One-variable and Multi-variable Integral Calculus over the Levi-Civita Field and Applications

Khodr Shamseddine

University of Manitoba

Canada

Contents

- (1) Preliminaries
 - (a) The Levi-Civita Fields \mathcal{R} and \mathcal{C}
 - (b) Power Series and Analytic Functions
- (2) Measure Theory and Integration on $\mathcal{R}, \mathcal{R}^2$, and \mathcal{R}^3
- (3) Delta Functions and Applications

The Levi-Civita Fields \mathcal{R} and \mathcal{C}

- Let $\mathcal{R} = \{f : \mathbb{Q} \to \mathbb{R} | \mathbf{supp}(f) \text{ is left-finite} \}.$
- For $x \in \mathcal{R}$, define

$$\lambda(x) = \begin{cases} \min(\operatorname{supp}(x)) & \text{if } x \neq 0 \\ \infty & \text{if } x = 0 \end{cases}$$

٠

• Arithmetic on \mathcal{R} : Let $x, y \in \mathcal{R}$. We define x + y and $x \cdot y$ as follows. For $q \in \mathbb{Q}$, let

$$(x+y)[q] = x[q] + y[q]$$

(x \cdot y)[q] = $\sum_{q_1+q_2=q} x[q_1] \cdot y[q_2].$

Then $x + y \in \mathcal{R}$ and $x \cdot y \in \mathcal{R}$.

Result: $(\mathcal{R}, +, \cdot)$ is a field.

<u>Definition</u>: $C := \mathcal{R} + i\mathcal{R}$. Then $(C, +, \cdot)$ is also a field.

Order in \mathcal{R}

• Define the relation \leq on $\mathcal{R} \times \mathcal{R}$ as follows: $x \leq y$ if x = y or $(x \neq y \text{ and } (x - y)[\lambda(x - y)] < 0)$.

- $\bullet \ (\mathcal{R},+,\cdot,\leq)$ is an ordered field.
- \mathcal{R} is real closed.

\Downarrow

 $\ensuremath{\mathcal{C}}$ is algebraically closed.

• The map $E : \mathbb{R} \to \mathcal{R}$, given by $E(r)[q] = \begin{cases} r & \text{if } q = 0 \\ 0 & \text{else} \end{cases}$,

is an order preserving embedding.

• There are infinitely small and infinitely large elements in \mathcal{R} : The number d, given by

$$d[q] = \begin{cases} 1 & \text{if } q = 1 \\ 0 & \text{else} \end{cases},$$

is infinitely small; while d^{-1} is infinitely large.

For $x \in \mathcal{R}$, define

$$|x| = \begin{cases} x & \text{if } x \ge 0 \\ -x & \text{if } x < 0 \end{cases};$$
$$|x|_u = \begin{cases} e^{-\lambda(x)} & \text{if } x \ne 0 \\ 0 & \text{if } x = 0 \end{cases}$$

For
$$z = x + iy \in \mathcal{C}$$
, define

$$\begin{aligned} |z| &= \sqrt{|x|^2 + |y|^2}; \\ |z|_u &= \begin{cases} e^{-\lambda(z)} & \text{if } z \neq 0 \\ 0 & \text{if } z = 0 \\ &= \max\{|x|_u, |y|_u\} \text{ since } \lambda(z) = \min\{\lambda(x), \lambda(y)\}. \end{aligned}$$

Note that $|\cdot|$ and $|\cdot|_u$ induce the same topology τ_v on \mathcal{R} (or \mathcal{C}). Moreover, \mathcal{C} is topologically isomorphic to \mathcal{R}^2 provided with the product topology induced by $|\cdot|$ in \mathcal{R} .

Topological Structure of \mathcal{R}

Properties of the Topology τ_v (induced by $|\cdot|$ or $|\cdot|_u$):

- (\mathcal{R}, τ_v) is a disconnected topological space.
- (\mathcal{R}, τ_v) is Hausdorff.
- There are no countable bases.
- The topology induced to \mathbb{R} is the discrete topology.
- (\mathcal{R}, τ_v) is not locally compact.
- τ_v is zero-dimensional (i.e. it has a base consisting of clopen sets).
- τ_v is not a vector topology.
- For all $x \in \mathcal{R}$ (or \mathcal{C}): $x = \sum_{n=1}^{\infty} x[q_n] \cdot d^{q_n}$.

