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Formalisms of quantum mechanics:

. . dA L B9A -
» Heisenberg: Iﬁﬁ = ’hﬁ + [A, H],
o L OW(x,t) . - ., 0
h : — = = —jh—.
» Schrodinger: ik T H(k, x)W(x,t), k Ihax

» Feynman: V(x", t") = /IC(X”,t”;x’,t’)\ll(x’,t’)dx’

where
"o g e 2mi v .
’C(X ) ;th) = exp T L(qa q, t)dt qu
t/

YA
x',t
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» Heisenberg: Iﬁﬁ = ’hﬁ + [A, H],
o L OW(x,t) . - ., 0
h : — = = —jh—.
» Schrodinger: ik T H(k, x)W(x,t), k Ihax

» Feynman: V(x", t") = /IC(X”,t”;x’,t’)\ll(x’,t’)dx’

where
. . , , X//,t// 271-,. t// )
K(x ,t;x,t>:/ exp T/ L(@.q, Hat | Da,
X!t i
t//

and L(g,q,t)dt = S[q]

t
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» KC(x”,t"; x', t") is the kernel of the corresponding unitary integral operator:
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K(x",t"; x',t') is also called the probability amplitude.
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» KC(x”,t"; x', t") is the kernel of the corresponding unitary integral operator:
w(t") = Ut {)w(t). (1)
K(x",t"; x',t') is also called the probability amplitude.
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and has the following properties:
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» The Feynman’s path integral method is appropriate for the generalizations
to the p-adic case,

X//’t// t//
’Cp(X”, t//;)(’7 t’) — / Xp <;7 L(q, q, f)dt) Daq,

X/t t
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» KC(x”,t"; x', t") is the kernel of the corresponding unitary integral operator:
w(t") = Ut {)w(t). (1)
K(x",t"; x',t') is also called the probability amplitude.

» The probability amplitude KC(x”,t”; x’, t') plays cental role in the theory
and has the following properties:

/IC(X”, " x, OK(x, t; x', t)dx = K(x", t"; X', 1),

[ RO X Ry i F)a =8¢~ ),
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» The Feynman’s path integral method is appropriate for the generalizations
to the p-adic case,

X”,t” it
Kol tix' st = [ (=3 [ taa.ner) pa,
it h Ju

where xp(a) is p-adic additive character.
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» There is well defined Haar measure and integration, and we have

/Q xolayx) dx = S5(ay) = |aly " 6p(y), a#0,

1 2
| ol + 5x) ok = xo(@) 20l xp (<5 ) - @ 20,
Qp

where 6,(u) is the p-adic Dirac ¢ function.

» For x = '[zxkpk, Xc =0,1,--- ,p—1, Xm # 0, we define A\p(x):

(?m) m=2j+1, p=1(mod4),
,(x?m)7 m=2j+1, p=3(mod4),

i m=2j, p#2,
Ap(X) =
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[0+ (—1)m)
(=)l 4 (—1ym ),

AQ(X) = {

m=2j,
m=2j+1,

sk
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Ao(x) = { Galt + 1y m=2j.

TS (At (1)), m=2j+1,

(%”) is the Legendre symbol,
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1 X g g

21+ (=), m=2j,
Ae(X) =< 2 M M )
2(x) {}é(—1)m+1+m+2[1+(—1)m+w], m=2j+1,

(%”) is the Legendre symbol,

a\ _ [ 1, if a=y*(modp),
p) | -1, if a#y*(modp),
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1 X - g

1+ (=1)m], m = 2j,
Ae(X) =< 2 M M )
) { (= 1ymertme[1 4 (—Aymd], m=2j+1,

(%”) is the Legendre symbol,

a\ _ [ 1, if a=y*(modp),
p) | -1, if a#y*(modp),
» The functions ), satisfies

Ao(@X) = Ao(X), Ap(X)Ao(—X) =1,

A () N(Y) = XX +Y)Xp(x "+ ¥ "), Ap(X)|eo =1, @#0.
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1 X - g

1+ (=1)m], m = 2j,
Ae(X) =< 2 M M )
) { (= 1ymertme[1 4 (—Aymd], m=2j+1,

(%”) is the Legendre symbol,
a\ _ [ 1, if a=y*(modp),
p) | -1, if a#y*(modp),
» The functions ), satisfies
Ao(@X) = Ao(X), Ap(X)Ao(—X) =1,

M) A(¥) = XX+ V)X +y71), Mo(X¥)]ee =1, @a#0.

