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Abstract

@ We initiate the study of non-Archimedean reaction-ultradiffusion
equations and their connections with models of complex hierarchic
systems.

@ From a mathematical perspective, the equations studied here are the
p-adic counterpart of the integro-differential models for phase
separation introduced by Bates and Chmaj.

@ Our equations are also generalizations of the ultradiffusion equations
on trees studied in the 80's by Ogielski, Stein, Bachas, Huberman,
among others, and also generalizations of the master equations of the
Avetisov et al. models, which describe certain complex hierarchic
systems.

@ From a physical perspective, our equations are gradient flows of
non-Archimedean free energy functionals and their solutions describe
the macroscopic density profile of a bistable material whose space of
states has an ultrametric structure.
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The field of p-adic numbers

The field of p—adic numbers Q,, is defined as the completion of the field
of rational numbers Q with respect to the p—adic norm | - |,, which is

defined as
x|, = 0 if x=0
p p_()/ |f X = p’)/é’
where a and b are integers coprime with p. The integer  := ord(x), with
ord(0) := +o0, is called the p—adic order of x. We extend the p—adic
norm to Q by taking
x|l == 1rglga§xnlx,-]p, for x = (x1,..., %)) € Qp.

We define ord(x) = minj<i<,{ord(x;)}, then [|x||, = p~°¢*). The
metric space (QB, || -||,) is a complete ultrametric space.
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The field of p-adic numbers

e For r € Z, denote by B (a) = {x € QJ;||x — al|, < p"} the ball of
radius p" with center at a = (a1,...,a,) € QF, and take
B7(0) := B,
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The field of p-adic numbers

e For r € Z, denote by B (a) = {x € QJ;||x — al|, < p"} the ball of
radius p" with center at a = (a1,...,a,) € QF, and take
B7(0) := B,

@ We also denote by S/'(a) = {x € Q}; ||x — a||, = p"} the sphere of
radius p" with center at a = (a1,...,a,) € QF, and take
Sr0) :=S;.
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The Bruhat-Schwartz space

o D(Qj) denotes the Bruhat-Schwartz space.
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o D'(Qjp) denotes the space of distributions.
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The Bruhat-Schwartz space

o D(Qj) denotes the Bruhat-Schwartz space.
o D'(Qjp) denotes the space of distributions.

@ The Fourier transform of ¢ € D(Q}) is defined by

(Fo) (@) = /(Q X, (—E X)g(E) d"x, & € Q1

where x,(-) is the standard additive character of Qp, { - x = ¥, ;X
and d"x is the normalized Haar measure on Qj.
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The p-adic heat equation

o
P+ (D) (x ) = h(x,t), xEQp t>0
u(x,0)=¢(x),
where

(D) (x) := F L, (I¢ls Fumzo) 2> 0,

is the Vladimirov operator.
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The p-adic heat equation

o
{ Wl (D) (x,t) = h(x,t), x€Qp t>0
u(x,0)=¢(x),
where

(D) (x) := F L, (I¢ls Fumzo) 2> 0,

is the Vladimirov operator.

au(g;;.t) _ (%) (x,t) =f(x,t), xER, t>0
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The p-adic heat equation

@ The classical heat equation is connected with the Brownian motion,
which is a physical model describing a particle performing a random
motion, a similar statement is valid for the p-adic heat equation.

W. A. Zifiga-Galindo (CINVESTAV) Mexico.p-adics2017 October 20, 2017 8/43



The p-adic heat equation

@ The classical heat equation is connected with the Brownian motion,
which is a physical model describing a particle performing a random
motion, a similar statement is valid for the p-adic heat equation.

@ The heat kernel:
Z(x,t) = fg_lm (e_”’;'r)) = [ x, (x¢) e hge.
Q,
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The p-adic heat equation

@ The classical heat equation is connected with the Brownian motion,
which is a physical model describing a particle performing a random
motion, a similar statement is valid for the p-adic heat equation.

@ The heat kernel:
Z(x,t) = fg_lm (e_”’;'r)) = [ x, (x¢) e hge.
Q,

uxt) = [Z(x-ave@d+
Qs

//Z(x—g,t—r)h(g,r)dgdr.