Weak Topology τ_w : Induced by the family of semi-norms $(\|\cdot\|_r)_{r\in\mathbb{Q}}$, where $\|\cdot\|_r : \mathcal{R} \to \mathbb{R}$ is given by

$$|x||_r = \sup\{|x[q]| : q \le r\}.$$

It is a metric topology, induced by the metric

$$\Delta(x,y) = \sum_{k \in \mathbb{N}} 2^{-k} \frac{\|x-y\|_k}{1+\|x-y\|_k}.$$

Properties of the Weak Topology:

- (\mathcal{R}, τ_w) is Hausdorff with countable bases.
- τ_w is a vector topology.
- The topology induced on \mathbb{R} is the usual order topology on \mathbb{R} .
- (\mathcal{R}, τ_w) is not locally bounded (hence not locally compact).

Further Useful Notations

For $x, y \in \mathcal{R}$, we say

•
$$x \sim y$$
 if $\lambda(x) = \lambda(y)$.

- $x \approx y$ if $x \sim y$ and $x[\lambda(x)] = y[\lambda(y)]$.
- $x =_r y$ if $x[q] = y[q] \quad \forall q \le r$.
- For nonnegative x, y in \mathcal{R} , say $x \ll y$ if x < y and $x \not\sim y$; say $x \gg y$ if $y \ll x$.

Examples: $100 \sim 1$; $3 + d \approx 3$; $d^q \ll 1$ if q > 0.

Uniqueness of ${\mathcal R}$ and ${\mathcal C}$

- \mathcal{R} is the smallest Cauchy-complete and real closed non-Archimedean field extension of \mathbb{R} .
 - It is small enough so that the \mathcal{R} -numbers can be implemented on a computer, thus allowing for computational applications.
- \mathcal{C} is the smallest Cauchy-complete and algebraically closed non-Archimedean field extension of \mathbb{C} .

Power Series and Analytic Functions

[Shamseddine-2011]. Absolute and relative extrema, the mean value theorem and the inverse function theorem for analytic functions on a Levi-Civita field, Contemporary Mathematics, American Mathematical Society, Volume 551 (Advances in Non-Archimedean Analysis), pp. 257-268.

[Shamseddine-Berz-2007]. Intermediate value theorem for analytic functions on a Levi-Civita field, Bulletin of the Belgian Mathematical Society-Simon Stevin, Volume 14, pp. 1001-1015.

[Shamseddine-Berz-2005]. Analytical properties of power series on Levi-Civita fields, Annales Mathmatiques Blaise Pascal, Volume $12 \neq 2$, pp. 309-329.

[Shamseddine-Berz-2001]. Convergence on the Levi-Civita field and study of power series, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, 2001, ISBN 0-8247-0611-0, pp. 283-299. **Theorem (Strong Convergence Criterion):** Let (a_n) be a sequence in \mathcal{R} , and let

$$\lambda_0 = \limsup_{n \to \infty} \left(\frac{-\lambda(a_n)}{n} \right)$$
 in \mathbb{R} .

Let $x_0 \in \mathcal{R}$ be fixed and let $x \in \mathcal{R}$ be given. Then $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ converges strongly if $\lambda(x-x_0) > \lambda_0$ and is divergent if $\lambda(x-x_0) < \lambda_0$ or if $\lambda(x-x_0) = \lambda_0$ and $-\lambda(a_n)/n > \lambda_0$ for infinitely many n. Theorem (Weak Convergence Criterion): Let (a_n) , λ_0 and x_0 be as above, and let $x \in \mathcal{R}$ be such that $\lambda(x-x_0) = \lambda_0$. For each $n \ge 0$, let $b_n = a_n d^{n\lambda_0}$. Suppose that the sequence (b_n) is regular and write $\bigcup_{n=0}^{\infty} \operatorname{supp}(b_n) = \{q_1, q_2, \ldots\}$; with $q_{j_1} < q_{j_2}$ if $j_1 < j_2$. For each n, write $b_n = \sum_{j=1}^{\infty} b_{n_j} d^{q_j}$; let

$$r = \frac{1}{\sup\left\{\limsup_{n \to \infty} |b_{n_j}|^{1/n} : j \ge 1\right\}}.$$

Then $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ converges absolutely weakly in \mathcal{R} if $|(x-x_0)[\lambda_0]| < r$ and is weakly divergent in \mathcal{R} if $|(x-x_0)[\lambda_0]| > r$.