Definition 1

n
Let AP(X1 ) X2 50 7X”) = H )\p(Xi)
i=1

where subscript p = c0,2,3,- - ,.
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Proposition 1

The functions Np(X1 , X2 ,- -+ , Xn) Satisfy the properties

1
Noo (X1, X2, -+, Xp) = T)\oo(x1 Xo -+ Xn),

=
Ao(X1, X2+, Xn) = Ap(1)" " Ap(X1 X2 - xn)H Xi, X)p

i<j<n

where (X; , X;)p is the Hilbert symbol.
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(a.b) 1, ifax? 4 by? = 22 has a nontrivial solution in Qp.
a
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Proposition 1

The functions Np(X1 , X2 ,- -+ , Xn) Satisfy the properties

1
Noo (X1, X2, -+, Xp) = T)\oo(x1 Xo -+ Xn),

=
Ao(X1, X2+, Xn) = Ap(1)" " Ap(X1 X2 - xn)H Xi, X)p

i<j<n

where (X; , X;)p is the Hilbert symbol.

(a.b) 1, ifax? 4 by? = 22 has a nontrivial solution in Qp.
a
P —1, ifax? + by? = 22 has only trivial solution in Qp.

» The Hilbert symbol satisfies

Ap(@) Ao(b) = (a,b)p Ap(ab) if p# 2,
(av b)P = (b7 a)P7 (a7 bC)P = (a7 b)P (av C)P'
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Proposition 2

Letx = (Xx1,X2, - ,%n), ¥ = (W1, Y2, , ¥n) be column vectors, and let
B = (By) be a nonsingular n x n matrix, where Xx, yx, B € Qp. Then

| xolyT8x0 0" = et 85" [T ().

P k=1

where y" denotes transpose map of y.

Zoran Raki¢ Path integrals on real, p-adic, and adelic spaces



Integration 6
Proposition 2

Letx = (Xx1,X2, - ,%n), ¥ = (W1, Y2, , ¥n) be column vectors, and let
B = (By) be a nonsingular n x n matrix, where Xx, yx, B € Qp. Then

| xolyT8x0 0" = et 85" [T ().

P k=1

where y" denotes transpose map of y.

Proposition 3

Letx = (x1,--- ,Xn), 8= (B1,---,Bn) be two column vectors, and let
A = (aw) be a nonsingular symmetric n x n matrix, where X, B, ax € Qp.
Then

1 1
/Qn xp(x" Ax + B7x) d"x = Ap(an, a2, -, an) [ det(2 Al “xp (’ZBTA—W) ,
ol

where a1, ap, - - - , ap are eigenvalues of the matrix A.

v
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Corollary 4

=7 Aoo(det(an)), p = oo,

Ap(a1 y Q2 e 7Oén) = {
[Ticj<n(i, ) Ao(det(an)), p # 2.
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» An adele x is an infinite sequence

)(:()(OC’)(&...’)(p7...)7
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» An adele x is an infinite sequence
X:(Xoo,X27"' ,Xp7"')7

where X, € R and x, € Qp with the restriction that for all but a finite set S of
primes p one has x, € Zp, where Z, = {a € Qp : |a|p < 1} is the ring of p-ad-
ic integers.
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» An adele x is an infinite sequence
X:(Xoo,X27"' ,Xp7"')7

where X, € R and x, € Qp with the restriction that for all but a finite set S of
primes p one has x, € Zp, where Z, = {a € Qp : |a|p < 1} is the ring of p-ad-
ic integers.

» Properties of the set of all adels A:

@ A is a ring with componentwise addition and multiplication, and could
be regarded as

A=JAES), AGS)=Rx][[Q x]]z.
S

PES PZS

Zoran Raki¢ Path integrals on real, p-adic, and adelic spaces



Adels 8

» An adele x is an infinite sequence
X:(Xoo,X27"' ,Xp7"')7

where X, € R and x, € Qp with the restriction that for all but a finite set S of
primes p one has x, € Zp, where Z, = {a € Qp : |a|p < 1} is the ring of p-ad-
ic integers.

