Finite automata models in Quantum Theory

Vladimir Anashin

Faculty of Computational Mathematics and Cybernetics Lomonosov Moscow State University

Federal Research Center of Information and Control Russian Academy of Sciences

- No 'momentary measurements': Every measurement takes some time
- **Discreteness**: The measurement actually is a sequence of 'impacts'; the 'impacts' attain discrete values.
- **Causality**: Each 'impact' forces the system to change its 'state' and to react with a 'response' of some discrete value which depends only on the current state of the system and on the value of current 'impact' the system is imposed to.
- No 'physical infinity': The number of 'states' of the system is assumed to be finite.

- No 'momentary measurements': Every measurement takes some time
- **Discreteness**: The measurement actually is a sequence of 'impacts'; the 'impacts' attain discrete values.
- **Causality**: Each 'impact' forces the system to change its 'state' and to react with a 'response' of some discrete value which depends only on the current state of the system and on the value of current 'impact' the system is imposed to.
- No 'physical infinity': The number of 'states' of the system is assumed to be finite.

- No 'momentary measurements': Every measurement takes some time
- **Discreteness**: The measurement actually is a sequence of 'impacts'; the 'impacts' attain discrete values.
- **Causality**: Each 'impact' forces the system to change its 'state' and to react with a 'response' of some discrete value which depends only on the current state of the system and on the value of current 'impact' the system is imposed to.
- No 'physical infinity': The number of 'states' of the system is assumed to be finite.

- No 'momentary measurements': Every measurement takes some time
- **Discreteness**: The measurement actually is a sequence of 'impacts'; the 'impacts' attain discrete values.
- **Causality**: Each 'impact' forces the system to change its 'state' and to react with a 'response' of some discrete value which depends only on the current state of the system and on the value of current 'impact' the system is imposed to.
- No 'physical infinity': The number of 'states' of the system is assumed to be finite.

To introduce a formal model of a measurement of a quantum system which is based on the following assumptions:

- No 'momentary measurements': Every measurement takes some time
- **Discreteness**: The measurement actually is a sequence of 'impacts'; the 'impacts' attain discrete values.
- **Causality**: Each 'impact' forces the system to change its 'state' and to react with a 'response' of some discrete value which depends only on the current state of the system and on the value of current 'impact' the system is imposed to.
- No 'physical infinity': The number of 'states' of the system is assumed to be finite.

Under that assumptions we will show that 'measurement procedure' results in a wave-like picture; and moreover, that the only case when a particle wave function may be ascribed to the procedure is when 'impacts' and 'responses' attain only two values, 0 and 1.

To introduce a formal model of a measurement of a quantum system which is based on the following assumptions:

- No 'momentary measurements': Every measurement takes some time
- **Discreteness**: The measurement actually is a sequence of 'impacts'; the 'impacts' attain discrete values.
- **Causality**: Each 'impact' forces the system to change its 'state' and to react with a 'response' of some discrete value which depends only on the current state of the system and on the value of current 'impact' the system is imposed to.
- No 'physical infinity': The number of 'states' of the system is assumed to be finite.

The model is non-Archimedean; actually it can be described in terms of 1-Lipschitz mappings of the space of 2-adic integers. Nonetheless, standard complex numbers based mathematical formalism of quantum theory, the wave packets, can be derived from the model.

- at every moment t = 0, 1, 2, ... is at some state from the set $S = \{s_0, s_1, ...\}$ of all possible states;
- 2 changes its current state to some new one when affected by some cause from the set of all causes $\mathcal{C} = \{c_0, c_1, c_2, \ldots\}$; and
- or produces an effect from the set of all possible effects $\mathcal{E} = \{e_0, e_1, e_2, \ldots\}$ so that
- once the cause $c \in \mathbb{C}$ happens,
 - corresponding effect e ∈ ε depends only on the current state s ∈ 8 and on the cause c ∈ C, while simultaneously
 - the system changes its state from the current state *s* ∈ 8 to a new one *s'* ∈ 8 which depends only on the current state *s* and on the cause *c* that has happened.

- at every moment t = 0, 1, 2, ... is at some state from the set $S = \{s_0, s_1, ...\}$ of all possible states;
- 2 changes its current state to some new one when affected by some cause from the set of all causes $C = \{c_0, c_1, c_2, ...\}$; and
- or produces an effect from the set of all possible effects $\mathcal{E} = \{e_0, e_1, e_2, \ldots\}$ so that
- once the cause $c \in \mathbb{C}$ happens,
 - corresponding effect $e \in \mathcal{E}$ depends only on the current state $s \in S$ and on the cause $c \in \mathcal{C}$, while simultaneously
 - the system changes its state from the current state *s* ∈ 8 to a new one *s'* ∈ 8 which depends only on the current state *s* and on the cause *c* that has happened.

- at every moment t = 0, 1, 2, ... is at some state from the set $S = \{s_0, s_1, ...\}$ of all possible states;
- 2 changes its current state to some new one when affected by some cause from the set of all causes $\mathcal{C} = \{c_0, c_1, c_2, \ldots\}$; and
- If produces an effect from the set of all possible effects $\mathcal{E} = \{e_0, e_1, e_2, \ldots\}$ so that
- once the cause $c \in \mathbb{C}$ happens,
 - corresponding effect e ∈ E depends only on the current state s ∈ S and on the cause c ∈ C, while simultaneously
 - the system changes its state from the current state *s* ∈ 8 to a new one *s'* ∈ 8 which depends only on the current state *s* and on the cause *c* that has happened.

- at every moment t = 0, 1, 2, ... is at some state from the set $S = \{s_0, s_1, ...\}$ of all possible states;
- 2 changes its current state to some new one when affected by some cause from the set of all causes $\mathcal{C} = \{c_0, c_1, c_2, ...\}$; and
- Solution produces an effect from the set of all possible effects $\mathcal{E} = \{e_0, e_1, e_2, \ldots\}$ so that
- once the cause $c \in \mathbb{C}$ happens,
 - corresponding effect *e* ∈ *E* depends only on the current state *s* ∈ *S* and on the cause *c* ∈ *C*, while simultaneously
 - the system changes its state from the current state s ∈ S to a new one s' ∈ S which depends only on the current state s and on the cause c that has happened.

- at every moment t = 0, 1, 2, ... is at some state from the set $S = \{s_0, s_1, ...\}$ of all possible states;
- 2 changes its current state to some new one when affected by some cause from the set of all causes $\mathcal{C} = \{c_0, c_1, c_2, ...\}$; and
- Solution produces an effect from the set of all possible effects $\mathcal{E} = \{e_0, e_1, e_2, \ldots\}$ so that
- once the cause $c \in \mathcal{C}$ happens,
 - corresponding effect *e* ∈ *E* depends only on the current state *s* ∈ *S* and on the cause *c* ∈ *C*, while simultaneously
 - the system changes its state from the current state *s* ∈ S to a new one *s'* ∈ S which depends only on the current state *s* and on the cause *c* that has happened.

- at every moment t = 0, 1, 2, ... is at some state from the set $S = \{s_0, s_1, ...\}$ of all possible states;
- 2 changes its current state to some new one when affected by some cause from the set of all causes $\mathcal{C} = \{c_0, c_1, c_2, ...\}$; and
- Solution produces an effect from the set of all possible effects $\mathcal{E} = \{e_0, e_1, e_2, \ldots\}$ so that
- once the cause $c \in \mathbb{C}$ happens,
 - corresponding effect *e* ∈ *E* depends only on the current state *s* ∈ *S* and on the cause *c* ∈ *C*, while simultaneously
 - the system changes its state from the current state *s* ∈ S to a new one *s'* ∈ S which depends only on the current state *s* and on the cause *c* that has happened.

Speaking of causal discrete system we mean a sort of a **black box** which

- at every moment t = 0, 1, 2, ... is at some state from the set $S = \{s_0, s_1, ...\}$ of all possible states;
- 2 changes its current state to some new one when affected by some cause from the set of all causes $\mathcal{C} = \{c_0, c_1, c_2, ...\}$; and
- Solution produces an effect from the set of all possible effects $\mathcal{E} = \{e_0, e_1, e_2, \ldots\}$ so that
- once the cause $c \in \mathbb{C}$ happens,
 - corresponding effect *e* ∈ *E* depends only on the current state *s* ∈ *S* and on the cause *c* ∈ *C*, while simultaneously
 - the system changes its state from the current state *s* ∈ S to a new one *s'* ∈ S which depends only on the current state *s* and on the cause *c* that has happened.

This can be formalised by a notion of an (initial) automaton, (or, *trans-ducer, sequential machine*).

$$\chi_{1} \in \mathcal{I} - 1 \text{-st input symbol}$$

$$\chi_{1} \longrightarrow \overbrace{s_{1} = S(\chi_{0}, s_{0})}^{\text{Time } t = 1} \quad \xi_{1} = O(\chi_{1}, s_{1})$$

$$\xi_{1} \in \mathcal{O} - 1 \text{-st output symbol}$$

$$\chi_{i} \in \mathcal{I} - i\text{-th input symbol}$$

$$\chi_{i} \longrightarrow \overbrace{s_{i} = S(\chi_{i-1}, s_{i-1})}^{\text{Time } t = i} \quad \xi_{i} = O(\chi_{i}, s_{i})$$

$$\xi_{i} \in \mathcal{O} - i\text{-th output symbol}$$

Automaton $\mathfrak{A} = \langle \mathfrak{I}, \mathfrak{S}, \mathfrak{O}, \mathfrak{S}, \mathfrak{O}, \mathfrak{s}_0 \rangle$: \mathfrak{I} – input alphabet; \mathfrak{O} – output alphabet; \mathfrak{S} – state set; $\mathfrak{S} : \mathfrak{I} \times \mathfrak{S} \to \mathfrak{S}$ – transition function; $\mathcal{O} : \mathfrak{I} \times \mathfrak{S} \to \mathfrak{O}$ – output function; $\mathfrak{s}_0 \in \mathfrak{S}$ – initial state

$$\chi_{i} \in \mathcal{I} - i \text{-th input symbol}$$

$$\chi_{i} \longrightarrow \overbrace{s_{i} = S(\chi_{i-1}, s_{i-1})}^{\text{Time } t = i} \quad \xi_{i} = O(\chi_{i}, s_{i})$$

$$\xi_{i} \in \mathcal{O} - i \text{-th output symbol}$$

The automaton \mathfrak{A} determines the automaton function $f_{\mathfrak{A}}$ that maps words over the alphabet \mathfrak{I} to words over the alphabet \mathfrak{O} : $f_{\mathfrak{A}}: \ldots \chi_2 \chi_1 \chi_0 \mapsto \ldots \xi_2 \xi_1 \xi_0$

Automaton $\mathfrak{A} = \langle \mathfrak{I}, \mathfrak{S}, \mathfrak{O}, \mathfrak{S}, \mathcal{O}, \mathfrak{s}_0 \rangle$: \mathfrak{I} – input alphabet; \mathfrak{O} – output alphabet; \mathfrak{S} – state set; $\mathfrak{S} : \mathfrak{I} \times \mathfrak{S} \to \mathfrak{S}$ – transition function; $\mathcal{O} : \mathfrak{I} \times \mathfrak{S} \to \mathfrak{O}$ – output function; $\mathfrak{s}_0 \in \mathfrak{S}$ – initial state

Causality

Every output symbol ξ_i depends only on the first input symbols $\chi_0, \ldots, \chi_i \in \mathfrak{I}$; so $\xi_i = \psi_i(\chi_0, \ldots, \chi_i) \in \mathfrak{O}$, where $\psi_i \colon \mathfrak{I}^{i+1} \to \mathfrak{O}$.

