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Abstract

We initiate the study of non-Archimedean reaction-ultradi¤usion
equations and their connections with models of complex hierarchic
systems.

From a mathematical perspective, the equations studied here are the
p-adic counterpart of the integro-di¤erential models for phase
separation introduced by Bates and Chmaj.

Our equations are also generalizations of the ultradi¤usion equations
on trees studied in the 80�s by Ogielski, Stein, Bachas, Huberman,
among others, and also generalizations of the master equations of the
Avetisov et al. models, which describe certain complex hierarchic
systems.

From a physical perspective, our equations are gradient �ows of
non-Archimedean free energy functionals and their solutions describe
the macroscopic density pro�le of a bistable material whose space of
states has an ultrametric structure.
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The �eld of p-adic numbers

The �eld of p�adic numbers Qp is de�ned as the completion of the �eld
of rational numbers Q with respect to the p�adic norm j � jp , which is
de�ned as

jx jp =
�
0 if x = 0
p�γ if x = pγ a

b ,

where a and b are integers coprime with p. The integer γ := ord(x), with
ord(0) := +∞, is called the p�adic order of x . We extend the p�adic
norm to Qn

p by taking

jjx jjp := max
1�i�n

jxi jp , for x = (x1, . . . , xn) 2 Qn
p .

We de�ne ord(x) = min1�i�nford(xi )g, then jjx jjp = p�ord (x ). The
metric space

�
Qn
p , jj � jjp

�
is a complete ultrametric space.
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The �eld of p-adic numbers

For r 2 Z, denote by Bnr (a) = fx 2 Qn
p ; jjx � ajjp � prg the ball of

radius pr with center at a = (a1, . . . , an) 2 Qn
p , and take

Bnr (0) := Bnr .

We also denote by Snr (a) = fx 2 Qn
p ; jjx � ajjp = prg the sphere of

radius pr with center at a = (a1, . . . , an) 2 Qn
p , and take

Snr (0) := Snr .
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The Bruhat-Schwartz space

D(Qn
p) denotes the Bruhat-Schwartz space.

D0(Qn
p) denotes the space of distributions.

The Fourier transform of ϕ 2 D(Qn
p) is de�ned by

(F ϕ)(ξ) =
Z

Qp

χp(�ξ � x)ϕ(ξ) dnx , ξ 2 Qn
p ,

where χp(�) is the standard additive character of Qp , ξ � x = ∑i ξ ixi
and dnx is the normalized Haar measure on Qn

p .
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The p-adic heat equation

8<:
∂u(x ,t)

∂t + (Dαu) (x , t) = h (x , t) , x 2 Qp , t > 0

u (x , 0) = ϕ (x) ,

where
(Dα ϕ) (x) := F�1ξ!x

�
jξjαp Fx!ξ ϕ

�
, α > 0,

is the Vladimirov operator.

8><>:
∂u(x ,t)

∂t �
�
d 2u
dx 2

�
(x , t) = f (x , t) , x 2 R, t > 0

u (x , 0) = ϕ (x) .
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The p-adic heat equation

The classical heat equation is connected with the Brownian motion,
which is a physical model describing a particle performing a random
motion, a similar statement is valid for the p-adic heat equation.

The heat kernel:

Z (x , t) = F�1ξ!x

�
e�t jξj

α
p

�
=
R
Qp

χp (xξ) e�t jξj
α
pdξ.

u (x , t) =
Z
Qp

Z (x � ξ, t) ϕ (ξ) dξ +

tZ
0

Z
Qp

Z (x � ξ, t � τ) h (ξ, τ) dξdτ.

W. A. Zúñiga-Galindo (CINVESTAV) Mexico.p-adics2017 October 20, 2017 8 / 43



The p-adic heat equation

The classical heat equation is connected with the Brownian motion,
which is a physical model describing a particle performing a random
motion, a similar statement is valid for the p-adic heat equation.

The heat kernel:

Z (x , t) = F�1ξ!x

�
e�t jξj

α
p

�
=
R
Qp

χp (xξ) e�t jξj
α
pdξ.

u (x , t) =
Z
Qp

Z (x � ξ, t) ϕ (ξ) dξ +

tZ
0

Z
Qp

Z (x � ξ, t � τ) h (ξ, τ) dξdτ.

W. A. Zúñiga-Galindo (CINVESTAV) Mexico.p-adics2017 October 20, 2017 8 / 43



The p-adic heat equation

The classical heat equation is connected with the Brownian motion,
which is a physical model describing a particle performing a random
motion, a similar statement is valid for the p-adic heat equation.