» Properties of the set of all adels A:

@ A is a ring with componentwise addition and multiplication, and could
be regarded as

A=JAES), AGS)=Rx][[Q x]]z.
S

PES PZS

@ A is locally compact topological space,
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@ elementary functions on A are
B(X) = doo(Xe0) [T d0(%0) [T 2(1%10), 2)
pES pZS

where ¢ (X ) is an infinitely differentiable function on R such that
[Xoo |50 Poo(Xoo) — 0 @S |Xoo|oo — 0o forany n e {0,1,2,---}, and
¢p(Xp) are locally constant functions with compact support,

°
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@ elementary functions on A are
B(X) = doo(Xe0) [T d0(%0) [T 2(1%10), 2)
pES pZS

where ¢ (X ) is an infinitely differentiable function on R such that
[Xoo |50 Poo(Xoo) — 0 @S |Xoo|oo — 0o forany n e {0,1,2,---}, and
¢p(xp) are locally constant functions with compact support,

@ all finite linear combinations of elementary functions make the set S(A)
of the Schwartz-Bruhat adelic functions. The Fourier transform of ¢(x)
€ S(A), which maps S(A) onto A, is

) = / ()X (xy)dx,

where dx = dx..dx2dxs - - - is the Haar measure on A.
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@ elementary functions on A are

B(X) = doo(Xe0) [T d0(%0) [T 2(1%10), 2)
psS PES
where ¢ (X ) is an infinitely differentiable function on R such that
[Xoo |50 Poo(Xoo) — 0 @S |Xoo|oo — 0o forany n e {0,1,2,---}, and
¢p(xp) are locally constant functions with compact support,
@ all finite linear combinations of elementary functions make the set S(A)
of the Schwartz-Bruhat adelic functions. The Fourier transform of ¢(x)
€ S(A), which maps S(A) onto A, is

) = / ()X (xy)dx,

where dx = dx..dx2dxs - - - is the Haar measure on A.
@ there are also two kinds of analysis over A : one is related to mapping
A — A and the other one to A — C,
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Functional analysis on A

@ in complex-valued adelic analysis the important role plays: additive and
multiplicative characters

X(X) = Xoo(Xo0) H XP(XP)7

p

XI° = %ol [ [ %615, s €C,
p
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Functional analysis on A

@ in complex-valued adelic analysis the important role plays: additive and
multiplicative characters

X(X) = Xoo(Xo0) H XP(XP)7

p

XI° = %ol [ [ %615, s €C,
p

@ the set L»(A) is a Hilbert space, with scalar product
(W, W5) = /\Tl1(x)\llg(x)dx
JA

W] = (¥, ¥)? < oo,

where dx is the Haar measure on A.
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Functional analysis on A

@ A basis of L»(A) may be given by the set of orthonormal eigefunctions
in spectral problem of the evolution operator U(t), where t € A. Such
eigenfunctions have the form

Us,a(X, 1) = V5 (Xoo, to) [ [ &) (%0, 1) [T 2(1%610),

pES PZS

where wﬁ,‘”) and 1/;552 are eigenfunctions in ordinary and p-adic cases,
respectively.
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» General quadratic Lagrangian on Qg has the form

. 1.0 . 1 .
L(g.q.0)= 54 Aq+d Bq+ 59 Cq+D g+E ge+e (3)

Zoran Raki¢ Path integrals on real, p-adic, and adelic spaces



Quadratic Lagrangians

» General quadratic Lagrangian on Qg has the form

. 1.0 . 1 .
L(g.q.0)= 54 Aq+d Bq+ 59 Cq+D g+E ge+e (3)

» Euler-Lagrange equations:

AG+(A+B—-B")g+ (B-C)g=E—-D,
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Quadratic Lagrangians

» General quadratic Lagrangian on Qg has the form

. 1.0 . 1 .
L(g.q.0)= 54 Aq+d Bq+ 59 Cq+D g+E ge+e (3)

» Euler-Lagrange equations:

