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Introduction

String Theory doesn’t have an exact theory: from the beginning it is
a perturbative theory.

The g-loop Polyakov action of the closed bosonic string is an integral
over the moduli space Mg of genus g compact Riemann surfaces:

Zg := λg
∫
Mg

3g−3∏
i=1

dyidȳi|Fg(y)|2 det(1− ¯z(y)z(y))−13

where the moduli space Mg is taken as a fundamental domain in the
Teichmüller space Tg respect to the mapping class group.
An action for the theory is obtained by summing all the contributions:

Z :=
∑
g∈N0

Zg
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However, the above perturvative series diverges (a result by D.Gross).

Motivated by the fact that the universal Teichmüller space T (1)
contains all of the previous Teichmüller spaces, Hong and Rajeev
proposed the following exact closed bosonic string theory:

Z =

∫
M

∞∏
i=1

dcidc̄i|F̃ (c)|2 det(1− Z(c)†Z(c))−13

where the space M is a fundamental domain of the universal
Teichmüller space T (1). respect to the mapping class group.
Unfortunately, the last expression cannot be formalized.One of the
problems is that T (1) is non separable; i.e. It is too big.
Another direction is to work on the closure of the inductive limit of
finite Teichmüller space:

T∞ :=
⋃
g∈N0

Tg

This is a separable space.

J.M.Burgos (CINVESTAV) November of 2017 4 / 33
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We show that the space T∞ can be seen as a space of finite
dimensional valued fields over an ultrametric space.

In particular, heuristically, we can write the resulting string theory on
T∞ as a Quantum Field Theory of these fields:

Z =

∫
DϕDϕ̄ eS(ϕ,ϕ̄)

J.M.Burgos (CINVESTAV) November of 2017 5 / 33
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Deformation

Consider a Riemann surface Σ . . .

How we deform its complex structure?
Consider the Poincaré-Koebe uniformization:

∆→ Σ

and the representation of G := π1(Σ) as a Fuchsian group:

α : G→ Isom+(∆)
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Definition

µ ∈ L∞(∆)⊗ dz̄ ⊗ ∂z will be called a differential.

µ is a G-periodic differential if it is a differential and:

α(g)∗µ = µ ∀ g ∈ G

The space of G-perdiodic differentials will be denoted by
L∞(G).

µ is a Beltrami differential if it is a differential and ||µ||∞ < 1.
These differentials are the deformation parameters.

Remark
The pullback of a differential in Σ by the uniformization map is
G-periodic differential in the Poincaré disk.

J.M.Burgos (CINVESTAV) November of 2017 8 / 33
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J.M.Burgos (CINVESTAV) November of 2017 8 / 33



J.M.Burgos

Introduction

Deformation

Universal
Hyperbolic
Lamination

Renormalized
Weil-Petersson
metric

Main results

Definition

µ ∈ L∞(∆)⊗ dz̄ ⊗ ∂z will be called a differential.

µ is a G-periodic differential if it is a differential and:

α(g)∗µ = µ ∀ g ∈ G

The space of G-perdiodic differentials will be denoted by
L∞(G).

µ is a Beltrami differential if it is a differential and ||µ||∞ < 1.
These differentials are the deformation parameters.

Remark
The pullback of a differential in Σ by the uniformization map is
G-periodic differential in the Poincaré disk.
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How a Beltrami differential (deformation parameter) actually realizes
a deformation?

A Beltrami differential can be seen as an ∞-measurable field of
ellipses:

J.M.Burgos (CINVESTAV) November of 2017 9 / 33



J.M.Burgos

Introduction

Deformation

Universal
Hyperbolic
Lamination

Renormalized
Weil-Petersson
metric

Main results

How a Beltrami differential (deformation parameter) actually realizes
a deformation?
A Beltrami differential can be seen as an ∞-measurable field of
ellipses:

J.M.Burgos (CINVESTAV) November of 2017 9 / 33



J.M.Burgos

Introduction

Deformation

Universal
Hyperbolic
Lamination

Renormalized
Weil-Petersson
metric

Main results

Consider the Ahlfors-Bers equation:

∂z̄f = µ ∂zf

Is there a solution to this equation on the disk ∆?. . . Equivalently, Is
there a map f on the disk straightening all the infinitesimal ellipses
into infinitesimal circles?
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Theorem
There are quasiconformal homeomorphisms solutions to the
Ahlfors-Bers equation. Moreover, these solutions uniquely extends to
a homeomorphism on the boundary and there is a unique solution fµ

fixing 1, i and −1.