The automaton \mathfrak{A} determines the automaton function $f_{\mathfrak{A}}$ that maps words over the alphabet \mathfrak{I} to words over the alphabet \mathfrak{O} : $f_{\mathfrak{A}}: \ldots \chi_2 \chi_1 \chi_0 \mapsto \ldots \xi_2 \xi_1 \xi_0$

Automaton $\mathfrak{A} = \langle \mathfrak{I}, \mathfrak{S}, \mathfrak{O}, \mathfrak{S}, \mathcal{O}, \mathfrak{s}_0 \rangle$: \mathfrak{I} – input alphabet; \mathfrak{O} – output alphabet; \mathfrak{S} – state set; $\mathfrak{S} : \mathfrak{I} \times \mathfrak{S} \to \mathfrak{S}$ – transition function; $\mathcal{O} : \mathfrak{I} \times \mathfrak{S} \to \mathfrak{O}$ – output function; $\mathfrak{s}_0 \in \mathfrak{S}$ – initial state

Causality

Every output symbol ξ_i depends only on the first input symbols $\chi_0, \ldots, \chi_i \in \mathfrak{I}$; so $\xi_i = \psi_i(\chi_0, \ldots, \chi_i) \in \mathfrak{O}$, where $\psi_i \colon \mathfrak{I}^{i+1} \to \mathfrak{O}$.

The automaton function $f_{\mathfrak{A}}: \ldots \chi_2 \chi_1 \chi_0 \mapsto \ldots \xi_2 \xi_1 \xi_0$ is completely determined by the sequence of maps $\psi_i: \mathfrak{I}^{i+1} \to \mathfrak{O}, i \in \mathbb{N}_0$; and vice versa, every such sequence of maps determines an automaton function.

Automaton $\mathfrak{A} = \langle \mathfrak{I}, \mathfrak{S}, \mathfrak{O}, \mathfrak{S}, \mathcal{O}, \mathfrak{s}_0 \rangle$: \mathfrak{I} – input alphabet; \mathfrak{O} – output alphabet; \mathfrak{S} – state set; $\mathfrak{S} : \mathfrak{I} \times \mathfrak{S} \to \mathfrak{S}$ – transition function; $\mathcal{O} : \mathfrak{I} \times \mathfrak{S} \to \mathfrak{O}$ – output function; $\mathfrak{s}_0 \in \mathfrak{S}$ – initial state

Causality

Every output symbol ξ_i depends only on the first input symbols $\chi_0, \ldots, \chi_i \in \mathfrak{I}$; so $\xi_i = \psi_i(\chi_0, \ldots, \chi_i) \in \mathfrak{O}$, where $\psi_i \colon \mathfrak{I}^{i+1} \to \mathfrak{O}$.

In other words, the following theorem is true: Automata functions on the non-Archimedean space of infinite words are exactly non-expansive functions; that is, 1-Lipschitz functions.

Automaton $\mathfrak{A} = \langle \mathfrak{I}, \mathfrak{S}, \mathfrak{O}, \mathfrak{S}, \mathcal{O}, \mathfrak{s}_0 \rangle$: \mathfrak{I} – input alphabet; \mathfrak{O} – output alphabet; \mathfrak{S} – state set; $\mathfrak{S} : \mathfrak{I} \times \mathfrak{S} \to \mathfrak{S}$ – transition function; $\mathcal{O} : \mathfrak{I} \times \mathfrak{S} \to \mathfrak{O}$ – output function; $\mathfrak{s}_0 \in \mathfrak{S}$ – initial state

Causality

Every output symbol ξ_i depends only on the first input symbols $\chi_0, \ldots, \chi_i \in \mathfrak{I}$; so $\xi_i = \psi_i(\chi_0, \ldots, \chi_i) \in \mathfrak{O}$, where $\psi_i \colon \mathfrak{I}^{i+1} \to \mathfrak{O}$.

Discrete causality=non-Archimedean 1-Lipschitzness: Causal discrete functions are exactly non-Archimedean 1-Lipschitz functions.

Vladimir Anashin (MSU-RAS) Finite automata models in Quantum Theory *p*-adics20

When observing behavior of a system we are somehow 'measuring' a sequence of causes and effects, in some very loose meaning. That is,

Measurement:

we assign a real value v(a) to the *n*-tuple $a = \alpha_{n-1} \dots \alpha_2 \alpha_1 \alpha_0$ (where $\alpha_i, j = 0, 1, 2, \dots$, only take *p* distinct values).

- Without loss of generality we may assume that the values *α_j* takes are 0, 1, ..., *p* 1;
- The value v(a) must reflect time ordering of causes/effects We will assume that every (j + 1)-st position is ' β times heavier' than the *j*-th one, where $\beta > 1$ is a real number.
- Without loss of generality we may assume that $v(a) \in [0, d]$ for all n = 1, 2, 3, ... and all tuples $a = \alpha_{n-1} ... \alpha_2 \alpha_1 \alpha_0$.

•
$$v(a) = \alpha_{n-1}\beta^{-1} + \alpha_{n-1}\beta^{-2} + \dots + \alpha_2\beta^{-n+2} + \alpha_1\beta^{-n-1} + \alpha_0\beta^{-n}$$

When observing behavior of a system we are somehow 'measuring' a sequence of causes and effects, in some very loose meaning. That is,

Measurement:

we assign a real value v(a) to the *n*-tuple $a = \alpha_{n-1} \dots \alpha_2 \alpha_1 \alpha_0$ (where $\alpha_i, j = 0, 1, 2, \dots$, only take *p* distinct values).

- Without loss of generality we may assume that the values α_j takes are 0, 1, ..., p 1; that is, we just enumerate distinct values a cause/effect may take by 0, 1, ..., p 1.
- The value v(a) must reflect time ordering of causes/effects We will assume that every (j + 1)-st position is ' β times heavier' than the *j*-th one, where $\beta > 1$ is a real number.
- Without loss of generality we may assume that $v(a) \in [0, d]$ for all n = 1, 2, 3, ... and all tuples $a = \alpha_{n-1} ... \alpha_2 \alpha_1 \alpha_0$.

• $v(a) = \alpha_{n-1}\beta^{-1} + \alpha_{n-1}\beta^{-2} + \dots + \alpha_2\beta^{-n+2} + \alpha_1\beta^{-n-1} + \alpha_0\beta^{-n}$

When observing behavior of a system we are somehow 'measuring' a sequence of causes and effects, in some very loose meaning. That is,

Measurement:

we assign a real value v(a) to the *n*-tuple $a = \alpha_{n-1} \dots \alpha_2 \alpha_1 \alpha_0$ (where α_j , $j = 0, 1, 2, \dots$, only take *p* distinct values).

- Without loss of generality we may assume that the values α_i takes are $0, 1, \ldots, p-1$;
- The value v(a) must reflect time ordering of causes/effects Therefore we must assign some 'weight' to every position *i* of the tuple to make the (i + 1)-st place 'heavier' than the *i*-th one. It is clear then the weight must be just a non-decreasing function of *j*. We will assume that every (i + 1)-st position is ' β times heavier' than the *j*-th one, where $\beta > 1$ is a real number.
- Without loss of generality we may assume that $v(a) \in [0, d]$ for all

When observing behavior of a system we are somehow 'measuring' a sequence of causes and effects, in some very loose meaning. That is,

Measurement:

we assign a real value v(a) to the *n*-tuple $a = \alpha_{n-1} \dots \alpha_2 \alpha_1 \alpha_0$ (where $\alpha_i, j = 0, 1, 2, \dots$, only take *p* distinct values).

- Without loss of generality we may assume that the values α_j takes are 0, 1, ..., p 1;
- The value v(a) must reflect time ordering of causes/effects We will assume that every (j + 1)-st position is ' β times heavier' than the *j*-th one, where $\beta > 1$ is a real number.
- it is convenient to have all values normalized so that for every tuple *a* of arbitrary length *n* its value v(a) lies in some real interval [c, d]. Without loss of generality we may assume that $v(a) \in [0, d]$ for all n = 1, 2, 3, ... and all tuples $a = \alpha_{n-1} ... \alpha_2 \alpha_1 \alpha_0$.

• $v(a) = \alpha_{n-1}\beta^{-1} + \alpha_{n-1}\beta^{-2} + \dots + \alpha_2\beta^{-n+2} + \alpha_1\beta^{-n-1} + \alpha_0\beta^{-n}$

When observing behavior of a system we are somehow 'measuring' a sequence of causes and effects, in some very loose meaning. That is,

Measurement:

we assign a real value v(a) to the *n*-tuple $a = \alpha_{n-1} \dots \alpha_2 \alpha_1 \alpha_0$ (where $\alpha_i, j = 0, 1, 2, \dots$, only take *p* distinct values).