AG+(A+B—-B")g+ (B-C)g=E—-D,

» The solution of the above system has the form:

q=x(t) = F(t)C +&(1),

where F(t) = [fun(t)] € Mn2n is a solutions of the corresponding system
of homogeneous differential equations, C = [Ci] € Man,1 is the vector of
constants, and &(t) = [x(f)] € M1 is a particular solution of the system.
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Quadratic Lagrangians

» For the boundary conditions x; = xx(t') and x;’ = x«(t""), we denote by
) = (i), - fi(t)s Fi) o i ()]

FeF(.t) = { ’;((ft)) } _ { it } ST, () B (s ()]

where [fi(t"), .., fa(t"), fi(t), .., f-(t)] is @ matrix with rows £ (t”), .., f»(t')
A= A(t//vl‘/) :detf7 Xé-: [X‘IN 761’7"'3)(//7/ 751/7/7)(1/ 761/7"'7)(//775;7]7-
A= Nt 0y =det[f' (t7, 1), ..., F 1@ ), xe, FH (7, E) . P E)].
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Quadratic Lagrangians

» For the boundary conditions x; = xx(t') and x;’ = x«(t""), we denote by
) =i, ..., f(t), fu(t) .. £ (E)]

F=F(' )= { ’;((tt)) } = { e } S (), () A (), ()]
where [fi(t"), .., fa(t"), fi(t), .., f-(t)] is @ matrix with rows £ (t”), .., f»(t')
A=A t)=detF, xe=[x'—¢& . ..,x}\—¢elxi—¢&, ... xp—&l”
A= 0 ) =det[f (7, 1), .. F (), xe FNE E) L P )]

Proposition 5

Imposing the boundary conditions x;, = x(t') and x;/ = x«(t'"), vector of con-
stants of integration C become:

1

_ "oy
c=ct',) = xmp

(A (17, F), Dot 1), ..., Dan(t”, E)]
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Quadratic Lagrangians

The solution of the above system take the form

2n
’
() = Xy > A (D) + &), k=1,2,...,n.
’ i=1

where A(t",t') = det F, and Ai(t”, t') has ordinary meaning.
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Quadratic Lagrangians

The solution of the above system take the form

X (t) = t,, ) ZA ', ) a(t) + &(1),  k=1,2,...

where A(t",t') = det F, and Ai(t”, t') has ordinary meaning.

Theorem 8
Let{fyj,j=1,2 2 n} be any linearly independent solutions of the resol-

vent equation for xi(t), then solutions fim(t) for xi(t), k # 1, are determined
by the system and the following equality holds

o Fo | = son

where D is an non-zero constant, which could be chosen to be equal to 1.
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Quadratic Lagrangians and their actions

Theorem 9
The general form of the action for classical trajectory x(t) of a quadratic

Lagrangian, for a particle being in point x’ at the time t' and in position x"

att”,is
- 1 - - 1 — _ —
S(X”, l’”;X/, t/) — E X//TAX// + X//TBX/ + E X/TCX + DTX// + ETX/ + ¢,

where /2\ = [/z\k/]7 B = [Bk/], C = [Ck/], D = [Dk]7 and E = [Ek]

- - 825, - - 825,
A — A t”, t/ — , B — B tl/7 t/ — ,
K = Ak ) XN ki = Bri( ) ax7ox]

- - 82 éo = = 8‘_90
C — C t// t/ — D — D t” tl =
ki k/( ) ) axl/(axl, ) k k( ) ) ax'’

E=E(t"t)= gf?, E=g(t",t') = .

and subscript o in the classical action means that after performing derivatives
ofthe S(x”,t"; x', t') one has to replace x" and x’ by x"" = x' = 0.
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Quadratic Lagrangians

Theorem 10
The related coefficients from previous theorem are:

A y 1 0 . g +

Akl = Akl(tu7 tl) = ﬁ ; (Oz;t/Ak(ftN) T OL;(/IAI(ftN)) ﬁ 2 IB 5
- 1 @ : .

