=1,2,3,....

Theorem 3

A measure-preserving a n-unit delay mapping f: Zy, — Zy is
ergodic if a v(k) is an unique cycle, for all k € N.
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where a,, € Zp, m =0,1,2.. ..

A n-unit delay mapping f: Z, — Zy, is measure-preserving
whenever the following conditions hold simultaneously:

a; 20 (mod p) fori=p";

a; =0 (mod pllogpm Z'J), 7> ph.
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Mahler expansion
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where a,, € Zp, m =0,1,2.. ..

Theorem 5

Let p=3. Then a n-unit delay mapping f: Z, — Zy is
ergodic on Z, whenever the following conditions hold
simultaneously:

aj+az+...+apm_q1 =0 (mod p);
a; =1 (mod p) fori=p";
a; =0 (mod pllosm iy > pn.
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Thank you!
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Unilateral shift