Corollary (Power Series with Real Coefficients): Let $\sum_{n=0}^{\infty} a_n X^n$, $a_n \in \mathbb{R}$, be a power series with classical radius of convergence equal to η . Let $x \in \mathcal{R}$, and let $A_n(x) = \sum_{i=0}^n a_i x^i \in \mathcal{R}$. Then, for $|x| < \eta$ and $|x| \not\approx \eta$, the sequence $(A_n(x))$ converges absolutely weakly. We define the limit to be the continuation of the power series on \mathcal{R} . **Transcendental Functions:** For any $x \in \mathcal{R}$, at most finite in absolute value, define

$$\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!};$$

$$\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!};$$

$$\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!};$$

$$\cosh(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!};$$

$$\sinh(x) = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}.$$

Definition: Let a < b in \mathcal{R} be given and let $f : [a, b] \to \mathcal{R}$. Then f is analytic on [a, b] means for all $x \in [a, b]$ there exists a positive $\delta \sim b - a$ in \mathcal{R} , and there exists a sequence $(a_n(x))$ in \mathcal{R} such that

$$f(y) = \sum_{n=0}^{\infty} a_n (x) (y - x)^n$$
$$\delta = \sum_{n=0}^{\infty} a_n (x) (y - x)^n$$

for all $y \in (x - \delta, x + \delta) \cap [a, b]$.

Lemma: Let $f, g : [a, b] \to \mathcal{R}$ be analytic on [a, b]and let $\alpha \in \mathcal{R}$ be given. Then $f + \alpha g$ and $f \cdot g$ are analytic on [a, b].

Lemma: Let $f : [a, b] \to \mathcal{R}$ be analytic on [a, b], let $g : [c, e] \to \mathcal{R}$ be analytic on [c, e], and let $f([a, b]) \subset [c, e]$. Then $g \circ f$ is analytic on [a, b]. Main Results on Analytic Functions: Let a < bin \mathcal{R} be given, and let $f : [a, b] \to \mathcal{R}$ be analytic on [a, b]. Then

- f is bounded on [a, b]. In particular, $i(f) := \min\{\lambda(f(x)) : x \in [a, b]\}$ exists and is called the index of f on [a, b].
- Intermediate Value Theorem: f assumes on [a, b] every intermediate value between f(a) and f(b).
- Differentiability of the Analytic Functions: f is infinitely often differentiable on [a, b], and for all $m \in \mathbb{N}$, we have that $f^{(m)}$ is analytic on [a, b]. Moreover, if f is given around $x_0 \in [a, b]$ by $f(x) = \sum_{n=0}^{\infty} a_n (x_0) (x - x_0)^n$, then

$$f^{(m)}(x) = \sum_{n=m}^{\infty} n \cdots (n-m+1) a_n (x_0) (x-x_0)^{n-m}$$

In particular, we have that

$$a_m(x_0) = \frac{f^{(m)}(x_0)}{m!}$$
 for all $m = 0, 1, 2, \dots$

- Extreme Value Theorem: f assumes a maximum and a minimum on [a, b].
- The Mean Value Theorem: There exists $c \in (a, b)$ such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}.$$

- Corollary: The following are true.
 - (i) If $f'(x) \neq 0$ for all $x \in (a, b)$ then either
 - (a) f'(x) > 0 for all $x \in (a,b)$ and f is strictly increasing on [a,b], or
 - (b) f'(x) < 0 for all $x \in (a, b)$ and f is strictly decreasing on [a, b].
- (ii) If f'(x) = 0 for all $x \in (a, b)$ then f is constant on [a, b].