0 Qp
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The p-adic heat equation

e Properties of the heat kernel (Z (x, t) = Z; (x))
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e Properties of the heat kernel (Z (x, t) = Z; (x))
o Zt (X) Z 0
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The p-adic heat equation

e Properties of the heat kernel (Z (x, t) = Z; (x))
o Zt (X) Z 0

o [Zi(x)dx=1,t>0
Qo
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The p-adic heat equation

e Properties of the heat kernel (Z (x, t) = Z; (x))
o Zt (X) Z 0

o [Zi(x)dx=1,t>0
Qo
o lim; g+ Zt (x) =6 (x) en D’
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The p-adic heat equation

Properties of the heat kernel (Z (x, t) = Z; (x))
Z:(x) >0

[ Zi(x)dx=1,t>0

Q

lim; g+ Zt (x) =6 (x) en D’
Zt‘*zt/ = Zt—‘—t’r t, t/ >0
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The p-adic heat equation

Properties of the heat kernel (Z (x, t) = Z; (x))
Z:(x) >0

[ Zi(x)dx=1,t>0

Q

lim; g+ Zt (x) =6 (x) en D’
Zt‘*zt/ = Zt—‘—t’r t, t/ >0

p(t,x,y) =Z(x—y,t) is a probability density ( space and time
homogeneous)

W. A. Zifiga-Galindo (CINVESTAV) Mexico.p-adics2017 October 20, 2017 9/43



The p-adic heat equation

e P(t,x,B) = /p (t,x,y) dy expresses the probability that a particle

B
which has started out from the point x is in the set B at the time t.
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The p-adic heat equation

e P(t,x,B) = /p (t,x,y) dy expresses the probability that a particle

B
which has started out from the point x is in the set B at the time t.

@ Z(x,t) is the transition density of a bounded right-continuous
Markov process without second kind discontinuities.
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The energy landscape

@ The dynamics of a large class of complex systems (such as glasses
and proteins) is described as a random walk on a complex energy
landscape.
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The energy landscape
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and proteins) is described as a random walk on a complex energy
landscape.

@ A landscape is a continuous real-valued function, that represents the
energy of a system, defined on a domain of IR”.
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The energy landscape

@ The dynamics of a large class of complex systems (such as glasses
and proteins) is described as a random walk on a complex energy
landscape.

@ A landscape is a continuous real-valued function, that represents the
energy of a system, defined on a domain of IR”.

@ The term complex landscape means that this function has many
local minima.
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The energy landscape

@ In the case of complex landscapes, in which there are many local
minima, a “simplification” method called interbasin kinetics is
applied.
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The energy landscape

@ In the case of complex landscapes, in which there are many local
minima, a “simplification” method called interbasin kinetics is
applied.

@ The idea is to study the kinetics generated by transitions between
groups of states (basins).
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The energy landscape

@ In the case of complex landscapes, in which there are many local
minima, a “simplification” method called interbasin kinetics is

applied.

@ The idea is to study the kinetics generated by transitions between
groups of states (basins).

@ Minimal basins correspond to local minima of energy.
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The energy landscape

@ In the case of complex landscapes, in which there are many local
minima, a “simplification” method called interbasin kinetics is
applied.

@ The idea is to study the kinetics generated by transitions between
groups of states (basins).

@ Minimal basins correspond to local minima of energy.

@ A complex landscape is approximated by a disconnectivity
graph (an ultrametric space) and the distribution function of
activation energies.
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The energy landscape

D. J. Wales, M. A. Miller and T. R. Walsh,Archetypal energy landscapes, Nature,
394 758-760 (1998)

Figara 3 The pyacylene’ o Stone-Yiaks reamangerert of
G- Buskruretert dienere, ke, & Tnomed via e ranaion
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Interbasin kinetics

@ The transitions between basins are described by the following
equations:

9fz()it, t) _ YTGAFGOVE) = TG F ) v (i),

J J

where the indices i,j number the states of the system (which
correspond to local minima of energy), T (/,j) > 0 is the probability
per unit time of a transition from i to j, and the v(j) > 0 are the
basin volumes.
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Interbasin kinetics

@ The transitions between basins are described by the following
equations:

of (i, t C N . C N .
U8 S T G G vl) ST () F D) v (),
J J
where the indices i,j number the states of the system (which
correspond to local minima of energy), T (/,j) > 0 is the probability
per unit time of a transition from i to j, and the v(j) > 0 are the
basin volumes.