The heat kernel:

Z (x , t) = F�1ξ!x

�
e�t jξj

α
p

�
=
R
Qp

χp (xξ) e�t jξj
α
pdξ.

u (x , t) =
Z
Qp

Z (x � ξ, t) ϕ (ξ) dξ +

tZ
0

Z
Qp

Z (x � ξ, t � τ) h (ξ, τ) dξdτ.

W. A. Zúñiga-Galindo (CINVESTAV) Mexico.p-adics2017 October 20, 2017 8 / 43



The p-adic heat equation

Properties of the heat kernel (Z (x , t) = Zt (x))

Zt (x) � 0R
Qp

Zt (x) dx = 1, t > 0

limt!0+ Zt (x) = δ (x) en D0

Zt � Zt 0 = Zt+t 0 , t, t 0 > 0

p (t, x , y) = Z (x � y , t) is a probability density ( space and time
homogeneous)
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The p-adic heat equation

P (t, x ,B) =
Z
B

p (t, x , y) dy expresses the probability that a particle

which has started out from the point x is in the set B at the time t.

Z (x , t) is the transition density of a bounded right-continuous
Markov process without second kind discontinuities.
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The energy landscape

The dynamics of a large class of complex systems (such as glasses
and proteins) is described as a random walk on a complex energy
landscape.

A landscape is a continuous real-valued function, that represents the
energy of a system, de�ned on a domain of Rn.
The term complex landscape means that this function has many
local minima.
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The energy landscape

In the case of complex landscapes, in which there are many local
minima, a �simpli�cation�method called interbasin kinetics is
applied.

The idea is to study the kinetics generated by transitions between
groups of states (basins).

Minimal basins correspond to local minima of energy.

A complex landscape is approximated by a disconnectivity
graph (an ultrametric space) and the distribution function of
activation energies.
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The energy landscape

D. J. Wales, M. A. Miller and T. R. Walsh,Archetypal energy landscapes, Nature,
394 758-760 (1998)
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Interbasin kinetics

The transitions between basins are described by the following
equations:

∂f (i , t)
∂t

= ∑
j
T (j , i) f (j , t) v(j)�∑

j
T (i , j) f (i , t) v (i) ,

where the indices i ,j number the states of the system (which
correspond to local minima of energy), T (i , j) � 0 is the probability
per unit time of a transition from i to j , and the v(j) > 0 are the
basin volumes.

From a physical point of view, the above equation must be a
di¤usion equation on a tree.
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Interbasin kinetics

Avetisov, V. A.; Bikulov, A. H.; Kozyrev, S. V.; Osipov, V. A. p-adic
models of ultrametric di¤usion constrained by hierarchical energy
landscapes. J. Phys. A 35 (2002), no. 2, 177�189.

Take v(j) = 1 and T (i , j) = q
�
ji � j jp

�
, then the master equation

takes the form

∂f (i , t)
∂t

=
Z

pMZp/pNZp

q
�
ji � j jp

�
(f (i , t)� f (j , t)) dµ (j) , M < N,

where the integration (summation!) is with respect to the Haar
measure on the discrete group pMZp/pNZp . By taking the formal
limits M ! �∞ and N ! +∞ we get a p-adic di¤usion equation.
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Ultrametricity in physics

The general p-adic master equation describing a Markovian process of
a random walk in Qp can be written as

∂f (x , t)
∂t

=
Z

Qp

[w (x jy ) f (y , t)� w (y jx ) f (x , t)] dy ,

x 2 Qp , t � 0.

The function f (x , t) : Qp �R+ ! R+ is a probability density
distribution, so that

R
B f (x , t) dx is the probability of �nding the

system in a domain B � Qp at the instant t. The function
w (x jy ) : Qp �Qp ! R+ is the probability of the transition from
state y to state x per unit of time.