Measure Theory and Integration

[Shamseddine-Flynn-2016]. Measure theory and Lebesgue-like integration in two and three dimensions over the Levi-Civita field, Contemporary Mathematics, American Mathematical Society, Volume 665 (Advances in non-Archimedean Analysis), pp. 289-325.

[Shamseddine-2013]. New results on integration on the Levi-Civita field, Indagationes Mathematicae, Volume $24 \neq 1$, pp. 199-211.

[Shamseddine-Berz-2003]. Measure theory and integration on the Levi-Civita field, Contemporary Mathematics, American Mathematical Society, Volume 319 (Ultrametric Functional Analysis), pp. 369-387. Measure Theory and Integration on $\ensuremath{\mathcal{R}}$

Definition (Measurable Set): We say that $A \subset \mathcal{R}$ is measurable if $\forall \epsilon > 0$ in \mathcal{R} , \exists sequences of mutually disjoint intervals (I_n) and (J_n) such that

$$\bigcup_{n=1}^{\infty} I_n \subset A \subset \bigcup_{n=1}^{\infty} J_n,$$

$$\sum_{n=1}^{\infty} l(I_n) \text{ and } \sum_{n=1}^{\infty} l(J_n) \text{ converge in } \mathcal{R}, \text{ and}$$

$$\sum_{n=1}^{\infty} l(J_n) - \sum_{n=1}^{\infty} l(I_n) \leq \epsilon.$$

Definition (The Measure of a Measurable Set): Suppose $A \subset \mathcal{R}$ is a measurable set. Then for every $k \in \mathbb{N}$ there are two sequences of mutually disjoint intervals $(I_n^k)_{n=1}^{\infty}$ and $(J_n^k)_{n=1}^{\infty}$ such that $\bigcup_{n=1}^{\infty} I_n^k \subset A \subset \bigcup_{n=1}^{\infty} J_n^k$, $\sum_{n=1}^{\infty} l(I_n^k)$ and $\sum_{n=1}^{\infty} l(J_n^k)$ both converge, and $\sum_{n=1}^{\infty} l(J_n^k) - \sum_{n=1}^{\infty} l(I_n^k) < d^k$.

•
$$\left(\sum_{n=1}^{\infty} l\left(I_{n}^{k}\right)\right)_{k=1}^{\infty}$$
 and $\left(\sum_{n=1}^{\infty} l\left(J_{n}^{k}\right)\right)_{k=1}^{\infty}$ are Cauchy
sequences in \mathcal{R} . Therefore, $\lim_{k\to\infty}\sum_{n=1}^{\infty} l\left(I_{n}^{k}\right)$ and
 $\lim_{k\to\infty}\sum_{n=1}^{\infty} l\left(J_{n}^{k}\right)$ both exist in \mathcal{R} .

•
$$\lim_{k \to \infty} \left(\sum_{n=1}^{\infty} l\left(J_n^k\right) - \sum_{n=1}^{\infty} l\left(I_n^k\right) \right) = 0.$$

• We define $m(A) = \lim_{k \to \infty} \sum_{n=1}^{\infty} l(I_n^k) = \lim_{k \to \infty} \sum_{n=1}^{\infty} l(J_n^k)$ and we call this the measure of A.

Consequences:

- If $A \subset \mathcal{R}$ is measurable then $m(A) = \inf \left\{ \sum_{i=1}^{\infty} l(J_n) : J_n$'s are (mutually disjoint) intervals, $A \subset \bigcup_{i=1}^{\infty} J_n$, and $\sum_{n=1}^{\infty} l(J_n) \text{ converges}$ = $\sup \left\{ \sum_{n=1}^{\infty} l(I_n) : I_n$'s are mutually disjoint intervals, $\bigcup_{n=1}^{\infty} I_n \subset A$, and $\sum_{i=1}^{\infty} l(I_n) \text{ converges} \left\}.$ • If $A \subset \mathcal{R}$ is measurable then $m(A) \ge 0$.
 - I(a, b) is measurable and m(I(a, b)) = b a.
 - If $B \subset A \subset \mathcal{R}$ and if A and B are measurable, then $m(B) \leq m(A)$.
 - If $A \subset \mathcal{R}$ is countable, then A is measurable and m(A) = 0.