Remark
fµ is G-equivariant if and only if µ is G-invariant.

If µ = 0, then ∂z̄f
µ = 0 and by the Weil Lemma, fµ is

holomorphic.

There are at most 84(g − 1) G-equivariant biholomorphisms of
the disk; i.e. |Aut(Σg)| ≤ 84(g − 1).

J.M.Burgos (CINVESTAV) November of 2017 11 / 33
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In particular, abusing of notation, for every µ ∈ L∞(Σ)1 we have a
quasiconformal deformation fµ : Σ→ Σ.

Finally, we deform the atlas of Σ as follows:

A = {(U,ϕU )} Aµ = {(U, f ◦ ϕ)}

We define Σµ as the surface Σ with the deformed atlas:

Σµ := (Σ, Aµ)

Now, fµ : Σ→ Σµ is biholomorphic.
Equivalently, given a complex structure J , we define:

Jµ := dfµ ◦ J ◦ d(fµ)−1

J.M.Burgos (CINVESTAV) November of 2017 12 / 33
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Are we really deforming? Is there any redundancy in the parameters?

We say that Σµ
M∼ Σµ′ if there is a homeomorphism h such that the

following diagram commutes:

Σ
fµ

~~

fµ
′

  
Σµ

h // Σµ′

This relation gives the coarse moduli space Mg of compact Riemann
surfaces of genus g.

J.M.Burgos (CINVESTAV) November of 2017 13 / 33
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To produce a fine moduli we strength the relation: We say that

Σµ
T∼ Σµ′ if there is a homeomorphism h isotopic to the identity

such that the following diagram commutes:

Σ
fµ

~~

fµ
′

  
Σµ

h // Σµ′

Proposition

Σµ
T∼ Σµ′ if and only if fµ|∂∆ = fµ

′ |∂∆.

J.M.Burgos (CINVESTAV) November of 2017 14 / 33
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The above condition defines an equivalence relation ∼ in the space of
Beltrami differentials L∞(G)1.

We have the following model for the Teichmüller space:

T (Σ) := L∞(G)/ ∼

Theorem

T (Σg) is a complex domain of complex dimension 3g − 3.

M(Σ) = T (Σ)/MCG(Σ)

MCG(Σ) := Homeo(Σ)/Homeo0(Σ)

J.M.Burgos (CINVESTAV) November of 2017 15 / 33



J.M.Burgos

Introduction

Deformation

Universal
Hyperbolic
Lamination

Renormalized
Weil-Petersson
metric

Main results

The above condition defines an equivalence relation ∼ in the space of
Beltrami differentials L∞(G)1.
We have the following model for the Teichmüller space:

T (Σ) := L∞(G)/ ∼

Theorem

T (Σg) is a complex domain of complex dimension 3g − 3.

M(Σ) = T (Σ)/MCG(Σ)

MCG(Σ) := Homeo(Σ)/Homeo0(Σ)

J.M.Burgos (CINVESTAV) November of 2017 15 / 33



J.M.Burgos

Introduction

Deformation

Universal
Hyperbolic
Lamination

Renormalized
Weil-Petersson
metric

Main results

The above condition defines an equivalence relation ∼ in the space of
Beltrami differentials L∞(G)1.
We have the following model for the Teichmüller space:

T (Σ) := L∞(G)/ ∼

Theorem

T (Σg) is a complex domain of complex dimension 3g − 3.