By = Bu(t",t") = ETN ; (a;(lfA"-H(ftH) _ O‘;tAk(ft/))

_ _ 1 Z . . ‘LBl
Cu=0ult".1) = 57 2 (abbosk() + et — 2t P

where A(t") = ("), A(t') = (a/), B(t") = (8"), B(t') = (B), & = A(t", 1)
and

Af(ﬁ/)(t”at) (f)_det[ﬁ/7'7 I//17,.;/7fl+17' 7fr;/7f17' 7f ]71,/_17'7 ’

Af+n()?/,)(t//7 t’) — AH»H(’;”) - det[ f1”7 LX) flya f1,7 009 I 1 f” I',+17“7 fr;]7 ,7j = 17‘-7 n.
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Path Integrals on real and p-adic spaces

» The corresponding Taylor expansion of the action functional S[q] around
classical path x(t) is

S[dl su+ﬂ:qA+wm+%ﬁ%m+“.

aﬂ+1/w<'69+ EaYuqqnm
2/, Ykaqk ykaqk 4, .
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» The corresponding Taylor expansion of the action functional S[q] around
classical path x(t) is

1
Sla] = S[x+y] = SX] +6S[X] + 5; 62S[x] + ...
177 @ o\, .
= S[x] + = — — ) L(qg,q,t)dt
W+g [ (o +¥ope ) Laa
» From 6S[x] =0, forany p = 00,2,3,- - -, we can write

1 11 / / 1
Kp(X", t ;x,t):/xp (—ES[Xer])Dy.
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» The corresponding Taylor expansion of the action functional S[q] around
classical path x(t) is

Slq] = Six+y]= S[x]+6S[x]+ 6 S[x] + ..
177 @ o \?, .

= S[x] + = — — ) L(qg,q,t)dt

W+ (ykaqkmaqk) @.9.9
» From 6S[x] =0, forany p = 00,2,3,- - -, we can write

11 11 / / 1
Ko(X", 1" x ,t):/xp (‘E S[x+y]> Dy
» Then the following formula holds

]Cp(X”, ¢ X', t/) =xp <71E :9()(//7 X, f’))

,yII*)O t//
X
/y’—>0,t’ P < 2h/

wherewe used y” =y’ =0, S[x] = S(x",t";x",t).
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Theorem 11
(i1) Ko(x",t"; X', t'") has the form

1 _
Kol ) = Np(t”, )~ B, 1.1

where Ny(t”,t') does not depend on end points x" and x’.

(i2)
i 1
|Np(t”7t/)|oo = l det;éo(xuvtﬁ;xlvt/) 2 = |det (1B(t,,7 t/)) 2
hn ax;! ox| » h B
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Theorem 11
(i1) Ko(x",t"; X', t'") has the form

1 _
Kol ) = Np(t”, )~ B, 1.1

where Ny(t”,t') does not depend on end points x" and x’.

(i2)
1
INp (", )] oo = ldetizé‘ (x", t": X t) L det 1B(t” t') :
PR T lee T e T axgraxy OV 0 - h o
P
» We have now

— 1
2 TN 2
No(t", ) = ’det (%%) A", 1), (@)
o

where |Ap(t’, )| = 1 and Ap(t”, t') remains to be determined explicitly.
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» We use

Kp(y”7 t”; Y, t)Kp(% t; ylv t,) dny = Kp(y”a t//; y,v t,)
%

to obtain
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» We use

/ Kp(y,,v t”; y7 t)Kp(% t; ylv t,) dny = Kp(y”a t//; y,v t,)
%

to obtain

Theorem 12

The following relation holds

_1
Np(t",1') = Np(t", £) Np(t, ') Ap(a1, 0, . . ., an) | det(2H)| 2,

. ) Ayl At
where a, az, - - - ,an are eigenvalues of matrix H = SOFALL)
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Path Integrals on real and p-adic spaces

» If we put

1 AMGE) 1 A )X D)

U= Y=3"Awry 2 awnn

H=-2hH=A(tt)+C{t" )=At) x U= (w;), wj=do  U+d U,

where o is i—th column of matrix A, and U, is j—th row of matrix U. Then we
obtain,
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» If we put

= (U 1 AM—E) 1 Asu(B)( 1)
oo U=z Awr) 2 A@nD

H=-2hH=A(tt)+C{t" )=At) x U= (w;), wj=do  U+d U,

where o is i—th column of matrix A, and U, is j—th row of matrix U. Then we
obtain,