The transition from state y to a state x can be visualized as
overcoming the energy barrier separating these states.
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Motivations

dP
dt

= AP, A = [Ai ,j ] =
h
A
�
ji � j jp

�i
, i , j 2 Zp/pLZp

! p � adic heat equation as L! ∞

To study non-linear (physically relevant ) p-adic equations related
with p�adic heat equations.
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P-adic Reaction-Ultradi¤usion Equations

The p-adic limit of master equations have the form:

∂u (x , t)
∂t

=
Z

Qn
p

J
�
kx � ykp

�
[u (y , t)� u (x , t)] dny , (1)

x 2 Qn
p , t � 0. The function u(x , t) : Qn

p �R+ ! R+ is a probability
density distribution, so that

R
B u (x , t) d

nx is the probability of �nding the
system in a domain B � Qn

p at the instant t. The function

J
�
kx � ykp

�
: Qn

p �Qn
p ! R+ is the probability of the transition from

state y to state x per unit of time. It is known that for many J�s,
equations of type (1) are ultradi¤usion equations i.e. they are p-adic
counterparts of the classical heat equations. More precisely, the
fundamental solution of (1) is the transition density of a bounded
right-continuous Markov process without second kind discontinuities.
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P-adic Reaction-Ultradi¤usion Equations

∂u (x , t)
∂t

=
Z

Qn
p

J
�
kx � ykp

�
[u (y , t)� u (x , t)] dny , J 2 L1

�
Qn
p

�
.

∂u (x , t)
∂t

=
1� pα

1� p�α�n

Z
Qn
p

[u (y , t)� u (x , t)]
kx � ykα+n

p

dny ,

1� pα

1� p�α�n
1

kxkα+n
p

/2 L1
�
Qn
p

�
.

These two equations have the same physical meaning, but
mathematically speaking, they are di¤erent objects.

Anselmo Torresblanca-Badillo, W. A. Zúñiga-Galindo , Ultrametric
Di¤usion, Exponential Landscapes, and the First Passage Time
Problem.arXiv:1511.08757

W. A. Zúñiga-Galindo (CINVESTAV) Mexico.p-adics2017 October 20, 2017 19 / 43



P-adic Reaction-Ultradi¤usion Equations

∂u (x , t)
∂t

=
Z

Qn
p

J
�
kx � ykp

�
[u (y , t)� u (x , t)] dny , J 2 L1

�
Qn
p

�
.

∂u (x , t)
∂t

=
1� pα

1� p�α�n

Z
Qn
p

[u (y , t)� u (x , t)]
kx � ykα+n

p

dny ,

1� pα

1� p�α�n
1

kxkα+n
p

/2 L1
�
Qn
p

�
.

These two equations have the same physical meaning, but
mathematically speaking, they are di¤erent objects.

Anselmo Torresblanca-Badillo, W. A. Zúñiga-Galindo , Ultrametric
Di¤usion, Exponential Landscapes, and the First Passage Time
Problem.arXiv:1511.08757
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P-adic Reaction-Ultradi¤usion Equations

W. A. Zúñiga-Galindo, Non-Archimedean Reaction-Ultradi¤usion
Equations and Complex Hierarchic Systems, arXiv:1604.06471.

We study equations of type

∂u (x , t)
∂t

=
Z

Qn
p

J
�
kx � ykp

�
[u (y , t)� u (x , t)] dny �λf (u (x , t)) ,

(2)

where J
�
kxkp

�
� 0,

R
Qn
p
J
�
kxkp

�
dnx = 1, λ > 0 su¢ ciently large

and f is (for instance) a polynomial having roots in �1, 0, 1.
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P-adic Reaction-Ultradi¤usion Equations

Formally, equation (2) is the L2-gradient �ow of the following
non-Archimedean Helmholtz free-energy functional:

E [ϕ] =
1
4

Z
Qn
p

Z
Qn
p

J
�
kx � ykp

�
fϕ (x)� ϕ (y)g2 dnxdny (3)

+λ
Z

Qn
p

W (ϕ (x)) dnx ,

where ϕ is a function taking values in the interval [�1, 1] and W is a
double-well potential.

The scalar function ϕ represents the macroscopic density pro�le of a
system which has two equilibrium pure phases described by ϕ � 1
and ϕ � �1. The integral

R
Qn
p
W (ϕ (x)) dnx in the right side of (3)

forces the minimizer of E to take values close to +1 and �1 (phase
separation) while the double integral represents an interaction energy
integral which penalizes the spatial inhomogenety of the system.
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P-adic Reaction-Ultradi¤usion Equations

lim
ε!0

E [ϕ+ εθ]� E [ϕ]
ε

=�Z
Qn
p

J
�
kx � ykp

�
[ϕ (y)� ϕ (x)] dny , θ (x)

�
+λ

�Z
Qn
p

W (ϕ (x)) θ (x) dnx
�

formally
=

Z
Qn
p

J
�
kx � ykp

�
[ϕ (y)� ϕ (x)] dny � λf (ϕ (x))

= �Aϕ (x)� λf (ϕ (x)) = �rϕ (x)
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P-adic Reaction-Ultradi¤usion Equations

W (u) = u2
4 (u

2 � 2)

210-1-2

2
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x

y

f (u) = �u(u2 � 1) =
�
W (u)
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P-adic Reaction-Ultradi¤usion Equations

Equations of (2) can be well-approximated in �nite dimensional real
spaces by ODE�s.