M(Σ) = T (Σ)/MCG(Σ)

MCG(Σ) := Homeo(Σ)/Homeo0(Σ)

J.M.Burgos (CINVESTAV) November of 2017 15 / 33



J.M.Burgos

Introduction

Deformation

Universal
Hyperbolic
Lamination

Renormalized
Weil-Petersson
metric

Main results

The above condition defines an equivalence relation ∼ in the space of
Beltrami differentials L∞(G)1.
We have the following model for the Teichmüller space:

T (Σ) := L∞(G)/ ∼

Theorem

T (Σg) is a complex domain of complex dimension 3g − 3.

M(Σ) = T (Σ)/MCG(Σ)

MCG(Σ) := Homeo(Σ)/Homeo0(Σ)

J.M.Burgos (CINVESTAV) November of 2017 15 / 33



J.M.Burgos

Introduction

Deformation

Universal
Hyperbolic
Lamination

Renormalized
Weil-Petersson
metric

Main results

We define the universal Teichmüller space as follows:

T (1) := L∞(∆)/ ∼

It is Universal in the sense that it contains all the finite dimensional
Teichmüller spaces:

T (Σ) ⊂ T (1)
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Universal Hyperbolic Lamination

Consider the inverse system of finite index subgroups of G = π1(Σ)
and inclusions.

For every finite index subgroup G′, consider the finite disk pile
(G′\G)×∆ and its diagonal action:

g · (f, x) := (f · g, α(g)(x))

The quotient by this action is the Riemann surface ΣG′ :

ΣG′ := (G′\G)×∆/G

The diagonal action is equivariant respect to the Fuchsian
representation α hence we have a finite holomorphic covering:

G′\G �
� // ΣG′

��
Σ
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Because the construction is functorial, we actually have an inverse
system of finite holomorphic coverings of Σ:
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Consider the profinite completion group G∞ of G:

G∞ = lim←−
G′<G

[G′:G]<∞

G′\G

Because the Fuchsian group G is residually finite, the completion is a
group extension and we have a dense inmersion:

G ↪→ G∞

The collection of finite index subgroups of G is a neighborhood
system of the identity and by translation it defines a topology on G
whose completion is the group G∞ just defined. As a topological
space, the group G∞ is a compact totally disconnected Hausdorff
space; i.e. a Cantor set.
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The group G∞ is an ultrametric space:

Consider the cofinal inverse system of normal subgroups (An)n∈N
such that An is the intersection of all subgroups of index n or less in
G.
Because the group G is finitely generated, there must be a finite
amount of subgroups of a given index hence the normal subgroups
An are of finite index as well. Define the following valuation
val : G→ N ∪ {∞} such that:

val(g) := max{n ∈ N | g ∈ An}

if g is not the neutral element e and val(e) :=∞. Define the
translation invariant metric d on the group G such that:

d(g, h) := e−val(g
−1h)
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Geometrically, the disoriented Cayley graph of G = π1(Σ) is the
barycentric subdivision of a tesselation. In particular, G∞ is the
Cantor in the ideal boundary.

For example, consider the cusped torus. Its fundamental group is the
free product Z ∗ Z and its Cayley graph is the following:
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The inverse limit of the covering tower (ΣG′) defined before is the
Universal Hyperbolic Lamination:

Σ∞ := lim←−
G′<G

[G′:G]<∞

ΣG′

By functorilaty of the construction, we have:

Σ∞ := G∞ ×∆/G

This is a lamination whose leaves are densely inmersed disks ∆. The
leaf space is G∞/G.
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The following is a picture of the lamination:
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Define the baseleaf ι : ∆→ Σ∞ as the composite map:

∆ ↪→ G∞ ×∆→ Σ∞

such that the first map is x 7→ (e, x) where e is the neutral element
of G∞.