- Without loss of generality we may assume that the values α_j takes are 0, 1, ..., p 1;
- The value v(a) must reflect time ordering of causes/effects We will assume that every (j + 1)-st position is ' β times heavier' than the *j*-th one, where $\beta > 1$ is a real number.
- Without loss of generality we may assume that $v(a) \in [0, d]$ for all n = 1, 2, 3, ... and all tuples $a = \alpha_{n-1} ... \alpha_2 \alpha_1 \alpha_0$.
- We put therefore

 $v(a) = \alpha_{n-1}\beta^{-1} + \alpha_{n-1}\beta^{-2} + \dots + \alpha_2\beta^{-n+2} + \alpha_1\beta^{-n-1} + \alpha_0\beta^{-n}$

When observing behavior of a system we are somehow 'measuring' a sequence of causes and effects, in some very loose meaning. That is,

Measurement:

we assign a real value v(a) to the *n*-tuple $a = \alpha_{n-1} \dots \alpha_2 \alpha_1 \alpha_0$ (where $\alpha_i, j = 0, 1, 2, \dots$, only take *p* distinct values and $\beta > 1$).

• $v(a) = \alpha_{n-1}\beta^{-1} + \alpha_{n-1}\beta^{-2} + \dots + \alpha_2\beta^{-n+2} + \alpha_1\beta^{-n-1} + \alpha_0\beta^{-n}$

Speaking loosely, we just associate a real number v(a) whose base- β expansion is $0.\alpha_{n-1}...\alpha_2\alpha_1\alpha_0$ to the *n*-tuple $a = \alpha_{n-1}...\alpha_2\alpha_1\alpha_0$.

When observing behavior of a system we are somehow 'measuring' a sequence of causes and effects, in some very loose meaning. That is,

Measurement:

we assign a real value v(a) to the *n*-tuple $a = \alpha_{n-1} \dots \alpha_2 \alpha_1 \alpha_0$ (where $\alpha_i, j = 0, 1, 2, \dots$, only take *p* distinct values and $\beta > 1$).

• $v(a) = \alpha_{n-1}\beta^{-1} + \alpha_{n-1}\beta^{-2} + \dots + \alpha_2\beta^{-n+2} + \alpha_1\beta^{-n-1} + \alpha_0\beta^{-n}$

The above rule is just a model of a standard process of assignment of a numerical value to a physical quantity: For instance, distances can be measured in femtometers, picometers, micrometers, millimeters, decimeters, meters, kilometers, etc., which are linear units in base 10. But if one measures a distance between two milestones, there is no need (and practically impossible) to do this within accuracy up to micrometers, not speaking of femtometers and picometers. So the *rule is just a reasonable model for standard common rule of 'figuring out' numerical results of a measurement, after a proper normalization.*

When observing behavior of a system we are somehow 'measuring' a sequence of causes and effects, in some very loose meaning. That is,

Measurement:

we assign a real value v(a) to the *n*-tuple $a = \alpha_{n-1} \dots \alpha_2 \alpha_1 \alpha_0$ (where $\alpha_i, j = 0, 1, 2, \dots$, only take *p* distinct values and $\beta > 1$).

•
$$v(a) = \alpha_{n-1}\beta^{-1} + \alpha_{n-1}\beta^{-2} + \dots + \alpha_2\beta^{-n+2} + \alpha_1\beta^{-n-1} + \alpha_0\beta^{-n}$$

It easy to see that the range of v(a) is

$$0 \le v(a) < \frac{\lceil \beta \rceil - 1}{\beta - 1}.$$

• In particular, if β is an integer then $v(a) \in [0, 1)$ and $p = \beta$.

• Once $\beta > 1$ is not an integer then $p = \lceil \beta \rceil$. In particular, if $\beta = 1 + \tau$ with $\tau < 1$ then p = 2 and the range of v(a) is $[0, 1/\tau)$.

When observing behavior of a system we are somehow 'measuring' a sequence of causes and effects, in some very loose meaning. That is,

Measurement:

we assign a real value v(a) to the *n*-tuple $a = \alpha_{n-1} \dots \alpha_2 \alpha_1 \alpha_0$ (where $\alpha_i, j = 0, 1, 2, \dots$, only take *p* distinct values and $\beta > 1$).

•
$$v(a) = \alpha_{n-1}\beta^{-1} + \alpha_{n-1}\beta^{-2} + \dots + \alpha_2\beta^{-n+2} + \alpha_1\beta^{-n-1} + \alpha_0\beta^{-n}$$

It easy to see that the range of v(a) is

$$0 \le v(a) < \frac{\lceil \beta \rceil - 1}{\beta - 1}.$$

- In particular, if β is an integer then $v(a) \in [0, 1)$ and $p = \beta$.
- Once $\beta > 1$ is not an integer then $p = \lceil \beta \rceil$. In particular, if $\beta = 1 + \tau$ with $\tau < 1$ then p = 2 and the range of v(a) is $[0, 1/\tau)$.

- A physical law may be thought of as a mathematical correspondence between quantities of impacts a physical system is exposed to and quantities of responses the system reacts.
- The measured experimental values of physical quantities lie in Q.
- People usually are trying to find a physical law as a correspondence between cluster points w.r.t. the metrics in ℝ (!) of experimental values.
- An experimental curve is a smooth curve (the *C*²-smoothness is common) which is the best approximation of the set of the experimental points.
- A physical law is a curve which can be approximated by the experimental curves with the highest achievable accuracy w.r.t. the metrics in R.

- A physical law may be thought of as a mathematical correspondence between quantities of impacts a physical system is exposed to and quantities of responses the system reacts.
- The measured experimental values of physical quantities lie in Q.
- People usually are trying to find a physical law as a correspondence between cluster points w.r.t. the metrics in ℝ (!) of experimental values.
- An experimental curve is a smooth curve (the *C*²-smoothness is common) which is the best approximation of the set of the experimental points.
- A physical law is a curve which can be approximated by the experimental curves with the highest achievable accuracy w.r.t. the metrics in R.

- A physical law may be thought of as a mathematical correspondence between quantities of impacts a physical system is exposed to and quantities of responses the system reacts.
- The measured experimental values of physical quantities lie in Q.
- People usually are trying to find a physical law as a correspondence between cluster points w.r.t. the metrics in ℝ (!) of experimental values.
- An experimental curve is a smooth curve (the C²-smoothness is common) which is the best approximation of the set of the experimental points.
- A physical law is a curve which can be approximated by the experimental curves with the highest achievable accuracy w.r.t. the metrics in R.

- A physical law may be thought of as a mathematical correspondence between quantities of impacts a physical system is exposed to and quantities of responses the system reacts.
- The measured experimental values of physical quantities lie in Q.
- People usually are trying to find a physical law as a correspondence between cluster points w.r.t. the metrics in ℝ (!) of experimental values.
- An experimental curve is a smooth curve (the *C*²-smoothness is common) which is the best approximation of the set of the experimental points.
- A physical law is a curve which can be approximated by the experimental curves with the highest achievable accuracy w.r.t. the metrics in R.

- A physical law may be thought of as a mathematical correspondence between quantities of impacts a physical system is exposed to and quantities of responses the system reacts.
- The measured experimental values of physical quantities lie in Q.
- People usually are trying to find a physical law as a correspondence between cluster points w.r.t. the metrics in ℝ (!) of experimental values.
- An experimental curve is a smooth curve (the C²-smoothness is common) which is the best approximation of the set of the experimental points.
- A physical law is a curve which can be approximated by the experimental curves with the highest achievable accuracy w.r.t. the metrics in ℝ.

Let physical quantities which correspond to impacts and responses are quantized; i.e, take only values, say, $0, 1, \ldots, p-1$. Then, once a system is exposed to a sequence $c = \chi_{k-1}\chi_{k-2}\ldots\chi_0$ of *k* of impacts, it reacts with a sequence $e = \xi_{k-1}\xi_{k-2}\ldots\xi_0$ of *k* responses.

Let physical quantities which correspond to impacts and responses are quantized; i.e, take only values, say, $0, 1, \ldots, p-1$. Then, once a system is exposed to a sequence $c = \chi_{k-1}\chi_{k-2}\ldots\chi_0$ of *k* of impacts, it reacts with a sequence $e = \xi_{k-1}\xi_{k-2}\ldots\xi_0$ of *k* responses. Now fix some $\beta > 1$ s.t. $\lceil \beta \rceil = p$ and consider a point

$$(v(c); v(e)) = (0.\chi_{k-1}\chi_{k-2}\dots\chi_0; 0.\xi_{k-1}\xi_{k-2}\dots\xi_0)$$

in the square $[0, \frac{p-1}{\beta-1}] \times [0, \frac{p-1}{\beta-1}]$ of \mathbb{R}^2 , an experimental point.

Let physical quantities which correspond to impacts and responses are quantized; i.e, take only values, say, $0, 1, \ldots, p-1$. Then, once a system is exposed to a sequence $c = \chi_{k-1}\chi_{k-2}\ldots\chi_0$ of *k* of impacts, it reacts with a sequence $e = \xi_{k-1}\xi_{k-2}\ldots\xi_0$ of *k* responses. Now fix some $\beta > 1$ s.t. $\lceil \beta \rceil = p$ and consider a point

$$(v(c); v(e)) = (0.\chi_{k-1}\chi_{k-2}\dots\chi_0; 0.\xi_{k-1}\xi_{k-2}\dots\xi_0)$$

in the square $[0, \frac{p-1}{\beta-1}] \times [0, \frac{p-1}{\beta-1}]$ of \mathbb{R}^2 , an experimental point. Exposing a system \mathfrak{A} to all sequences of impacts and getting respective sequences of responses we this way obtain a point set $E(\mathfrak{A})$ in the square from \mathbb{R}^2 and we therefore are trying to derive a physical law in a form of *smooth curves* lying in the set $\mathbf{P}(\mathfrak{A})$ which is a closure of $E(\mathfrak{A})$ in \mathbb{R}^2 .

Let physical quantities which correspond to impacts and responses are quantized; i.e, take only values, say, $0, 1, \ldots, p-1$. Then, once a system is exposed to a sequence $c = \chi_{k-1}\chi_{k-2}\ldots\chi_0$ of *k* of impacts, it reacts with a sequence $e = \xi_{k-1}\xi_{k-2}\ldots\xi_0$ of *k* responses. Now fix some $\beta > 1$ s.t. $\lceil \beta \rceil = p$ and consider a point

$$(v(c); v(e)) = (0.\chi_{k-1}\chi_{k-2}\dots\chi_0; 0.\xi_{k-1}\xi_{k-2}\dots\xi_0)$$

in the square $[0, \frac{p-1}{\beta-1}] \times [0, \frac{p-1}{\beta-1}]$ of \mathbb{R}^2 , an experimental point. Exposing a system \mathfrak{A} to all sequences of impacts and getting respective sequences of responses we this way obtain a point set $E(\mathfrak{A})$ in the square from \mathbb{R}^2 and we therefore are trying to derive a physical law in a form of *smooth curves* lying in the set $\mathbf{P}(\mathfrak{A})$ which is a closure of $E(\mathfrak{A})$ in \mathbb{R}^2 .