Proposition: For each $k \in \mathbb{N}$, let $A_k \subset \mathcal{R}$ be measurable such that $(m(A_k))$ forms a null sequence. Then $\bigcup_{k=1}^{\infty} A_k$ is measurable and

$$m\left(\bigcup_{k=1}^{\infty}A_k\right)\leq\sum_{k=1}^{\infty}m\left(A_k\right).$$

If the sets $(A_k)_{k=1}^{\infty}$ are mutually disjoint, then

$$m\left(\bigcup_{k=1}^{\infty}A_k\right) = \sum_{k=1}^{\infty}m\left(A_k\right).$$

Proposition: Let $K \in \mathbb{N}$ be given and for each $k \in \{1, \ldots, K\}$, let A_k be measurable. Then $\bigcap_{k=1}^{K} A_k$ is measurable.

Proposition: Let $A, B \subset \mathcal{R}$ be measurable. Then $m(A \cup B) = m(A) + m(B) - m(A \cap B).$

Measurable Functions

Definition: Let $A \subset \mathcal{R}$ be measurable and let $f: A \to \mathcal{R}$ be bounded on A. Then we say that f is measurable on A if $\forall \epsilon > 0$, \exists a sequence of mutually disjoint intervals (I_n) such that $I_n \subset A$ and f is analytic on I_n for all n; $\sum_{n=1}^{\infty} l(I_n)$ converges; and $m(A) - \sum_{n=1}^{\infty} l(I_n) \leq \epsilon$.

Proposition: Let $f : I(a,b) \to \mathcal{R}$ be measurable. Then f is continuous almost everywhere on I(a,b). Moreover, if f is differentiable on I(a,b) and if f' = 0 everywhere, then f is constant on I(a,b).

Proposition: Let $A, B \subset \mathcal{R}$ be measurable, let f be a measurable function on A and B. Then f is measurable on $A \cup B$ and $A \cap B$.

Proposition: Let $A \subset \mathcal{R}$ be measurable, let $f, g : A \to \mathcal{R}$ be measurable and let $\alpha \in \mathcal{R}$ be given. Then $f + \alpha g$ and $f \cdot g$ are measurable on A.

Integration

Definition (Integral of an Analytic Function): Let $f: I(a, b) \to \mathcal{R}$ be analytic on I(a, b), and let F be an analytic anti-derivative of f on I(a, b). Then the integral of f over I(a, b) is the \mathcal{R} number

$$\int_{I(a,b)} f = \lim_{x \to b} F(x) - \lim_{x \to a} F(x).$$

 \Downarrow

Definition (Integral of a Measurable Function): Let $A \subset \mathcal{R}$ be measurable and let $f : A \to \mathcal{R}$ be measurable. Then

$$\int_{A} f = \lim_{\substack{\sum_{n=1}^{\infty} l(I_{n}) \to m(A) \\ \cup_{n=1}^{\infty} I_{n} \subset A \\ (I_{n}) \text{ are mutually disjoint} \\ f \text{ is analytic on } I_{n}} \sum_{n=1}^{\infty} \int_{I_{n}} f$$

Properties of the Integral:

•
$$\int_A \alpha = \alpha m(A)$$
.

•
$$f \le 0$$
 on $A \Rightarrow \int_A f \le 0$.

•
$$\int_A (f + \alpha g) = \int_A f + \alpha \int_A g$$
.

•
$$\int_{A\cup B} f = \int_A f + \int_B f - \int_{A\cap B} f$$
.

•
$$|f| \le M$$
 on $A \Rightarrow \left| \int_A f \right| \le Mm(A)$.