Define the disk ∆Emb with the initial topology of the baseleaf ι.
Its basic open sets are:

V (U,G′) :=
⋃
g∈G′

α(g)(U)

where U is an open set of the disk and G′ is a finite index subgroup
of G.
The map ι : ∆Emb ↪→ Σ∞ is an embedding.
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Because ∆
id−→ ∆Emb is continuous, we have:

limit− periodic :=

C(∆Emb,C) �
� // C(∆,C)

Proposition

Consider a function f : ∆→ C. Then,

f is limit-periodic iff it is the uniform limit of periodic functions.

f is limit-periodic iff there is a continuous function g : Σ∞ → C
such that ι∗g = f .
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We have the following chain of proper inclusions:

T (Σ) ⊂ T (ΣG′) ⊂ . . .
⋃
G′<G

[G′:G]<∞

T (ΣG′) ⊂ T (1)

The following definition is due to D.Sullivan:

Definition

T (Σ∞) :=
⋃
G′<G

[G′:G]<∞

T (ΣG′)
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Renormalized Weil-Petersson metric

Denote the space of limitperiodic Beltrami differentials; i.e.
Continuous Beltrami differentials respect to ∆Emb, by L∞(∆Emb)1.

The following is a model for the Sullivan’s Teichmüller space :

Proposition

T (Σ∞) = L∞(∆Emb)/ ∼ ⊂ T (1)
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What metric should we put in T (Σ∞)?. . .

Problems:

The universal Weil-Petersson metric gWP doesn’t work. It is
only defined for differentials ν such that:

d0f
µ|∂∆(ν) ∈ C3/2+ε

If we consider nets of periodic differentials converging uniformly
to the limitperiodic differentials respectively then:

lim←−
G′<G

[G′:G]<∞

WP (µG′ , νG′) = 0 or ∞

where WP is the usual Weil-Petersson metric.
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We define the renormailized Weil-Petersson metric:

Definition
Consider nets of periodic differentials converging uniformly to the
limitperiodic differentials respectively then:

(µ, ν)WP = lim←−
G′<G

[G′:G]<∞

1

[G′ : G]
WP (µG′ , νG′)

where WP is the usual Weil-Petersson metric.

Proposition

The renormailized Weil-Petersson metric is well defined; i.e. It
converges in the space of limit-periodic differentials and is
independent of the choice of the nets.
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Remark
The renormalized Weil-Petersson metric is an extension of the usual
one for G-periodic differentials.

Actually, a physicist would think on this result as follows: The inverse
limit of coverings is the renormalization group of the theory and the
number of sheets of the covering is the renormalization factor of the
respective energy level. Then, to get the measured observables on
the respective energy level we have to quotient by the
renormalization factor; i.e. by the index [G′, G]. The limit gives the
observable at fundamental scale.
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As a non trivial immediate result we have the following generalization
of the Nag-Verjovsky result:

The complex analyitic Kähler coadjoint orbit:

Diff+(S1)/Möb ↪→ T (1)

is transversal to the Teichmüller space of the lamination in the
universal one:

Diff+(S1)/Möb t T (Σ∞)

J.M.Burgos (CINVESTAV) November of 2017 31 / 33



J.M.Burgos

Introduction

Deformation

Universal
Hyperbolic
Lamination

Renormalized
Weil-Petersson
metric

Main results

As a non trivial immediate result we have the following generalization
of the Nag-Verjovsky result:
The complex analyitic Kähler coadjoint orbit:

Diff+(S1)/Möb ↪→ T (1)
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Main results

Now, we are in position to enunciate the main results.

The following is
Theorem A:

Theorem
There is a complex analytic Kähler isometry:

C (G∞, T (Σ))
' // T (Σ∞)

This can be seen as Kähler coordinates of the Teicmüller space of the
lamination, labelled by an ultrametric space.The previous result is
functorial; i.e. The following diagram commutes:

C (G∞, T (Σ))
f̂ ' // T (Σ∞)

T (Σ)n ' C (G′\G,T (Σ))
' //

?�

OO

T (ΣG′)
?�

OO
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The following is Theorem B:

Theorem

The (g − 1)-times alternating product of the moduli space of genus
two compact Riemann surfaces is a discrete fiber complex analytic
Kähler covering of the moduli space of genus g compact Riemann
surfaces:

Altg−1 (M2)�Mg

For example, we have a covering:

M2 ×M2 �M3

Thank you very much!!!
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