Let us see what sort of smooth curves can be obtained for discrete causal systems; that is, when \mathfrak{A} is an automaton.

Let physical quantities which correspond to impacts and responses are quantized; i.e, take only values, say, $0, 1, \ldots, p-1$. Then, once a system is exposed to a sequence $c = \chi_{k-1}\chi_{k-2}\ldots\chi_0$ of *k* of impacts, it reacts with a sequence $e = \xi_{k-1}\xi_{k-2}\ldots\xi_0$ of *k* responses. Now fix some $\beta > 1$ s.t. $\lceil \beta \rceil = p$ and consider a point

$$(v(c); v(e)) = (0.\chi_{k-1}\chi_{k-2}\dots\chi_0; 0.\xi_{k-1}\xi_{k-2}\dots\xi_0)$$

in the square $[0, \frac{p-1}{\beta-1}] \times [0, \frac{p-1}{\beta-1}]$ of \mathbb{R}^2 , an experimental point. Exposing a system \mathfrak{A} to all sequences of impacts and getting respective sequences of responses we this way obtain a point set $E(\mathfrak{A})$ in the square from \mathbb{R}^2 and we therefore are trying to derive a physical law in a form of *smooth curves* lying in the set $\mathbf{P}(\mathfrak{A})$ which is a closure of $E(\mathfrak{A})$ in \mathbb{R}^2 .

Let us see what sort of smooth curves can be obtained for discrete causal systems; that is, when \mathfrak{A} is an automaton.

We start with the case when $\beta > 1$ is an integer; thus $\beta = p$.

Experimentally it can be observed that when $k \to \infty$ the set $E_k(\mathfrak{A}) = E_k(f_{\mathfrak{A}})$ of experimental points obtained for all impact/response sequences of length *k* basically exhibits behaviour of two kinds only:

- $E_k(f_{\mathfrak{A}})$ is getting more and more dense so that at $k \to \infty$ they fill the unit square completely
- 2 $E_k(f_{\mathfrak{A}})$ is getting less and less dense and with pronounced straight lines that look like *windings of a torus*

We now explain what happens.

Let $\alpha(f_{\mathfrak{A}})$ be a Lebesgue measure of the plot of \mathfrak{A} , i.e., of the closure $\mathbf{P}(f_{\mathfrak{A}}) = \mathbf{P}(\mathfrak{A})$ in the unit square $\mathbb{I}^2 \subset \mathbb{R}^2$.

Theorem (The automata 0-1 law; V. A., 2009)

Given an automaton function $f = f_{\mathfrak{A}}$, either $\alpha(f) = 0$, or $\alpha(f) = 1$.

These alternatives correspond to the cases $\mathbf{P}(f)$ is nowhere dense in \mathbb{I}^2 and $\mathbf{P}(f) = \mathbb{I}^2$, respectively.

Let $\alpha(f_{\mathfrak{A}})$ be a Lebesgue measure of the plot of \mathfrak{A} , i.e., of the closure $\mathbf{P}(f_{\mathfrak{A}}) = \mathbf{P}(\mathfrak{A})$ in the unit square $\mathbb{I}^2 \subset \mathbb{R}^2$.

Theorem (The automata 0-1 law; V. A., 2009)

Given an automaton function $f = f_{\mathfrak{A}}$, either $\alpha(f) = 0$, or $\alpha(f) = 1$.

These alternatives correspond to the cases $\mathbf{P}(f)$ is nowhere dense in \mathbb{I}^2 and $\mathbf{P}(f) = \mathbb{I}^2$, respectively.

We will say for short that an automaton \mathfrak{A} is of measure 1 if $\alpha(f_{\mathfrak{A}}) = 1$, and of measure 0 if otherwise.

Let $\alpha(f_{\mathfrak{A}})$ be a Lebesgue measure of the plot of \mathfrak{A} , i.e., of the closure $\mathbf{P}(f_{\mathfrak{A}}) = \mathbf{P}(\mathfrak{A})$ in the unit square $\mathbb{I}^2 \subset \mathbb{R}^2$.

Theorem (The automata 0-1 law; V. A., 2009)

Given an automaton function $f = f_{\mathfrak{A}}$, either $\alpha(f) = 0$, or $\alpha(f) = 1$.

These alternatives correspond to the cases $\mathbf{P}(f)$ is nowhere dense in \mathbb{I}^2 and $\mathbf{P}(f) = \mathbb{I}^2$, respectively.

We will say for short that an automaton \mathfrak{A} is of measure 1 if $\alpha(f_{\mathfrak{A}}) = 1$, and of measure 0 if otherwise.

Automata with a finite number of states are all of measure 0

Therefore if \mathfrak{A} is a finite automaton then $\mathbf{P}(f_{\mathfrak{A}})$ is nowhere dense in \mathbb{I}^2 and thus $\mathbf{P}(f_{\mathfrak{A}})$ cannot contain 'figures', but it may contain 'lines'.

Let $\alpha(f_{\mathfrak{A}})$ be a Lebesgue measure of the plot of \mathfrak{A} , i.e., of the closure $\mathbf{P}(f_{\mathfrak{A}}) = \mathbf{P}(\mathfrak{A})$ in the unit square $\mathbb{I}^2 \subset \mathbb{R}^2$.

Theorem (The automata 0-1 law; V. A., 2009)

Given an automaton function $f = f_{\mathfrak{A}}$, either $\alpha(f) = 0$, or $\alpha(f) = 1$.

These alternatives correspond to the cases $\mathbf{P}(f)$ is nowhere dense in \mathbb{I}^2 and $\mathbf{P}(f) = \mathbb{I}^2$, respectively.

We will say for short that an automaton \mathfrak{A} is of measure 1 if $\alpha(f_{\mathfrak{A}}) = 1$, and of measure 0 if otherwise.

Automata with a finite number of states are all of measure 0

Therefore if \mathfrak{A} is a finite automaton then $\mathbf{P}(f_{\mathfrak{A}})$ is nowhere dense in \mathbb{I}^2 and thus $\mathbf{P}(f_{\mathfrak{A}})$ cannot contain 'figures', but it may contain 'lines'.

We are going to describe these lines starting with the case p a prime.

Plots of finite affine automata (case $\beta = p$ a prime)

- Since β = p a prime, an automaton function f_A of the automaton A is a 1-Lipschitz map from the space Z_p of p-adic integers into itself.
- The automaton \mathfrak{A} is said to be affine if

$$f_{\mathfrak{A}}: z \mapsto az + b \ (z \in \mathbb{Z}_p)$$

for suitable $a, b \in \mathbb{Z}_p$.

We will consider automata plots on unit torus $\mathbb{T}^2 \subset \mathbb{R}^3$ rather than on unit square $\mathbb{I}^2 \in \mathbb{R}^2$; i.e., we map unit square \mathbb{I}^2 on unit torus \mathbb{T}^2 in a standard way by 'gluing together' opposite sides of unit square.

Plots of finite affine automata (case $\beta = p$ a prime)

Given an automaton function is $f_{\mathfrak{A}}$, denote via $\mathbf{AP}(\mathfrak{A}) = \mathbf{AP}(f_{\mathfrak{A}})$ the set of all accumulation points of the plot $\mathbf{P}(\mathfrak{A}) \subset \mathbb{T}^2$ on unit torus \mathbb{T}^2 .

Plots of finite affine automata

Let \mathfrak{A} be a finite automaton, and let $f_{\mathfrak{A}}(z) = f(z) = az + b$ ($a, b \in \mathbb{Z}_p \cap \mathbb{Q}$ then). Considering \mathbb{I}^2 as a surface of the torus \mathbb{T}^2 , we have that

 $\mathbf{AP}(f) = \left\{ (x \bmod 1; (ax+b) \bmod 1) \in \mathbb{T}^2 \colon x \in \mathbb{R} \right\}$

is a *link* of N_f *torus knots* either of which is a *cable*(=*winding*) with slope *a* of the unit torus \mathbb{T}^2 : If a = q/k, b = r/s are irreducible fractions, $d = \gcd(k, s)$ then N_f is multiplicative order of *p* modulo s/d. Each cable winds *q* times around the interior of \mathbb{T}^2 and *k* times around *Z*-axis.

Given $a, b \in \mathbb{Z}_p$, the mapping $z \mapsto az + b$ is an automaton function of a suitable finite automaton if and only if $a, b \in \mathbb{Z}_p \cap \mathbb{Q}$.

Plots of finite affine automata

Let \mathfrak{A} be a finite automaton, and let $f_{\mathfrak{A}}(z) = f(z) = az + b$ ($a, b \in \mathbb{Z}_p \cap \mathbb{Q}$ then). Considering \mathbb{I}^2 as a surface of the torus \mathbb{T}^2 , we have that

$$\mathbf{AP}(f) = \left\{ (x \bmod 1; (ax+b) \bmod 1) \in \mathbb{T}^2 \colon x \in \mathbb{R} \right\}$$

is a *link* of N_f *torus knots* either of which is a *cable*(=*winding*) with slope *a* of the unit torus \mathbb{T}^2 : If a = q/k, b = r/s are irreducible fractions, $d = \gcd(k, s)$ then N_f is multiplicative order of *p* modulo s/d. By using cylindrical coordinates (\mathbb{T}^2 : $(r_0 - R)^2 + z^2 = A^2$; R = A = 1 for unit torus) we get:

$$\begin{bmatrix} r_0 \\ \theta \\ z \end{bmatrix} = \begin{bmatrix} R + A \cdot \cos\left(ax - 2\pi b \cdot p^\ell\right) \\ x \\ A \cdot \sin\left(ax - 2\pi b \cdot p^\ell\right) \end{bmatrix}, \ x \in \mathbb{R}, \ell = 0, 1, 2, \dots$$

Plots of finite affine automata

Let \mathfrak{A} be a finite automaton, and let $f_{\mathfrak{A}}(z) = f(z) = az + b$ ($a, b \in \mathbb{Z}_p \cap \mathbb{Q}$ then). Considering \mathbb{I}^2 as a surface of the torus \mathbb{T}^2 , we have that

$$\mathbf{AP}(f) = \left\{ (x \bmod 1; (ax+b) \bmod 1) \in \mathbb{T}^2 \colon x \in \mathbb{R} \right\}$$

is a *link* of N_f *torus knots* either of which is a *cable*(=*winding*) with slope *a* of the unit torus \mathbb{T}^2 : If a = q/k, b = r/s are irreducible fractions, $d = \gcd(k, s)$ then N_f is multiplicative order of *p* modulo s/d. Therefore the plot of *f* (=of the automaton \mathfrak{A}) can be described by N_f complex-valued functions:

$$\mathbf{AP}(\mathfrak{A}) = \mathbf{AP}(az+b) \longleftrightarrow e^{i(ax-2\pi b \cdot p^{\ell})}; \ (x \in \mathbb{R}, \ell \in \mathbb{N}_0)$$

The affinity of smooth finitely computable functions

- **Q:** What *smooth* curves are finitely computable; i.e. what *smooth* curves may lie in the plot **P**(\mathfrak{A}) of a finite automaton \mathfrak{A} ?
- A: Only straight lines (=cables of torus with rational *p*-adic slopes and rational *p*-adic constant terms).