In a suitable basis, where the unknown function is identi�ed with the
column vector [u (i, t)]i2G nN , these equations have the form

∂

∂t
[u (i, t)]i2G nN = �A

(N ) [u (i, t)]i2G nN � λ [f (u (i, t))]i2G nN , (4)

where A(N ) is the matrix representation of a linear operator that
approximates, in a suitable �nite dimensional vector space, the
integral operator involving the function J in the right-side of (2).
Equation (4) is L2-gradient �ow of a ��nite�Helmholtz energy
functional.
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Some Functional Spaces and Operators

We de�ne X∞(Qn
p) := X∞ =

�
D(Qn

p), k�k∞
�
, where

kφk∞ = supx2Qn
p
jφ(x)j and the bar means the completion with

respect the metric induced by k�k∞. We also use k�k∞ to denote the
extension of k�k∞ to X∞. Notice that all the functions in X∞ are
continuous and that

X∞ � C0 := (
f : Qn

p ! R; f continuous with lim
kxkp!∞

f (x) = 0

)
, k�k∞

!
.

On the other hand, since D(Qn
p) is dense in C0, we conclude that

X∞ = C0. In a more general case, if K is an open subset of Qn
p , we

de�ne X∞ (K ) = (D(K ), k�k∞).
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Some Functional Spaces and Operators

We set
XN :=

�
D�NN

�
Qn
p

�
, k�k∞

�
for N � 1.

Any ϕ 2 XN has support in BnN =
�
p�NZp

�n
, and ϕ satis�es

ϕ(x + x 0) = ϕ (x) for x 0 2 Bn�N =
�
pNZp

�n
. In addition, Bn�N are

additive subgroups and G nN := BnN/Bn�N is a �nite group with
#G nN := p2Nn elements.

Any element i = (i1, . . . , in) of G nN can be represented as

ij = a
j
�Np

�N + aj�N+1p
�N+1 + . . .+ aj0 + a

j
1p + . . .+ ajN�1p

N�1

(5)
for j = 1, . . . , n, with ajk 2 f0, 1, . . . , p � 1g.
Any ϕ 2 XN can be represented as
ϕ (x) = ∑i2G nN ϕ (i)Ω

�
pN kx � ikp

�
, with ϕi 2 R, where

Ω
�
pN kx � x0kp

�
denotes the characteristic function of the ball

x0 +
�
pNZp

�n
.
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Some Functional Spaces and Operators

n
Ω
�
pN kx � ikp

�o
i2G nN

is a basis of D�NN .

Then kϕk∞ = maxi jϕij. Hence XN is isomorphic as a Banach space
to
�
R#G nN , k�kR

�
, where



�t1, . . . , t#G nN
�



R
= max1�j�#G nN jtj j.

We now de�ne for N � 1, PN : X∞ ! XN as
PN ϕ (x) = ∑i2G nN ϕ (i)Ω

�
pN kx � ikp

�
.

Therefore PN is a linear bounded operator, indeed, kPNk � 1.

Lemma

limN!∞ kϕ� PN ϕk∞ = 0 for any ϕ 2 X∞.
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Some Functional Spaces and Operators

We denote by EN , N � 1, the embedding XN ! X∞. The following
result is a consequence of the above observations. If Z , Y are real
Banach spaces, we denote by B(Z ,Y ), the space of all linear
bounded operators from Z into Y .

Lemma (Condition A)

With the above notation, the following assertions hold:
(i) X∞, XN for N � 1, are real Banach spaces, all with the norm k�k∞;
(ii) PN 2 B (X∞,XN ) and kPN ϕk∞ � kϕk∞ for any N � 1, ϕ 2 X∞;
(iii) EN 2 B (XN ,X∞) and kEN ϕk∞ = kϕk∞ for any N � 1, ϕ 2 XN ;
(iv) PNEN ϕ = ϕ for N � 1, ϕ 2 XN .