Theorem 13

The following relations holds,

(i1) detH =detAdet2U,

(i2) det2U = (_1)”M det { F(t) } 7

At 1) A(t, ) F(t)
. oy A _ 1 ALY
(i8) detH = (-1) A OAET) and det2H = A D ALT)

v
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Path Integrals on real and p-adic spaces

» Now from (4) and Theorem 13 (i3), we see that relation from Theorem will
be satisfied for

_ -1 8 -
No(t”,t') = Xp(1)' "Ap(det(ﬁmso(x”,t”;x’,ﬂ)))
1
— 2
So(x” " X' 1)
P

1@
h ox" ox’

|
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» Now from (4) and Theorem 13 (i3), we see that relation from Theorem will
be satisfied for
1 82

_ 1—
N ) = (1) ap (det G

O(X//1 t//; X/, t/)))

1

— 2
Bo(x, %', 1)

'1 82
p

X h Ox"ox’

and, finally we have the following generalization of known cases

Theorem 14

The p-adic kernel Kp(x", t"; x', t') of the unitary evolution operator and eva-
luated as the Feynman path integral, for quadratic Lagrangians has the

form
K // t" t/ _ Ao (1 1— n/\ det =i 82 11 t” t/
P X1 = Mp(1)1 T (det(Gp 5 Skt X 1)
1
1 o 7 / —1 1 sl
X Eax"ax’SO(X t; x', t)pxp 5 —S(x" 1" X 1)

v
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Path Integrals on adelic spaces

» Adelic path integral can be introduced as a generalization of ordinary and
p-adic path integrals. As adelic analogue it is related to eigenfunctions in ade-
lic quantum mechanics in the form

wgﬂ(){//) t”) _ / K:A(X”, t//; X,, f,)ws,a(xl, t/)dX/,
A

where s (X, t) has the form and adelic propagator s (x”, t”; x', t')
does not depend on S.
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Path Integrals on adelic spaces

» Adelic path integral can be introduced as a generalization of ordinary and
p-adic path integrals. As adelic analogue it is related to eigenfunctions in ade-
lic quantum mechanics in the form

wgﬂ)(){//) t”) :/I(:A()(//7t//;X/7lgj)’lbsﬁa()(/’t/)d)(/7
A

where s (X, t) has the form and adelic propagator s (x”, t”; x', t')
does not depend on S.

» Above equation must be valid for any set S of primes p, and adelic eigen-
state is an infinite product of real and p-adic eigenfunctions, it is natural to
consider adelic propagator in the following form:

Ka(x" 1" x' 1) = Koo (X0, tors X, 15) HICp(x,;’, = 20 () (5)
p

where Koo (X0, 10 X5o, the) and Kp(Xg , ty'; Xp, ty) are propagators in ordinary

and p-adic quantum mechanics, respectively.
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Path Integrals on adelic spaces

» From (5) we see that one can introduce adelic path integral as an infinite
product of ordinary and p-adic path integrals for all primes p, and (5) one
can rewrite as

’CA(X//7t//;X/7 t/):/

s i

X”,[”

v (~5Si1a1) Duay ©

where xa(x) is adelic additive character, Sx[g] and D4 q are adelic action,
and the Haar measure, respectively.
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Path Integrals on adelic spaces

» From (5) we see that one can introduce adelic path integral as an infinite
product of ordinary and p-adic path integrals for all primes p, and (5) one
can rewrite as

X”,[”

’CA(X//7t//;X/7 t/):/
s i

where xa(x) is adelic additive character, Sx[g] and D4 q are adelic action,
and the Haar measure, respectively.
» For practical considerations, we define adelic path integral in the form

t//
Ka(x" t"; x', 1) H/ ( L(Gp; gp, tp)dtp> Dqp, 7)
p

v (~5Si1a1) Duay ©

where index p = 00,2,3,--- ,--- denotes real and all p-adic cases.
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Path Integrals on adelic spaces

» Adelic Lagrangian is the infinite sequence

L-A((-L q, t) = (L(qOO7 Qo tOO)7 L(q27 Q2, t2)7 L(q37 Qs, t3)7 Tty L(Qp, Qp, tp)7 o )7 (8)

where |L(gp, gp, i)|p < 1 for all primes p but a finite set S of them.
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Path Integrals on adelic spaces