The affinity of smooth finitely computable functions

- Q: What smooth curves are finitely computable; i.e. what smooth curves may lie in the plot P(𝔅) of a finite automaton 𝔅?
- A: Only straight lines (=cables of torus with rational *p*-adic slopes and rational *p*-adic constant terms).

The affinity of smooth finitely computable functions

- Q: What smooth curves are finitely computable; i.e. what smooth curves may lie in the plot P(𝔅) of a finite automaton 𝔅?
- A: Only straight lines (=cables of torus with rational *p*-adic slopes and rational *p*-adic constant terms).

Theorem (V.A., in pNUAA, 2015, vol. 7, No 3, pp. 169–227)

Given a finite automaton \mathfrak{A} , let g be a two times differentiable function (w.r.t. the metric in \mathbb{R}) defined on $[\alpha, \beta] \subset [0, 1)$ and valuated in [0, 1); let g'' be continuous on $[\alpha, \beta]$. If $(x; g(x)) \in \mathbf{P}(\mathfrak{A})$ for all $x \in [\alpha, \beta]$ then there exist $a, b \in \mathbb{Z}_p \cap \mathbb{Q}$ such that g(x) = ax + b for all $x \in [\alpha, \beta]$ and $\mathbf{AP}(az + b) \subset \mathbf{P}(\mathfrak{A})$. Moreover, there are no more than a finite number of $a, b \in \mathbb{Z}_p \cap \mathbb{Q}$ such that $\mathbf{AP}(az + b) \subset \mathbf{P}(\mathfrak{A})$.

Theorem (V.A., in pNUAA, 2015, vol. 7, No 3, pp. 169–227)

Given a finite automaton \mathfrak{A} , let g be a two times differentiable function (w.r.t. the metric in \mathbb{R}) defined on $[\alpha, \beta] \subset [0, 1)$ and valuated in [0, 1); let g'' be continuous on $[\alpha, \beta]$. If $(x; g(x)) \in \mathbf{P}(\mathfrak{A})$ for all $x \in [\alpha, \beta]$ then there exist $a, b \in \mathbb{Z}_p \cap \mathbb{Q}$ such that g(x) = ax + b for all $x \in [\alpha, \beta]$ and $\mathbf{AP}(az + b) \subset \mathbf{P}(\mathfrak{A})$. Moreover, there are no more than a finite number of $a, b \in \mathbb{Z}_p \cap \mathbb{Q}$ such that $\mathbf{AP}(az + b) \subset \mathbf{P}(\mathfrak{A})$.

Actually this means that smooth curves in the plot of a finite automaton constitute a finite union of torus links, and every link consists of a finite number of torus knots with the same slope.

Theorem (V.A., in pNUAA, 2015, vol. 7, No 3, pp. 169–227)

Given a finite automaton \mathfrak{A} , let g be a two times differentiable function (w.r.t. the metric in \mathbb{R}) defined on $[\alpha, \beta] \subset [0, 1)$ and valuated in [0, 1); let g'' be continuous on $[\alpha, \beta]$. If $(x; g(x)) \in \mathbf{P}(\mathfrak{A})$ for all $x \in [\alpha, \beta]$ then there exist $a, b \in \mathbb{Z}_p \cap \mathbb{Q}$ such that g(x) = ax + b for all $x \in [\alpha, \beta]$ and $\mathbf{AP}(az + b) \subset \mathbf{P}(\mathfrak{A})$. Moreover, there are no more than a finite number of $a, b \in \mathbb{Z}_p \cap \mathbb{Q}$ such that $\mathbf{AP}(az + b) \subset \mathbf{P}(\mathfrak{A})$.

The theorem holds for automata with m inputs and n outputs: Smooth surfaces in the plot (in multidimensional torus) constitute a finite number of families of multidimensional torus windings, and each family is a finite collection of windings with the same matrix A.

$$\mathbf{AP}(\mathbf{z}A + \mathbf{b}) \longleftrightarrow e^{i(\mathbf{x}A - 2\pi\mathbf{b} \cdot p^{\ell})}; \ (\mathbf{x} \in \mathbb{R}^m; \mathbf{b} \in \mathbb{R}^n; \ell \in \mathbb{N}_0)$$

Theorem (V.A., in pNUAA, 2015, vol. 7, No 3, pp. 169–227)

Given a finite automaton \mathfrak{A} , let g be a two times differentiable function (w.r.t. the metric in \mathbb{R}) defined on $[\alpha, \beta] \subset [0, 1)$ and valuated in [0, 1); let g'' be continuous on $[\alpha, \beta]$. If $(x; g(x)) \in \mathbf{P}(\mathfrak{A})$ for all $x \in [\alpha, \beta]$ then there exist $a, b \in \mathbb{Z}_p \cap \mathbb{Q}$ such that g(x) = ax + b for all $x \in [\alpha, \beta]$ and $\mathbf{AP}(az + b) \subset \mathbf{P}(\mathfrak{A})$. Moreover, there are no more than a finite number of $a, b \in \mathbb{Z}_p \cap \mathbb{Q}$ such that $\mathbf{AP}(az + b) \subset \mathbf{P}(\mathfrak{A})$.

Very recently it has been obtained a result which implies that the theorem remains true under a weaker restriction, for C^1 -function g rather than for C^2 -function g, see Corollary 6.8 in P. Hieronymi and E. Walsberg. On continuous functions definable in expansions of the ordered real additive group. (Preprint arXiv:1709.03150)

Accumulation points of a plot of a finite affine automaton (whose automaton function is then $f: z \mapsto az + b$ for suitable $a, b \in \mathbb{Z}_p \cap \mathbb{Q}$) look like a finite collection of waves with the same wavenumber a (up to a normalization s.t. $\hbar = 1$), where x stands for position, $2\pi b$ for angular frequency ω and p^{ℓ} for time t.

$$\mathbf{AP}(\mathfrak{A}) = \mathbf{AP}(az+b) \longleftrightarrow e^{i(ax-2\pi b \cdot p^{\ell})}; \ (x \in \mathbb{R}, \ell \in \mathbb{N}_0)$$

Accumulation points of a plot of a finite affine automaton (whose automaton function is then $f: z \mapsto az + b$ for suitable $a, b \in \mathbb{Z}_p \cap \mathbb{Q}$) look like a finite collection of waves with the same wavenumber a (up to a normalization s.t. $\hbar = 1$), where x stands for position, $2\pi b$ for angular frequency ω and p^{ℓ} for time t.

$$\mathbf{AP}(\mathfrak{A}) = \mathbf{AP}(az+b) \longleftrightarrow e^{i(ax-2\pi b \cdot p^{\ell})}; \ (x \in \mathbb{R}, \ell \in \mathbb{N}_0)$$

The "time-looking" multiplier p^{ℓ} is a *proper time* of the automaton.

Accumulation points of a plot of a finite affine automaton (whose automaton function is then $f: z \mapsto az + b$ for suitable $a, b \in \mathbb{Z}_p \cap \mathbb{Q}$) look like a finite collection of waves with the same wavenumber a (up to a normalization s.t. $\hbar = 1$), where x stands for position, $2\pi b$ for angular frequency ω and p^{ℓ} for time t.

$$\mathbf{AP}(\mathfrak{A}) = \mathbf{AP}(az+b) \longleftrightarrow e^{i(ax-2\pi b \cdot p^{\ell})}; \ (x \in \mathbb{R}, \ell \in \mathbb{N}_0)$$

The "time-looking" multiplier p^{ℓ} is a *proper time* of the automaton. Namely, multiplying by *p* corresponds to one step of the automaton from the current state to a new one: $(p^{\ell}x) \mod 1$ is an ℓ -step shift of base-*p* expansion of $x \in \mathbb{R}$.

Accumulation points of a plot of a finite affine automaton (whose automaton function is then $f: z \mapsto az + b$ for suitable $a, b \in \mathbb{Z}_p \cap \mathbb{Q}$) look like a finite collection of waves with the same wavenumber a (up to a normalization s.t. $\hbar = 1$), where x stands for position, $2\pi b$ for angular frequency ω and p^{ℓ} for time t.

$$\mathbf{AP}(\mathfrak{A}) = \mathbf{AP}(az+b) \longleftrightarrow e^{i(ax-2\pi b \cdot p^{\ell})}; \ (x \in \mathbb{R}, \ell \in \mathbb{N}_0)$$

The "time-looking" multiplier p^{ℓ} is a *proper time* of the automaton. Can p^{ℓ} be treated a *physical time*?

Accumulation points of a plot of a finite affine automaton (whose automaton function is then $f: z \mapsto az + b$ for suitable $a, b \in \mathbb{Z}_p \cap \mathbb{Q}$) look like a finite collection of waves with the same wavenumber a (up to a normalization s.t. $\hbar = 1$), where x stands for position, $2\pi b$ for angular frequency ω and p^{ℓ} for time t.

$$\mathbf{AP}(\mathfrak{A}) = \mathbf{AP}(az+b) \longleftrightarrow e^{i(ax-2\pi b \cdot p^{\ell})}; \ (x \in \mathbb{R}, \ell \in \mathbb{N}_0)$$

The "time-looking" multiplier p^{ℓ} is a *proper time* of the automaton. Can p^{ℓ} be treated a *physical time*? Yes!

$$\mathbf{AP}(\mathfrak{A}) = \mathbf{AP}(az+b) \longleftrightarrow e^{i(ax-2\pi b \cdot p^{\ell})}; \ (x \in \mathbb{R}, \ell \in \mathbb{N}_0)$$

Yes!