Set R+ := fx 2 R; x � 0g. We �x a continuous function J :
R+ ! R+, and take J(x) = J(jjx jjp) for x 2 Qn

p , thus J(x) is a
radial function on Qn

p . We assume that
R

Qn
p
J(jjx jjp)dnx = 1.
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The operators AN, A

Lemma

The following assertions hold:
(i) set JN (jjx jjp) := J(jjx jjp)Ω

�
p�N kxkp

�
for N � 1. Then

JN (jjx jjp) � PN ϕ (x) = Ω
�
p�N kxkp

�
fJ(jjx jjp) � PN ϕ (x)g

for ϕ (x) 2 X∞;
(ii) de�ne for N � 1,

AN : XN ! XN
φ (x) ! �

R
B nN

JN (jjx � y jjp) fφ (y)� φ (x)g dny .

Then AN is a well-de�ned linear bounded operator.

W. A. Zúñiga-Galindo (CINVESTAV) Mexico.p-adics2017 October 20, 2017 29 / 43



The operators AN, A

We de�ne

A : X∞ ! X∞

ϕ (x) ! Aϕ (x) = �
n
J
�
kxkp

�
� ϕ (x)� ϕ (x)

o
.

(6)

Remark

Notice that Aϕ (x) = �
R

Qn
p
J
�
kx � ykp

�
fϕ (y)� ϕ (x)g dny sinceR

Qn
p
J
�
kx � ykp

�
dny = 1.

Lemma

The operator A : X∞ ! X∞ is a linear and bounded. In addition, the
spectrum of A, σ (A), is contained in the interval [0, 2].
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The Matrix Representation of operators AN and Markov
Chains

By using the basis
n

Ω
�
pN kx � ikp

�o
i2G nN

we identify XN with�
R#G nN , k�kR

�
, thus operator AN is given by a matrix. This matrix is

computed by means of the following two lemmas.

Lemma

Set a (x , i) := JN
�
kxkp

�
�Ω

�
pN kx � ikp

�
for x 2 BnN , i 2 G nN . Let ex

denote the image of x under the canonical map BnN ! G nN . Then

a (x , i) = a (ex , i) =
8>>><>>>:

p�NnJ
�
p�ord (ex�i)� if ord(ex � i) 6= +∞

R
(pNZp )

n
J
�
kykp

�
dny if ord(ex � i) = +∞.
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The Matrix Representation of operators AN and Markov
Chains

Lemma

The matrix for operator AN acting on XN is
A(N ) =

h
A(N )ki

i
k,i2G nN

= [jN δki � aki]k,i2G nN , where aki := a(k, i) and δki

denotes the Kronecker delta.

Lemma

�A(N ) is a Q-matrix, i.e. �A(N )ij � 0 for i 6= j with i, j 2 G nN , and
A(N )ii = �∑j 6=i A

(N )
ij .
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The Matrix Representation of operators AN and Markov
Chains

Theorem

(i) Set P (N ) (t) := e�tA
(N )
, t � 0. Then P (N ) (t) is a semigroup of

nonnegative matrices with P (N ) (0) = E, the identity matrix, which
satis�es

∂P (N ) (t)
∂t

+ A(N )P (N ) (t) = 0

and P (N ) (t) 1 = 1 for t � 0.
(ii) The function P (N ) (t � s), t � s � 0, is the transition function of a
homogeneous Markov chain with state space G nN . Furthermore, this
stochastic process has right-continuous piece-wise-constant paths.
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Non-Archimedean Helmholtz Free-Energy Functionals

We de�ne for ϕ 2 XN , λ > 0,

EN (ϕ) =
1
4

Z
B nN

Z
B nN

JN
�
kx � ykp

�
fϕ (x)� ϕ (y)g2 dnxdny +(7)

λ
Z
B nN

W (ϕ (x)) dnx ,

where JN
�
kxkp

�
is as before, ϕ is a scalar density function de�ned

on BnN that takes values in [�1, 1], W : R ! R, with derivative
f 2 C 2 (R), is a double-well potential having (not necessarily equal)
minima at �1.

The function ϕ, the order parameter, represents the macroscopic
density pro�le of a system which has two equilibrium pure phases
described by the pro�les ϕ � 1 and ϕ � �1, and �1 < ϕ < 1
represents the �interface�. The function JN is a positive, possibly
anisotropic, interaction potential which vanishes at in�nity.
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Non-Archimedean Helmholtz Free-Energy Functionals

Lemma

(i) By identifying ϕ (x) with the vector [ϕ (i)]i2G nN , i.e. by identifying XN
with R#G nN , we have

EN
�
[ϕ (i)]i2G nN

�
=

jNp�Nn

2 ∑
i2G nN

ϕ2 (i)� p
�Nn

2 ∑
i,j2G nN

aijϕ (i) ϕ (j)