@ From a physical point of view, the above equation must be a
diffusion equation on a tree.
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Interbasin kinetics

@ Avetisov, V. A.; Bikulov, A. H.; Kozyrev, S. V.; Osipov, V. A. p-adic
models of ultrametric diffusion constrained by hierarchical energy
landscapes. J. Phys. A 35 (2002), no. 2, 177-189.
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Interbasin kinetics

o Avetisov, V. A_; Bikulov, A. H.; Kozyrev, S. V.; Osipov, V. A. p-adic
models of ultrametric diffusion constrained by hierarchical energy
landscapes. J. Phys. A 35 (2002), no. 2, 177-189.

o Takev(j)=1land T (i,j) =g¢q <]i—j\p), then the master equation
takes the form
of (i, t . . . .
U8 [ g (i1,) (FGO - F G dul), M< N,

pMZp/PNZp

where the integration (summation!) is with respect to the Haar
measure on the discrete group pMZp/p’VZp. By taking the formal
limits M — —o0 and N — +o0 we get a p-adic diffusion equation.
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Ultrametricity in physics

@ The general p-adic master equation describing a Markovian process of
a random walk in Q, can be written as

af(a);t):/Q [w(x]y)f(y.t) —w(y|x)f(x,t)]dy,

P

x€Q, t>0.
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Ultrametricity in physics

@ The general p-adic master equation describing a Markovian process of
a random walk in Q, can be written as

af(a);t):/Q [w(x]y)f(y.t) —w(y|x)f(x,t)]dy,

b
x€Q, t>0.

@ The function f(x,t) : Q, x Ry — R4 is a probability density
distribution, so that [, f (x, t) dx is the probability of finding the
system in a domain B C Q, at the instant t. The function
w (x|y):Qp x Qp — Ry is the probability of the transition from
state y to state x per unit of time.
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Ultrametricity in physics

@ The general p-adic master equation describing a Markovian process of
a random walk in Q, can be written as

af(a);t):/Q [w(x]y)f(y.t) —w(y|x)f(x,t)]dy,

b
x€Q, t>0.

@ The function f(x,t) : Q, x Ry — R4 is a probability density
distribution, so that [, f (x, t) dx is the probability of finding the
system in a domain B C Q, at the instant t. The function
w (x|y):Qp x Qp — Ry is the probability of the transition from
state y to state x per unit of time.

@ The transition from state y to a state x can be visualized as
overcoming the energy barrier separating these states.
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% = AP, A=[A)] = [A (Ii—jlp)] € Zy/P 2,

— p — adic heat equation as L — oo
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dP

& = AP A=A = [A (Ii—jlp)] € Zy/P 2,

— p — adic heat equation as L — oo

@ To study non-linear (physically relevant ) p-adic equations related
with p—adic heat equations.
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P-adic Reaction-Ultradiffusion Equations

The p-adic limit of master equations have the form:

au(g);,t) = /@,g I(Ix=yll) [w () =ul )™y, (1)

x € Qp,t > 0. The function u(x,t) : Q) x Ry — Ry is a probability
density distribution, so that [ u (x, t) d"x is the probability of finding the
system in a domain B C Qjp at the instant t. The function

J (Hx - y||p> :Qp X Qp — Ry is the probability of the transition from
state y to state x per unit of time. It is known that for many J's,
equations of type (1) are ultradiffusion equations i.e. they are p-adic
counterparts of the classical heat equations. More precisely, the
fundamental solution of (1) is the transition density of a bounded
right-continuous Markov process without second kind discontinuities.
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P-adic Reaction-Ultradiffusion Equations

ot /Q I(Ix=yll,) [ (. 0) = u(x )] dy, J € L1 (Qp).

p

du (x, t) _1-pf / [u(y,t)—u(x, t)]dn
Jt L=p™ "y lx =yl
1—p* 1
- ¥
L=p 7 Ix]"

L (Qp).

@ These two equations have the same physical meaning, but
mathematically speaking, they are different objects.
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P-adic Reaction-Ultradiffusion Equations

ot /Q I(Ix=yll,) [ (. 0) = u(x )] dy, J € L1 (Qp).

p

du (x, t) _1-pf / [u(y,t)—u(x,t)] d"y

ot 1—p==" Jos Hx—y||z+” '
1—p* 1

- ¥

L=p= " x|l

L (Qp).