Take p close to 1; i.e., substitute $\beta = 1 + \tau$ (where $\tau \ll 1$) for p.

$$\mathbf{AP}(\mathfrak{A}) = \mathbf{AP}(az+b) \longleftrightarrow e^{i(ax-2\pi b \cdot p^{\ell})}; \ (x \in \mathbb{R}, \ell \in \mathbb{N}_0)$$

Yes!

Take p close to 1; i.e., substitute $\beta = 1 + \tau$ (where $\tau \ll 1$) for p.

Is it *mathematically correct* to make that substitution?

$$\mathbf{AP}(\mathfrak{A}) = \mathbf{AP}(az+b) \longleftrightarrow e^{i(ax-2\pi b \cdot p^{\ell})}; \ (x \in \mathbb{R}, \ell \in \mathbb{N}_0)$$

Yes!

Take p close to 1; i.e., substitute $\beta = 1 + \tau$ (where $\tau \ll 1$) for p.

Is it *mathematically correct* to make that substitution?

Yes: Just use β -expansions (Rényi—Parry) rather than base *p*-expansions.

$$0.\alpha_1\alpha_2\alpha_3\ldots=\alpha_1\beta^{-1}+\alpha_2\beta^{-2}+\alpha_3\beta^{-3}+\cdots,$$

where $\beta > 1$, $\alpha_1, \alpha_2, \alpha_3, \ldots \in \{0, 1, \ldots, \lceil \beta \rceil - 1\}$.

$$\mathbf{AP}(\mathfrak{A}) = \mathbf{AP}(az+b) \longleftrightarrow e^{i(ax-2\pi b \cdot p^{\ell})}; \ (x \in \mathbb{R}, \ell \in \mathbb{N}_0)$$

Yes!

Take *p* close to 1; i.e., substitute $\beta = 1 + \tau$ (where $\tau \ll 1$) for *p*.

For instance, assume that τ is a *Planck time* (=a quant of time) or other time interval which is less then the accuracy of measurements and thus can not be measured.

$$\mathbf{AP}(\mathfrak{A}) = \mathbf{AP}(az+b) \longleftrightarrow e^{i(ax-2\pi b \cdot p^{\ell})}; \ (x \in \mathbb{R}, \ell \in \mathbb{N}_0)$$

Yes!

Take p close to 1; i.e., substitute $\beta = 1 + \tau$ (where $\tau \ll 1$) for p.

Then $p^{\ell} \approx 1 + \ell \tau$ and therefore for large ℓ we see that $\ell \tau = t$ is just a time. And here we are:

$$e^{i(ax-2\pi b \cdot p^{\ell})} \approx e^{i(ax-2\pi b \cdot (1+t))} = c \cdot e^{i(ax-2\pi b \cdot t)} \leftarrow \text{the wave}!!!$$

$$\mathbf{AP}(\mathfrak{A}) = \mathbf{AP}(az+b) \longleftrightarrow e^{i(ax-2\pi b \cdot p^{\ell})}; \ (x \in \mathbb{R}, \ell \in \mathbb{N}_0)$$

Yes!

Take p close to 1; i.e., substitute $\beta = 1 + \tau$ (where $\tau \ll 1$) for p.

Then $p^{\ell} \approx 1 + \ell \tau$ and therefore for large ℓ we see that $\ell \tau = t$ is just a time. And here we are:

$$e^{i(ax-2\pi b \cdot p^{\ell})} \approx e^{i(ax-2\pi b \cdot (1+t))} = c \cdot e^{i(ax-2\pi b \cdot t)} \leftarrow \text{the wave}!!!$$

Note that $\beta = 1 + \tau$ with $0 < \tau \ll 1$ is the only case when we obtain a wavefunction of a particle. That is, automata over binary alphabet constitute the only class when interpretation of the multiplier p^{ℓ} as a physical time is possible (recall that the alphabet consists of $\lceil \beta \rceil$ symbols).

When constructing a plot of an automaton over a *p*-letter alphabet we take $\beta > 1$ such that $p = \lceil \beta \rceil$; then to every pair of input/output words

input word $\chi_{k-1} \dots \chi_1 \chi_0 \longrightarrow$ output word $\xi_{k-1} \dots \xi_1 \xi_0$

(where $\chi_m, \xi_n \in \{0, 1, \dots \lceil \beta \rceil - 1\} = \{0, 1\}$)

When constructing a plot of an automaton over a *p*-letter alphabet we take $\beta > 1$ such that $p = \lceil \beta \rceil$; then to every pair of input/output words

input word $\chi_{k-1} \dots \chi_1 \chi_0 \longrightarrow$ output word $\xi_{k-1} \dots \xi_1 \xi_0$

(where $\chi_m, \xi_n \in \{0, 1, \dots \lceil \beta \rceil - 1\} = \{0, 1\}$) we put into the correspondence the following point on the torus:

 $(\chi_{k-1}\beta^{-1} + \cdots + \chi_1\beta^{-k+1} + \chi_0\beta^{-k}; \xi_{k-1}\beta^{-1} + \xi_1\beta^{-k+1} + \xi_0\beta^{-k})$

When constructing a plot of an automaton over a *p*-letter alphabet we take $\beta > 1$ such that $p = \lceil \beta \rceil$; then to every pair of input/output words

input word $\chi_{k-1} \dots \chi_1 \chi_0 \longrightarrow$ output word $\xi_{k-1} \dots \xi_1 \xi_0$

(where $\chi_m, \xi_n \in \{0, 1, \dots \lceil \beta \rceil - 1\} = \{0, 1\}$) we put into the correspondence the following point on the torus:

$$(\chi_{k-1}\beta^{-1} + \cdots + \chi_1\beta^{-k+1} + \chi_0\beta^{-k}; \xi_{k-1}\beta^{-1} + \xi_1\beta^{-k+1} + \xi_0\beta^{-k})$$

We must take β s.t. addition of numbers represented by β -expansions can be performed by a <u>finite</u> automaton in order to provide that torus winding are produced only by <u>finite</u> affine automata.

When constructing a plot of an automaton over a *p*-letter alphabet we take $\beta > 1$ such that $p = \lceil \beta \rceil$; then to every pair of input/output words

input word $\chi_{k-1} \dots \chi_1 \chi_0 \longrightarrow$ output word $\xi_{k-1} \dots \xi_1 \xi_0$

(where $\chi_m, \xi_n \in \{0, 1, \dots, \lceil \beta \rceil - 1\} = \{0, 1\}$) we put into the correspondence the following point on the torus:

 $(\chi_{k-1}\beta^{-1} + \cdots + \chi_1\beta^{-k+1} + \chi_0\beta^{-k}; \xi_{k-1}\beta^{-1} + \xi_1\beta^{-k+1} + \xi_0\beta^{-k})$

We must take β s.t. addition of numbers represented by β -expansions can be performed by a <u>finite</u> automaton in order to provide that torus winding are produced only by <u>finite</u> affine automata.

To ensure the finiteness, if $\beta = 1 + \tau$ with $0 < \tau \ll 1$, then β must satisfy the equation $2 = u(\beta)$ where *u* is a polynomial with coefficients 0, 1.

When constructing a plot of an automaton over a *p*-letter alphabet we take $\beta > 1$ such that $p = \lceil \beta \rceil$; then to every pair of input/output words

input word $\chi_{k-1} \dots \chi_1 \chi_0 \longrightarrow$ output word $\xi_{k-1} \dots \xi_1 \xi_0$

(where $\chi_m, \xi_n \in \{0, 1, \dots \lceil \beta \rceil - 1\} = \{0, 1\}$) we put into the correspondence the following point on the torus:

$$(\chi_{k-1}\beta^{-1} + \cdots + \chi_1\beta^{-k+1} + \chi_0\beta^{-k}; \xi_{k-1}\beta^{-1} + \xi_1\beta^{-k+1} + \xi_0\beta^{-k})$$

We must take β s.t. addition of numbers represented by β -expansions can be performed by a <u>finite</u> automaton in order to provide that torus winding are produced only by <u>finite</u> affine automata.

To ensure the finiteness, if $\beta = 1 + \tau$ with $0 < \tau \ll 1$, then β must satisfy the equation $2 = u(\beta)$ where *u* is a polynomial with coefficients 0, 1. The only such solution of the equation is $\beta = \sqrt[N]{2}$; i.e., it can be shown that the above conditions necessarily imply that $u(x) = x^N$ and thus $\beta = \sqrt[N]{2}$.

We must take β s.t. addition of numbers represented by β -expansions can be performed by a <u>finite</u> automaton in order to provide that torus winding are produced only by finite affine automata.

To ensure the finiteness, if $\beta = 1 + \tau$ with $0 < \tau \ll 1$, then β must satisfy the equation $2 = u(\beta)$ where *u* is a polynomial with coefficients 0, 1.

The only such solution of the equation is $\beta = \sqrt[N]{2}$; i.e., it can be shown that the above conditions necessarily imply that $u(x) = x^N$ and thus $\beta = \sqrt[N]{2}$.

Then

• necessarily the input/output alphabets are binary (as $\lceil \beta \rceil = 2$);

• any torus link can be ascribed to a matter wave $ce^{i(ax-2\pi bt)}$ where $x, t \in \mathbb{R}$ are spatial and temporal coordinates accordingly.

We must take β s.t. addition of numbers represented by β -expansions can be performed by a <u>finite</u> automaton in order to provide that torus winding are produced only by finite affine automata.

To ensure the finiteness, if $\beta = 1 + \tau$ with $0 < \tau \ll 1$, then β must satisfy the equation $2 = u(\beta)$ where *u* is a polynomial with coefficients 0, 1.

The only such solution of the equation is $\beta = \sqrt[N]{2}$; i.e., it can be shown that the above conditions necessarily imply that $u(x) = x^N$ and thus $\beta = \sqrt[N]{2}$.

Then

- necessarily the input/output alphabets are binary (as $\lceil \beta \rceil = 2$);
- any torus link can be ascribed to a matter wave $ce^{i(ax-2\pi bt)}$ where $x, t \in \mathbb{R}$ are spatial and temporal coordinates accordingly.

Then (as $\beta = \sqrt[N]{2} = 1 + \tau$ with τ small)

- necessarily the input/output alphabets are binary (as $\lceil \beta \rceil = 2$);
- any torus link can be ascribed to a matter wave $ce^{i(ax-2\pi bt)}$ where $x, t \in \mathbb{R}$ are spatial and temporal coordinates accordingly.