» Adelic Lagrangian is the infinite sequence
L-A((-L q, t) = (L(qOO7 Qo tOO)7 L(q27 Q2, t2)7 L(q37 Qs, t3)7 Tty L(Qp, Qp, tp)7 o )7 (8)

where |L(gp, gp, i)|p < 1 for all primes p but a finite set S of them.
» Consequently, an adelic quadratic Lagrangian looks like (8), where each
element L(Qp, gp, f») is quadratic Lagrangian as in
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Path Integrals on adelic spaces

» Adelic Lagrangian is the infinite sequence

L-A((-L q, t) = (L(qOO7 Qo tOO)7 L(q27 Q2, t2)7 L(q37 Qs, t3)7 Tty L(Qp, Qp, tp)7 o )7 (8)

where |L(gp, gp, i)|p < 1 for all primes p but a finite set S of them.

» Consequently, an adelic quadratic Lagrangian looks like (8), where each

element L(Qp, gp, f») is quadratic Lagrangian as in

» Taking into account results obtained in the previous section, we can write
adelic path integral for quadratic Lagrangians (and consequently, quadratic
classical actions) as

2 -
KX 8 x0) =T A1) " [det (;hax/,aax,so(x;’, ty; Xp, t,’,))] 9)
p Pk )
loet(1—_ & 3 (), x), 1) : s eix by
hax(llg)kax(lp 0\~p > tp » Ap> p , Xp h pstprAps tp .
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Path Integrals on adelic spaces

» Note that vacuum state Q(|xp|p) transforms as

Alxplp) = /Q Ko(Xp's to': Xp, o) | Xpl) dxp = /Z Kp(X5's 1 Xps o) g (10)
P P
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Path Integrals on adelic spaces

» Note that vacuum state Q(|xp|p) transforms as

Alxplp) = /Q Ko(Xp's to': Xp, o) | Xpl) dxp = /Z Kp(X5's 1 Xps o) g (10)
P P

» As a consequence of (10) one has

Ko(Xp s s Xp, 1) Kp (X, to: Xps o) AXp = Kp(X5', 155 Xp, 1), (11)
Zp

which may be regarded as an additional condition on p-adic path integrals in
adelic quantum mechanics for all but a finite number of primes p.
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» Note that vacuum state Q(|xp|p) transforms as

Alxplp) = /Q Ko(Xp's to': Xp, o) | Xpl) dxp = /Z Kp(X5's 1 Xps o) g (10)
P P

» As a consequence of (10) one has
Ko(Xp s s Xp, 1) Kp (X, to: Xps o) AXp = Kp(X5', 155 Xp, 1), (11)
Zp

which may be regarded as an additional condition on p-adic path integrals in
adelic quantum mechanics for all but a finite number of primes p.

» Conditions (10) and (11) impose a restriction on a dynamical system to be
adelic.
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Concluding remarks

» In this work we derived general expressions for propagators

K(x",t"; x',t') in ordinary, p-adic and adelic quantum mechanics for
Lagrangians L(g, g, t) which are polynomials at most the second degree
in dynamical variables gx and qgx, where k =1,2,-.- n.
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Concluding remarks

» In this work we derived general expressions for propagators

K(x",t"; x',t') in ordinary, p-adic and adelic quantum mechanics for
Lagrangians L(g, g, t) which are polynomials at most the second degree
in dynamical variables gx and qgx, where k =1,2,-.- n.

» The formalism of ordinary and p-adic path integrals can be regarded as the

same at different levels of evaluation, and the obtained results have the same
form.
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Concluding remarks

Concluding remarks

» In this work we derived general expressions for propagators

K(x",t"; x',t') in ordinary, p-adic and adelic quantum mechanics for
Lagrangians L(g, g, t) which are polynomials at most the second degree
in dynamical variables gx and qgx, where k =1,2,-.- n.

» The formalism of ordinary and p-adic path integrals can be regarded as the

same at different levels of evaluation, and the obtained results have the same
form.

» In fact, this property of number field invariance has to be natural for general
mathematical methods in physics and fundamental physical laws (see
Volovich, Number theory as the ultimate physical theory).
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