@ These two equations have the same physical meaning, but
mathematically speaking, they are different objects.

@ Anselmo Torresblanca-Badillo, W. A. Zifiga-Galindo , Ultrametric

Diffusion, Exponential Landscapes, and the First Passage Time
Problem.arXiv:1511.08757
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P-adic Reaction-Ultradiffusion Equations

o W. A. Zidiga-Galindo, Non-Archimedean Reaction-Ultradiffusion
Equations and Complex Hierarchic Systems, arXiv:1604.06471.
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P-adic Reaction-Ultradiffusion Equations

o W. A. Zidiga-Galindo, Non-Archimedean Reaction-Ultradiffusion
Equations and Complex Hierarchic Systems, arXiv:1604.06471.

@ We study equations of type

du (x, t)

at /QnJ (”X_pr) [u(y, t) —u(x,t)]d"y —Af (u(x,t)),

()
where J (HXHP> >0, fonJ (HXHP> d"x =1, A > 0 sufficiently large
p

and f is (for instance) a polynomial having roots in —1, 0, 1.
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P-adic Reaction-Ultradiffusion Equations

e Formally, equation (2) is the [2-gradient flow of the following
non-Archimedean Helmholtz free-energy functional:

Elgl = 5 [ [ I(be=v1,) {000 -9 )F amdy (3)

+A o W (e (x))d"x,

where ¢ is a function taking values in the interval [—1,1] and W is a
double-well potential.
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P-adic Reaction-Ultradiffusion Equations

e Formally, equation (2) is the [2-gradient flow of the following
non-Archimedean Helmholtz free-energy functional:

Elgl = 5 [ [ I(be=v1,) {000 -9 )F amdy (3)

4

+A W (e (x))d"x,
Q
where ¢ is a function taking values in the interval [—1,1] and W is a
double-well potential.

@ The scalar function ¢ represents the macroscopic density profile of a
system which has two equilibrium pure phases described by ¢ =1
and ¢ = —1. The integral ng W (¢ (x)) d"x in the right side of (3)
forces the minimizer of E to take values close to +1 and —1 (phase
separation) while the double integral represents an interaction energy
integral which penalizes the spatial inhomogenety of the system.
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P-adic Reaction-Ultradiffusion Equations

im Elp+ef]—Efg] _
e—0 €

</Qg ’ (HX —pr) [ (y) =9 (x)]d"y.6 (x))
“ (/Q W (¢ (x))0(x) d"x)
e [ (k= 1) o) = 0 ()] dy = Af (9 (0)

P

= —Ag (x) — Af (¢ (x)) = =V (x)
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P-adic Reaction-Ultradiffusion Equations

W(u) = % (2 —2)
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P-adic Reaction-Ultradiffusion Equations

e Equations of (2) can be well-approximated in finite dimensional real
spaces by ODE's.
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P-adic Reaction-Ultradiffusion Equations

e Equations of (2) can be well-approximated in finite dimensional real
spaces by ODE's.

@ In a suitable basis, where the unknown function is identified with the
column vector [u (i, t)]ieG,'\',' these equations have the form

% [0 )icy = =AM [u (i O)icgy —ALF (Wi 0)liegy.  (4)

where AN is the matrix representation of a linear operator that
approximates, in a suitable finite dimensional vector space, the
integral operator involving the function J in the right-side of (2).
Equation (4) is L?-gradient flow of a ‘finite’ Helmholtz energy
functional.
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Some Functional Spaces and Operators

o We define X (Qp) := Xeo = (D(Q1), |||l ). where
[#lco = supPxeqg [¢(x)] and the bar means the completion with

respect the metric induced by ||||,. We also use ||-||., to denote the
extension of |||/, to X«. Notice that all the functions in X are

continuous and that

Xeo C Go :=

({f :Qp — R; f continuous with lim f(x) = 0} , ||||Oo> .