• (f_n) converges uniformly to f on A and f_n is measurable on A for each $n \Rightarrow f$ is measurable on A and

$$\lim_{n \to \infty} \int_A f_n = \int_A f.$$

Measure Theory and Integration on \mathcal{R}^2

Definition (Simple Region): Let $G \subset \mathbb{R}^2$. Then we say that G is a simple region if there exist constants $a, b \in \mathbb{R}, a \leq b$ and analytic functions $g_1, g_2 : I(a, b) \to \mathbb{R}, g_1 \leq g_2$ on I(a, b) such that $G = \{(x, y) \in \mathbb{R}^2 : y \in I(g_1(x), g_2(x)), x \in I(a, b)\}$

or

$$G = \{(x, y) \in \mathcal{R}^2 : x \in I(g_1(y), g_2(y)), y \in I(a, b)\}.$$

Definition (Area of a Simple Region): Let $G \subset \mathcal{R}^2$ be a simple region given by

$$G = \{ (x, y) \in \mathcal{R}^2 : y \in I(g_1(x), g_2(x)), x \in I(a, b) \}.$$

Then we define the area of G, denoted by a(G), as:

$$a(G) = \int_{x \in I(a,b)} [g_2(x) - g_1(x)]$$

Lemma: Let $H, G \subset \mathcal{R}$ be simple regions. Then $H \cap G$, $H \setminus G$ and $H \cup G$ can each be written as a finite union of mutually disjoint simple regions.

Definition (Measurable Set): Let $A \subset \mathbb{R}^2$. Then we say that A is measurable if for every $\epsilon > 0$ in \mathbb{R} there exist two sequences of mutually disjoint simple regions $(G_n)_{n=1}^{\infty}$ and $(H_n)_{n=1}^{\infty}$ such that

$$\bigcup_{n=1}^{\infty} G_n \subset A \subset \bigcup_{n=1}^{\infty} H_n,$$
$$\sum_{n=1}^{\infty} a(G_n) \text{ and } \sum_{n=1}^{\infty} a(H_n) \text{ both converge, and}$$
$$\sum_{n=1}^{\infty} a(H_n) - \sum_{n=1}^{\infty} a(G_n) < \epsilon.$$

Definition (The Measure of a Measurable Set): Suppose $A \subset \mathcal{R}^2$ is a measurable set. Then for every $k \in \mathbb{N}$ there are two sequences of mutually disjoint simple regions $(G_n^k)_{n=1}^{\infty}$ and $(H_n^k)_{n=1}^{\infty}$ such that $\bigcup_{n=1}^{\infty} G_n^k \subset A \subset \bigcup_{n=1}^{\infty} H_n^k$, $\sum_{n=1}^{\infty} G_n^k$ and $\sum_{n=1}^{\infty} H_n^k$ both converge, and $\sum_{n=1}^{\infty} a(H_n^k) - \sum_{n=1}^{\infty} a(G_n^k) < d^k$.

• $\left(\sum_{n=1}^{\infty} a(G_n^k)\right)_{k=1}^{\infty}$ and $\left(\sum_{n=1}^{\infty} a(H_n^k)\right)_{k=1}^{\infty}$ are Cauchy sequences in \mathcal{R} . Therefore, $\lim_{k\to\infty}\sum_{n=1}^{\infty} a(G_n^k)$ and $\lim_{k\to\infty}\sum_{n=1}^{\infty} a(H_n^k)$ both exist in \mathcal{R} .

•
$$\lim_{k \to \infty} \left(\sum_{n=1}^{\infty} a(H_n^k) - \sum_{n=1}^{\infty} a(G_n^k) \right) = 0.$$

• We define $m(A) = \lim_{k \to \infty} \sum_{n=1}^{\infty} a(G_n^k) = \lim_{k \to \infty} \sum_{n=1}^{\infty} a(H_n^k)$ and we call this the measure of A.

Consequences:

• If
$$A \subset \mathcal{R}^2$$
 is measurable then
 $m(A) = \inf \left\{ \sum_{n=1}^{\infty} a(H_n) : H_n$'s are mutually disjoint
simple regions, $A \subset \bigcup_{n=1}^{\infty} H_n$, and
 $\sum_{n=1}^{\infty} a(H_n)$ converges
 $\right\}$
 $= \sup \left\{ \sum_{n=1}^{\infty} a(G_n) : G_n$'s are mutually disjoint
simple regions, $\bigcup_{n=1}^{\infty} G_n \subset A$, and
 $\sum_{n=1}^{\infty} a(G_n)$ converges
 $\right\}$.