Therefore our main theorem may serve a mathematical evidence in support of J. A. Wheeler's 'it from bit' doctrine since the theorem shows that a specific 'it' — the matter wave, which is a core of quantum theory — is indeed 'from bit'; that is, from sufficiently long binary inputs of an automaton with a relatively small number of states.

Then (as $\beta = \sqrt[N]{2} = 1 + \tau$ with τ small)

- necessarily the input/output alphabets are binary (as $\lceil \beta \rceil = 2$);
- any torus link can be ascribed to a matter wave $ce^{i(ax-2\pi bt)}$ where $x, t \in \mathbb{R}$ are spatial and temporal coordinates accordingly.

Note that $1, \sqrt[N]{2}, \sqrt[N]{2^2}, \sqrt[N]{2^3}, \ldots$ are linearly independent over \mathbb{Q} (thus, over \mathbb{Q}_2); so Numbers $1, \sqrt[N]{2}, \sqrt[N]{2^2}, \sqrt[N]{2^3}, \ldots, \sqrt[N]{2^{N-1}}$ constitute a basis of the module $\mathbb{Z}_2[\sqrt[N]{2}]$ of dimension *N* over the space of 2-adic integers \mathbb{Z}_2 .

Then (as $\beta = \sqrt[N]{2} = 1 + \tau$ with τ small)

+

- necessarily the input/output alphabets are binary (as $\lceil \beta \rceil = 2$);
- any torus link can be ascribed to a matter wave $ce^{i(ax-2\pi bt)}$ where $x, t \in \mathbb{R}$ are spatial and temporal coordinates accordingly.

Numbers 1, $\sqrt[N]{2}$, $\sqrt[N]{2^2}$, $\sqrt[N]{2^3}$, ..., $\sqrt[N]{2^{N-1}}$ constitute a basis of the module $\mathbb{Z}_2[\sqrt[N]{2}]$ of dimension *N* over the space of 2-adic integers \mathbb{Z}_2 . Addition in base- $\sqrt[N]{2}$ system is just an addition of base-2 numbers with carry from *i*-th to (*i* + *N*)-th position (In example below *N* = 2):

$$\dots 1 \quad = \quad - \quad \sqrt{2} \quad - \quad 1$$
$$\dots 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 0 \quad 1 \quad = \quad 1$$

 $\dots 0 \quad 1 \quad 0 \quad 1 \quad 0 \quad 1 \quad 0 \quad = \quad - \quad \sqrt{2}$

Then (as $\beta = \sqrt[N]{2} = 1 + \tau$ with τ small)

- necessarily the input/output alphabets are binary (as $\lceil \beta \rceil = 2$);
- any torus link can be ascribed to a matter wave $ce^{i(ax-2\pi bt)}$ where $x, t \in \mathbb{R}$ are spatial and temporal coordinates accordingly.

▶ Numbers 1, $\sqrt[N]{2}$, $\sqrt[N]{2^2}$, $\sqrt[N]{2^3}$, ..., $\sqrt[N]{2^{N-1}}$ constitute a basis of the module $\mathbb{Z}_2[\sqrt[N]{2}]$ of dimension *N* over the space of 2-adic integers \mathbb{Z}_2 . Addition in base- $\sqrt[N]{2}$ system is just an addition of base-2 numbers with carry from *i*-th to (*i*+*N*)-th position; hence An automaton which is affine and finite w.r.t. $\sqrt[N]{2}$ -expansions is equivalent to binary affine finite automaton with *N* inputs and *N* outputs.

Then (as $\beta = \sqrt[N]{2} = 1 + \tau$ with τ small)

- necessarily the input/output alphabets are binary (as $\lceil \beta \rceil = 2$);
- any torus link can be ascribed to a matter wave $ce^{i(ax-2\pi bt)}$ where $x, t \in \mathbb{R}$ are spatial and temporal coordinates accordingly.

Numbers 1, $\sqrt[N]{2}$, $\sqrt[N]{2^2}$, $\sqrt[N]{2^3}$, ..., $\sqrt[N]{2^{N-1}}$ constitute a basis of the module $\mathbb{Z}_2[\sqrt[N]{2}]$ of dimension *N* over the space of 2-adic integers \mathbb{Z}_2 .

An automaton which is affine and finite w.r.t. $\sqrt[N]{2}$ -expansions is equivalent to binary affine finite automaton with *N* inputs and *N* outputs. That is, the plot of the automaton represented via base- $\sqrt[N]{2}$ expansions may be regarded as a point set in $[0, 1/\tau] \times [0, 1/\tau]$ square in \mathbb{R}^2

$$(\sqrt[N]{2^{N-1}}A_{N-1} + \sqrt[N]{2^{N-2}}A_{N-2} + \dots + \sqrt[N]{2}A_1 + A_0;$$

$$\sqrt[N]{2^{N-1}}B_{N-1} + \sqrt[N]{2^{N-2}}B_{N-2} + \dots + \sqrt[N]{2}B_1 + B_0)$$

where $A_m, B_n \in [0, 1] \subset \mathbb{R}$ and the mapping $(A_{N-1}, A_{N-2}, \ldots, A_1, A_0) \mapsto (B_{N-1}, B_{N-2}, \ldots, B_1, B_0)$ is *N*-dimensional affine transformation mod 1.

Then (as $\beta = \sqrt[N]{2} = 1 + \tau$ with τ small)

- necessarily the input/output alphabets are binary (as $\lceil \beta \rceil = 2$);
- any torus link can be ascribed to a matter wave $ce^{i(ax-2\pi bt)}$ where $x, t \in \mathbb{R}$ are spatial and temporal coordinates accordingly.

▶ Numbers 1, $\sqrt[N]{2}$, $\sqrt[N]{2^2}$, $\sqrt[N]{2^3}$, ..., $\sqrt[N]{2^{N-1}}$ constitute a basis of the module $\mathbb{Z}_2[\sqrt[N]{2}]$ of dimension *N* over the space of 2-adic integers \mathbb{Z}_2 .

An automaton which is affine and finite w.r.t. $\sqrt[N]{2}$ -expansions is equivalent to binary affine finite automaton with *N* inputs and *N* outputs.

This way to an automaton which is affine and finite w.r.t. $\sqrt[N]{2}$ -representations, one may ascribe a 'wave packet' in the $[0, 1/\tau] \times [0, 1/\tau]$ real square (considered as a surface of a torus)

Then (as $\beta = \sqrt[N]{2} = 1 + \tau$ with τ small)

- necessarily the input/output alphabets are binary (as $\lceil \beta \rceil = 2$);
- any torus link can be ascribed to a matter wave $ce^{i(ax-2\pi bt)}$ where $x, t \in \mathbb{R}$ are spatial and temporal coordinates accordingly.

• Numbers 1, $\sqrt[N]{2}$, $\sqrt[N]{2^2}$, $\sqrt[N]{2^3}$, ..., $\sqrt[N]{2^{N-1}}$ constitute a basis of the module $\mathbb{Z}_2[\sqrt[N]{2}]$ of dimension *N* over the space of 2-adic integers \mathbb{Z}_2 .

An automaton which is affine and finite w.r.t. $\sqrt[N]{2}$ -expansions is equivalent to binary affine finite automaton with *N* inputs and *N* outputs.

This way to an automaton which is affine and finite w.r.t. $\sqrt[N]{2}$ -representations, one may ascribe a 'wave packet' in the $[0, 1/\tau] \times [0, 1/\tau]$ real square (considered as a surface of a torus)

If τ is of order of magnitude of Planck's time, $\tau \sim 10^{-44}$ sec, then the square is quite large (of about $10^{43} \times 10^{43}$), and the dimension *N* of the complex space obtained is then about $N \sim 10^{43}$.

Then (as $\beta = \sqrt[N]{2} = 1 + \tau$ with τ small)

- necessarily the input/output alphabets are binary (as $\lceil \beta \rceil = 2$);
- any torus link can be ascribed to a matter wave $ce^{i(ax-2\pi bt)}$ where $x, t \in \mathbb{R}$ are spatial and temporal coordinates accordingly.

This way to an automaton which is affine and finite w.r.t. $\sqrt[N]{2}$ -representations, one may ascribe a 'wave packet' in the $[0, 1/\tau] \times [0, 1/\tau]$ real square (considered as a surface of a torus)

If τ is of order of magnitude of Planck's time, $\tau \sim 10^{-44}$ sec, then the square is quite large (of about $10^{43} \times 10^{43}$), and the dimension *N* of the complex space obtained is then about $N \sim 10^{43}$.

Note that the smallest currently measured time interval is about 10^{-18} sec. That is why handling time variable as a real number is still possible: 25 orders of magnitude is a too long way to go to see that time is discrete rather than continuous.

Ontology vs Epistemology

- In the automata models, 'states' are epistemological rather than ontological: The 'states' cannot be observed (at least with the current equipment used in experiments).
- The ontological (observable) states of a quantum system, the pure states, correspond to minimal sub-automata of the automaton.
- Only minimal sub-automata are responsible for the complex functions $c \cdot e^{i(ax-2\pi b \cdot t)}$)
- Mixed states correspond to the automaton epistemological states which lead to more than one minimal sub-automata .
- Helicity (ontological) corresponds to the sign of *a* in the affine *p*-adic mapping f(z) = az + b.

- In the automata models, 'states' are epistemological rather than ontological: The 'states' cannot be observed (at least with the current equipment used in experiments).
- The ontological (observable) states of a quantum system, the pure states, correspond to minimal sub-automata of the automaton. Minimal sub-automata are the ones that contains no proper sub-automata. Minimal sub-automata are ergodic components: Once an automaton reaches some (epistemological) state which belongs to a sub-automaton, the automaton will never reach a (epistemological) state which does not belongs to the sub-automaton; but it can reach any state of the sub-automaton from any other state of the sub-automaton.
- Only minimal sub-automata are responsible for the complex functions $c \cdot e^{i(ax-2\pi b \cdot t)}$)
- Mixed states correspond to the automaton epistemological states which lead to more than one minimal sub-automata .