11,0

October 20, 2017 25 / 43

W. A. Zifiga-Galindo (CINVESTAV) Mexico.p-adics2017



Some Functional Spaces and Operators

o We define X (Qp) := Xeo = (D(Q1), |||l ). where
[#lco = supPxeqg [¢(x)] and the bar means the completion with

respect the metric induced by ||||,. We also use ||-||., to denote the
extension of |||/, to X«. Notice that all the functions in X are
continuous and that

Xeo C Go :=

({f : Qg — RR; f continuous with lim f(x) = 0} , ||||Oo> _

11,0

@ On the other hand, since D(Qy) is dense in Cp, we conclude that
X = Cp. In a more general case, if K is an open subset of Qj, we

define Xo (K) = (D(K), [|]|)-
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Some Functional Spaces and Operators

o We set
Xy = (DNN Q). ||-||oo) for N > 1.

Any ¢ € Xy has support in By, = (p*NZp)", and @ satisfies
@(x+x') = ¢ (x) for x' € B"yy = (pNZ,)". In addition, BY,, are
additive subgroups and Gp := By, /B, is a finite group with
#Gp = p?N" elements.

W. A. Ziiiiga-Galindo (CINVESTAV) Mexico.p-adics2017 October 20, 2017 26 / 43



Some Functional Spaces and Operators

o We set
Xy = (DNN Q). ||-||oo) for N > 1.

Any ¢ € Xy has support in By, = (p*NZp)", and @ satisfies
@(x+x') = ¢ (x) for x' € B"yy = (pNZ,)". In addition, BY,, are
additive subgroups and Gp := By, /B, is a finite group with
#Gp = p?N" elements.

o Any element i = (i1,...,in) of Gfj can be represented as

j=a o N+ p Mt At Ay PV
. (5)
forj=1,...,n with a, € {0,1,...,p—1}.
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Some Functional Spaces and Operators

o We set
Xy = (DNN Q). ||-||oo) for N > 1.

Any ¢ € Xy has support in By, = (p*NZp)", and @ satisfies
@(x+x') = ¢ (x) for x' € B"yy = (pNZ,)". In addition, BY,, are
additive subgroups and Gp := By, /B, is a finite group with
#Gp = p?N" elements.

o Any element i = (i1,...,in) of Gfj can be represented as

j=a o N+ p Mt At Ay PV
forjzl,...,n,witha{(E{O,l,...,p—l}. ©
@ Any ¢ € Xy can be represented as
¢ (x) = Liegy ¢ (i) Q (pN |x — i||p), with ¢; € R, where
Q (pN lIx — Xo||p> denotes the characteristic function of the ball
X0 + (pNZp)".
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Some Functional Spaces and Operators

° {Q <pN |x — i||p> }ieG,Q, is a basis of Dy, ".

limy—oo | — Pne||l, = 0 for any ¢ € Xeo.
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@ Then ||¢||, = max;|@;|. Hence X is isomorphic as a Banach space
to (IR#GN, ||||]R)' where H(tl ..... t#Glr\rl) ’]R = maxlgg#gﬁl |tj|.

@ We now define for N > 1, Py : Xeo — Xy as
Pug (x) = Ticy ¢ () Q (p" I —ill,)

@ Therefore Py is a linear bounded operator, indeed, ||Py|| < 1.

limy—oo | — Pne||l, = 0 for any ¢ € Xeo.
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Some Functional Spaces and Operators

o We denote by Ey , N > 1, the embedding Xy — X«. The following
result is a consequence of the above observations. If Z, Y are real
Banach spaces, we denote by B(Z, Y), the space of all linear
bounded operators from Z into Y.

Lemma (Condition A)

With the above notation, the following assertions hold:

(i) Xeo, Xy for N > 1, are real Banach spaces, all with the norm ||-||
(ii) Py € B (X, Xn) and ||Pno]l < ||@]lo for any N > 1, ¢ € X,
(iii) En € B (Xn, Xoo) and ||En@||o = ||@|| for any N > 1, ¢ € Xy;
(iv) PNENgo =0 for N > 1, (NS Xy .
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Some Functional Spaces and Operators

o We denote by Ey , N > 1, the embedding Xy — X«. The following
result is a consequence of the above observations. If Z, Y are real
Banach spaces, we denote by B(Z, Y), the space of all linear
bounded operators from Z into Y.

Lemma (Condition A)

With the above notation, the following assertions hold:

(i) Xeo, Xy for N > 1, are real Banach spaces, all with the norm ||-||
(ii) Py € B (X, Xn) and ||Pno]l < ||@]lo for any N > 1, ¢ € X,
(iii) En € B (Xn, Xoo) and ||En@||o = ||@|| for any N > 1, ¢ € Xy;
(iv) PNENgo =0 for N > 1, (NS Xy .