+λp�Nn ∑
i2G nN

W (ϕ (i)) ,

where [aij]i,j2G nN
is the matrix de�ned in Lemma 5.
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Non-Archimedean Helmholtz Free-Energy Functionals

Lemma
(ii) We assume that ϕ depends on i 2 G nN and t � 0. The gradient �ow in
the Euclidean space R#G nN of the functional EN : R#G nN ! R is the
evolution in R#G nN given by

∂

∂t
[ϕ (i, t)]i2G nN = �rEN

�
[ϕ (i, t)]i2G nN

�
(8)

= �p�NnA(N ) [ϕ (i, t)]i2G nN � λp�Nn [f (ϕ (i, t))]i2G nN ,

where A(N ) is the matrix de�ned in Lemma 6.

Remark
Notice that in XN , (8) can be written as

∂

∂t
ϕ (x , t) = �AN ϕ (x , t)� λf (ϕ (x , t)) . (9)
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Non-Archimedean Helmholtz Free-Energy Functionals

Consider
�
G nN , k�kp

�
as a �nite ultrametric space. Then (8) is

reaction-ultradi¤usion equation in
�
G nN , k�kp

�
, which is the

L2-gradient of an energy functional de�ned on
�
G nN , k�kp

�
.

We initiate the study of these equations and their �limits�as N tends
to in�nity. In the special case f � 0, by a physical argument involving
the parametrization of Parisi matrices by p-adic numbers, Avetisov et
al. showed that the �limit�of an equation of type (8) as N tends to
in�nity is

∂

∂t
ϕ (x , t) = �Aϕ (x , t)� λf (ϕ (x , t)) , x 2 Qn

p , t � 0. (10)
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Non-Archimedean Helmholtz Free-Energy Functionals

We show, from a mathematical perspective, that the solutions of
the Cauchy problem attached to equation (9) converge to the
solutions of the Cauchy problem attached to equation (10), see
Theorem 11, in the case that f 2 C 2 with three zeros at �1, 0, 1.
Equation (10) is formally the L2-gradient of the following energy
functional:

E (ϕ) =
1
4

Z
Qn
p

Z
Qn
p

J
�
kx � ykp

�
fϕ (x)� ϕ (y)g2 dnxdny

+λ
Z

Qn
p

W (ϕ (x)) dnx

where ϕ is a scalar density function de�ned on Qn
p that takes values in

[�1, 1], W is a double-well potential having minima at �1 as before.
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Finite Approximations

We now study �nite approximations to the solutions of(
∂u(x ,t)

∂t + Au (x , t) = �λf (u (x , t)) , x 2 Qn
p , t � 0

u (x , 0) = u0 (x) ,
(11)

where function f (u) satis�es all the conditions given before.
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Finite Approximations

Our goal is to approximate the solution u (x , t) of Cauchy Problem (11) in
X∞ using only that u0 (x) 2 X∞ and �1 � u0 (x) � 1. It is possible to
approximate u(x , t) without using any a priori information on the initial
solution, however this requires to impose to the nonlinearity f to be
globally Lipschitz, this last condition reduces a lot the potentials W to
which we can apply our results.
The discretization of Cauchy problem (11) in the spaces XN takes the
following form:� d

dt uN (t) + ANuN (t) = �λPN f (ENuN (t))
uN (0) = PNu0.

(12)
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Finite Approximations

By taking PNu0 (x) = ∑i2G nN u0 (i)Ω
�
pN kx � ikp

�
and identifying

uN (t) with the column vector [uN (i, t)]i2G nN , we can rewrite Cauchy
problem (12) as(

d
dt [uN (i, t)]i2G nN + A

(N ) [uN (i, t)]I2G nN = �λ [f (uN (i, t))]i2G nN
[uN (i, 0)]i2G nN = [u0 (i)]i2G nN ,

(13)

cf. Lemma 6.
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Finite Approximations

Theorem

(i) �A is the generator of a strongly continuous semigroup
�
e�tA

	
t�0 on

X∞. Moreover,


e�tA

 � 1 for t � 0 and

lim
N!∞

sup
t�0

ebt



EN e�AN tPN ϕ� e�tAϕ





∞
= 0 for all ϕ 2 X∞, b 2 (0,∞) .

(ii) Take u0 (x) 2 X∞ with �1 � u0 (x) � 1. Let u be the solution of (11)
and let uN be the solution of (12). Then

lim
N!∞

sup
0�t�T

kENuN (t)� u (t)k∞ = 0.
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Thanks for your kind attention !
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