- In the automata models, 'states' are epistemological rather than ontological: The 'states' cannot be observed (at least with the current equipment used in experiments).
- The ontological (observable) states of a quantum system, the pure states, correspond to minimal sub-automata of the automaton. Minimal sub-automata are the ones that contains no proper sub-automata. Minimal sub-automata are ergodic components: Once an automaton reaches some (epistemological) state which belongs to a sub-automaton, the automaton will never reach a (epistemological) state which does not belongs to the sub-automaton; but it can reach any state of the sub-automaton from any other state of the sub-automaton.
- Only minimal sub-automata are responsible for the links of torus windings (to which we ascribe complex functions c · e^{i(ax-2πb·t)})
- Mixed states correspond to the automaton epistemological states which lead to more than one minimal sub-automata .

- In the automata models, 'states' are epistemological rather than ontological: The 'states' cannot be observed (at least with the current equipment used in experiments).
- The ontological (observable) states of a quantum system, the pure states, correspond to minimal sub-automata of the automaton.
- Only minimal sub-automata are responsible for the links of torus windings (to which we ascribe complex functions c · e^{i(ax-2πb·t)})
- Mixed ontological states correspond to the automaton epistemological states which lead to more than one minimal sub-automata (= ergodic component).
- Helicity (ontological) corresponds to the sign of *a* in the affine *p*-adic mapping f(z) = az + b.

- In the automata models, 'states' are epistemological rather than ontological: The 'states' cannot be observed (at least with the current equipment used in experiments).
- The ontological (observable) states of a quantum system, the pure states, correspond to minimal sub-automata of the automaton.
- Only minimal sub-automata are responsible for the links of torus windings (to which we ascribe complex functions c · e^{i(ax-2πb·t)})
- Mixed ontological states correspond to the automaton epistemological states which lead to more than one minimal sub-automata (= ergodic component).
- Helicity (ontological) corresponds to the sign of *a* in the affine *p*-adic mapping f(z) = az + b.

- In the automata models, 'states' are epistemological rather than ontological: The 'states' cannot be observed (at least with the current equipment used in experiments).
- The ontological (observable) states of a quantum system, the pure states, correspond to minimal sub-automata of the automaton.
- Only minimal sub-automata are responsible for the links of torus windings (to which we ascribe complex functions c · e^{i(ax-2πb·t)})
- Mixed ontological states correspond to the automaton epistemological states which lead to more than one minimal sub-automata (= ergodic component).
- Helicity (ontological) corresponds to the sign of *a* in the affine *p*-adic mapping f(z) = az + b.

... and more.

Discreteness+Causality+Finiteness ⇒ Waves

- Waves may indeed originate from *bits*: 'Standard' wave packets can be produced by automata with binary input/output only.
- Finiteness is essential in the above reasoning; note that no 'truly infinite' physical phenomena are known.
- Usage of β -expansions with $\beta = 1 + \tau$ where $0 < \tau \ll 1$ is also essential:
- The model considered in the talk is a model of measurement in quantum physics rather than a model of evolution of quantum systems.
- The quantum phenomena which we observe has 'wave-like appearance' just because our perception is 'Archimedean' while the Nature seemingly is not: We apply Archimedean metrics to measure entities which are inherently non-Archimedean.

- Discreteness+Causality+Finiteness \Rightarrow Waves
- Waves may indeed originate from *bits*: 'Standard' wave packets can be produced by automata with binary input/output only.
- Finiteness is essential in the above reasoning; note that no 'truly infinite' physical phenomena are known.
- Usage of β -expansions with $\beta = 1 + \tau$ where $0 < \tau \ll 1$ is also essential:
- The model considered in the talk is a model of measurement in quantum physics rather than a model of evolution of quantum systems.
- The quantum phenomena which we observe has 'wave-like appearance' just because our perception is 'Archimedean' while the Nature seemingly is not: We apply Archimedean metrics to measure entities which are inherently non-Archimedean.

- Discreteness+Causality+Finiteness \Rightarrow Waves
- Waves may indeed originate from *bits*: 'Standard' wave packets can be produced by automata with binary input/output only.
- Finiteness is essential in the above reasoning; note that no 'truly infinite' physical phenomena are known.

Infinity Is a Beautiful Concept — And Its Ruining Physics

(Max Tegmark. Science Magazine, February 20, 2015)

- Usage of β -expansions with $\beta = 1 + \tau$ where $0 < \tau \ll 1$ is also essential:
- The model considered in the talk is a model of measurement in quantum physics rather than a model of evolution of quantum systems.
- The quantum phenomena which we observe has 'wave-like appearance' just because our perception is 'Archimedean' while

- Discreteness+Causality+Finiteness \Rightarrow Waves
- Waves may indeed originate from *bits*: 'Standard' wave packets can be produced by automata with binary input/output only.
- Finiteness is essential in the above reasoning; note that no 'truly infinite' physical phenomena are known.
- Usage of β-expansions with β = 1 + τ where 0 < τ ≪ 1 is also essential: It can be shown that when τ → 0, the 'wave packets' tend to 'bodies'; that is, 'quantum' picture tends to 'classical'.
- The model considered in the talk is a model of measurement in quantum physics rather than a model of evolution of quantum systems.
- The quantum phenomena which we observe has 'wave-like appearance' just because our perception is 'Archimedean' while the Nature seemingly is not: We apply Archimedean metrics to measure entities which are inherently non-Archimedean.

Vladimir Anashin (MSU-RAS)

- Discreteness+Causality+Finiteness \Rightarrow Waves
- Waves may indeed originate from *bits*: 'Standard' wave packets can be produced by automata with binary input/output only.
- Finiteness is essential in the above reasoning; note that no 'truly infinite' physical phenomena are known.
- Usage of β -expansions with $\beta = 1 + \tau$ where $0 < \tau \ll 1$ is also essential: It can be shown that when $\tau \to 0$, the 'wave packets' tend to 'bodies'; that is, 'quantum' picture tends to 'classical'.
- The model considered in the talk is a model of measurement in quantum physics rather than a model of evolution of quantum systems.
- The quantum phenomena which we observe has 'wave-like appearance' just because our perception is 'Archimedean' while the Nature seemingly is not: We apply Archimedean metrics to measure entities which are inherently non-Archimedean.

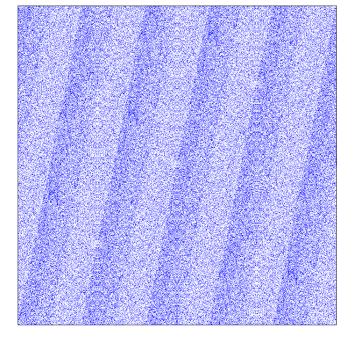
Vladimir Anashin (MSU-RAS)

- Discreteness+Causality+Finiteness ⇒ Waves
- Waves may indeed originate from *bits*: 'Standard' wave packets can be produced by automata with binary input/output only.
- Finiteness is essential in the above reasoning; note that no 'truly infinite' physical phenomena are known.
- Usage of β -expansions with $\beta = 1 + \tau$ where $0 < \tau \ll 1$ is also essential: It can be shown that when $\tau \to 0$, the 'wave packets' tend to 'bodies'; that is, 'quantum' picture tends to 'classical'.
- The model considered in the talk is a model of measurement in quantum physics rather than a model of evolution of quantum systems.
- The quantum phenomena which we observe has 'wave-like appearance' just because our perception is 'Archimedean' while the Nature seemingly is not: We apply Archimedean metrics to measure entities which are inherently non-Archimedean.

Vladimir Anashin (MSU-RAS)

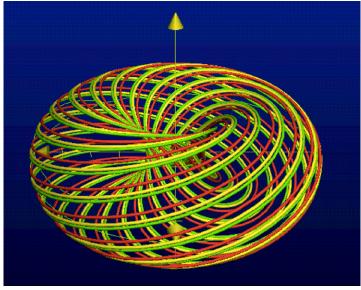
Finite automata models in Quantum Theory

Thank you!

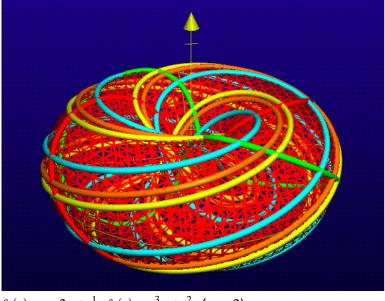


$$p = 2; f(x) = 1 + x + 4x^2;$$

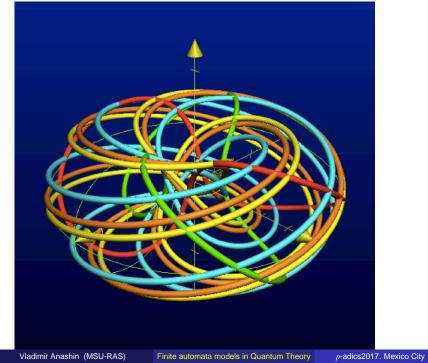
$$\alpha(f) = 1.$$



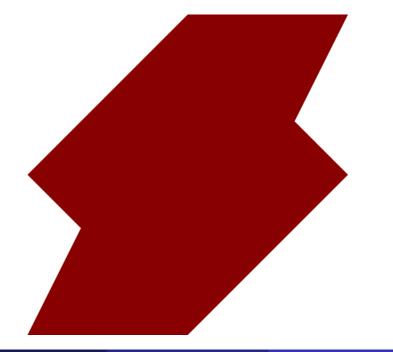
 $f(z) = \frac{11}{15}z + \frac{1}{21}$, p = 2. (Therefore $N_f = \text{mult}_7 2 = 3$)

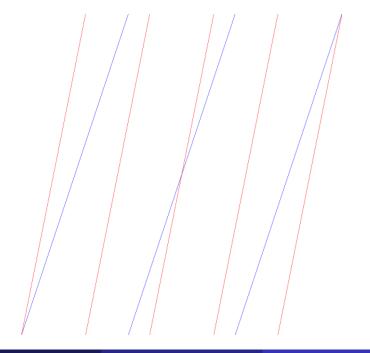


$$f_1(z) = -2z + \frac{1}{3}; f_2(z) = \frac{3}{5}z + \frac{2}{7}, (p = 2).$$



18/22





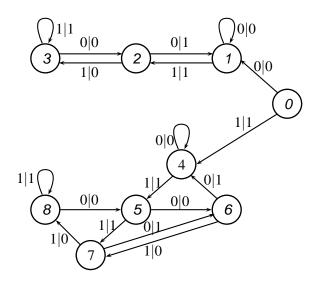


Figure: Example state diagram of an automaton with two minimal sub-automata (whose automata functions are $z \mapsto 3z$ and $z \mapsto 5z$, resp.) Initial state is 0

Vladimir Anashin (MSU-RAS)