@ Set Ry := {x € R;x > 0}. We fix a continuous function J :
R, — Ry, and take J(x) = J(||x][|,) for x € Qp, thus J(x) is a
radial function on Q. We assume that an HXH )d"x = 1.
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The operators An, A

Lemma

The following assertions hold:
(i) set Iu(||x|1p) := J(|Ix]1)0 (b~ lIxll, ) for N> 1. Then

In(I1x115) * Pug (x) = @ (p~ [1x1],.) {J(Ix|15) * Pue ()}

for ¢ (x) € Xeo;
(ii) define for N > 1,

AN2 XN — XN
¢(x) — —BfnJN(HX—pr){(P(y)—¢(X)}d”y-

N

Then Ay is a well-defined linear bounded operator.
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The operators An, A

We define

A Xo - X
p(x) = Ap(x)=—={J(lIxl,) xe () —@(x)}. (6)

RENELS

Notice that Ap (x) = — an (HX - }/Hp) {9 (y) —@(x)} d"y since
Jog? (Ix=v1l,) dny =1

Lemma

| A\

The operator A : Xoo — Xwo is a linear and bounded. In addition, the
spectrum of A, o (A), is contained in the interval [0, 2].

\
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The Matrix Representation of operators AN and Markov

Chains

By using the basis {Q (pN Ix — i||p) } ., we identify Xy with
icGy

(R#CH, ||-||g). thus operator A, is given by a matrix. This matrix is
computed by means of the following two lemmas.

Lemma

x
~
hel
—
o
~
S
S
s
s
l

Set a(x,i) := Jy (||x]| )m p [|x —il|,) forx € BE, i € Gi. Let X
denote the image of x under the canonical map By, — Gp. Then

pMny (pmed ) if ord(X —i) # +oo
a(x,i)=a(x,i)=

[ (Ivl,)dny i ord(x—i) = +eo
(PNZp)"
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The Matrix Representation of operators AN and Markov
Chains

Lemma

The matrix for operator Ay acting on Xy is

AN) = [Af(év)]k_ o = Undki — aki]kieG,(’,' where ay; := a(k, i) and d
e n ’

denotes the Kronec%er delta.

| \

Lemma
—AM) s a Q-matrix, i.e. —AJ") >0 fori # j withi, j € Gfj, and

(V) _ (N)
Ai = —Lis Ay

.
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The Matrix Representation of operators AN and Markov
Chains

(i) Set PV) (t) := e=A™ '+ > 0. Then PV (t) is a semigroup of
nonnegative matrices with P(N) (0) = I, the identity matrix, which
satisfies

oPWN) ()
ot
and PN (£)1 =1 fort > 0.
(ii) The function p(N) (t—s), t > s >0, is the transition function of a
homogeneous Markov chain with state space Gy,. Furthermore, this
stochastic process has right-continuous piece-wise-constant paths.

+ AN PV (1) =0
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Non-Archimedean Helmholtz Free-Energy Functionals

@ We define for ¢ € Xy, A >0,

Enie) = 7 [ [ (Ix=yl,) {0 () — @)1 dmxdmy +(7)
Bf BRy

A/ W (@ (x)) d"x,

By

where Jy (||XHP> is as before, ¢ is a scalar density function defined
on BJ, that takes values in [—1,1], W : R — R, with derivative

f € C%(R), is a double-well potential having (not necessarily equal)
minima at £1.
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@ We define for ¢ € Xy, A >0,
Enie) = 7 [ [ (Ix=yl,) {0 () — @)1 dmxdmy +(7)

By By

A/ W (¢ (x)) d"x,

By

where Jy (||XHP> is as before, ¢ is a scalar density function defined

on BJ, that takes values in [—1,1], W : R — R, with derivative
f € C%(R), is a double-well potential having (not necessarily equal)
minima at +1.

@ The function ¢, the order parameter, represents the macroscopic
density profile of a system which has two equilibrium pure phases
described by the profiles p =1and ¢ = -1, and -1 < ¢ <1
represents the ‘interface’. The function Jy is a positive, possibly
anisotropic, interaction potential which vanishes at infinity.
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Non-Archimedean Helmholtz Free-Energy Functionals

Lemma

(i) By identifying ¢ (x) with the vector [¢ (i)]ieG,'(,' i.e. by identifying Xy
with R#CN, we have

i —Nn —Nn
Ew (lo ieey) = 25 E%“”‘)‘pTi,,.EZGﬁ“‘””““”“)
7 W ().

where [aii]i,jeG,T, is the matrix defined in Lemma 5.
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Non-Archimedean Helmholtz Free-Energy Functionals

Lemma

(ii) We assume that ¢ depends oni € Gy, and t > 0. The gradient flow in
the Euclidean space R#CN of the functional Ey : R#% — R is the
evolution in R#Cn given by

%[q} (i, t)]icgp = —VEN ([fP (i, t)]ieG,’(,) (8)

= —p " AN g (i, Blicep — Ap~ M [ (@i, t)lieep -

where AN) js the matrix defined in Lemma 6.

Remark
Notice that in Xy, (8) can be written as

| \

aatq)(x. t) = —Ang (x,t) — Af (¢ (x, 1)) (9)
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Non-Archimedean Helmholtz Free-Energy Functionals

o Consider (G,’\’, HHP) as a finite ultrametric space. Then (8) is
reaction-ultradiffusion equation in ( N HHP) which is the

[2-gradient of an energy functional defined on ( N ||||p)
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Non-Archimedean Helmholtz Free-Energy Functionals

o Consider (G,’\’, HHP) as a finite ultrametric space. Then (8) is
reaction-ultradiffusion equation in ( N ||Hp) which is the

[2-gradient of an energy functional defined on ( N ||||p)

@ We initiate the study of these equations and their ‘limits’ as N tends
to infinity. In the special case f = 0, by a physical argument involving
the parametrization of Parisi matrices by p-adic numbers, Avetisov et
al. showed that the ‘limit’ of an equation of type (8) as N tends to
infinity is

aatgo(x, t) = —Ap (x,t) —Af (¢(x,t)), x€Q), t>0. (10)
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Non-Archimedean Helmholtz Free-Energy Functionals

We show, from a mathematical perspective, that the solutions of
the Cauchy problem attached to equation (9) converge to the
solutions of the Cauchy problem attached to equation (10), see
Theorem 11, in the case that f € C? with three zeros at —1, 0, 1.
Equation (10) is formally the L2-gradient of the following energy
functional:

) = 5 [ [4(lx=y1,) {000 =9 01} 'y

Qp Q5
+/\/ W (¢ (x)) d"x
Q

where ¢ is a scalar density function defined on Q) that takes values in
[—1,1], W is a double-well potential having minima at %1 as before.
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Finite Approximations

We now study finite approximations to the solutions of

W) | Au(x,t) = =Af (u(x, 1)), x€Ql t>0
{ u(BX,O)Zuo o, (11)

where function f(u) satisfies all the conditions given before.
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Finite Approximations

Our goal is to approximate the solution u (x, t) of Cauchy Problem (11) in
X using only that ug (x) € X and —1 < g (x) < 1. It is possible to
approximate u(x, t) without using any a priori information on the initial
solution, however this requires to impose to the nonlinearity f to be
globally Lipschitz, this last condition reduces a lot the potentials W to
which we can apply our results.

The discretization of Cauchy problem (11) in the spaces Xpy takes the
following form:

(B0 =ratam
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Finite Approximations

By taking Pyuo (x) = Licgp uo (i) Q (pN |Ix — i||p> and identifying
uy (t) with the column vector [up (i, t)]ieG,Q,' we can rewrite Cauchy

problem (12) as

3 on . Oy + A% o 5.6y = =17 (o 6Dy, 1
[luw (i, 0)]ieG,'\’, = [uo (i)]ieG,’\} '

cf. Lemma 6.
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Finite Approximations

(i) —A is the generator of a strongly continuous semigroup {e~ "}

t>0
tAH <1 fort>0 and

lim supe
N—oo >0

APy g — e_tA(pHoo =0 for all ¢ € Xe, b € (0,00).

(ii) Take up (x) € Xeo with —1 < ug (x) < 1. Let u be the solution of (11)
and let uy be the solution of (12). Then

lim sup ||Eyun (t) —u(t)], =0
N—oop<t<T
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Thanks for your kind attention !
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