- If $A \subset \mathcal{R}^2$ is measurable then $m(A) \ge 0$.
- If $B \subset A \subset \mathcal{R}^2$ and if A and B are measurable, then $m(B) \leq m(A)$.
- If $A \subset \mathbb{R}^2$ is countable, then A is measurable and m(A) = 0.

Proposition: For each $k \in \mathbb{N}$, let $A_k \subset \mathcal{R}^2$ be measurable such that $(m(A_k))$ forms a null sequence. Then $\bigcup_{k=1}^{\infty} A_k$ is measurable and

$$m\left(\bigcup_{k=1}^{\infty} A_k\right) \le \sum_{k=1}^{\infty} m\left(A_k\right)$$

If the sets $(A_k)_{k=1}^{\infty}$ are mutually disjoint, then equality holds.

Proposition: Let $K \in \mathbb{N}$ be given and for each $k \in \{1, \ldots, K\}$, let $A_k \subset \mathcal{R}^2$ be measurable. Then $\bigcap_{k=1}^{K} A_k$ is measurable.

Definition: Let $A \subset \mathcal{R}^2$ be a simple region.

If $A = \{(x, y) \in \mathbb{R}^2 : y \in I(h_1(x), h_2(x)), x \in I(a, b)\},$ we define $\lambda_x(A) = \lambda(b - a)$ and $\lambda_y(A) = i(h_2(x) - h_1(x))$ on I(a, b).

If $A = \{(x, y) \in \mathbb{R}^2 : x \in I(h_1(y), h_2(y)), y \in I(a, b)\},$ we define $\lambda_y(A) = \lambda(b - a)$ and $\lambda_x(A) = i(h_2(y) - h_1(y))$ on I(a, b).

If $\lambda_x(A) = \lambda_y(A) = 0$ then we say that A is finite.

Measurable Functions

Definition: Let $A \subset \mathcal{R}^2$ be a simple region. Then we say that $f : A \to \mathcal{R}^2$ is analytic on A if for every $(x_0, y_0) \in A$, there is a simple region A_0 around (x_0, y_0) satisfying $\lambda_x(A_0) = \lambda_x(A)$, $\lambda_y(A_0) = \lambda_y(A)$ and a sequence $(a_{ij})_{i,j=0}^{\infty}$ such that for every $s, t \in \mathcal{R}$, if $(x_0 + s, y_0 + t) \in A \cap A_0$, then

$$f(x_0 + s, y_0 + t) = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} a_{ij} s^i t^j.$$

Proposition: Let $A \subset \mathbb{R}^2$ be a simple region and let $f : A \to \mathbb{R}$ be an analytic function on A. Let a < b in \mathbb{R} and let $g : I(a, b) \to \mathbb{R}$ be analytic on I(a, b) such that for every $x \in I(a, b)$, $(x, g(x)) \in A$. Then F(x) := f(x, g(x)) is an analytic function on I(a, b).

Proposition: Let $A \subset \mathbb{R}^2$ be simple and let $f : A \to \mathbb{R}$ be analytic. Then f is bounded on A.

Definition (Measurable Function): Let $A \subset \mathbb{R}^2$ be measurable and let $f : A \to \mathbb{R}$ be bounded on A. Then we say that f is measurable on Aif $\forall \epsilon > 0$, there exists a sequence of mutually disjoint simple regions (G_n) such that $G_n \subset A$ and f is analytic on G_n for all n; $\sum_{n=1}^{\infty} a(G_n)$ converges; and $m(A) - \sum_{n=1}^{\infty} a(G_n) \leq \epsilon$.

Proposition: Let $A \subset \mathcal{R}^2$ be a measurable set and let $f : A \to \mathcal{R}$ be measurable on A. Then fis given locally by a power series almost everywhere on A. Moreover, if $\frac{\partial}{\partial x}f(x,y) = \frac{\partial}{\partial y}f(x,y) = 0$ everywhere on A then f(x,y) is constant on A.

Proposition: Let $A, B \subset \mathbb{R}^2$ be measurable, let f be a measurable function on A and B. Then f is measurable on $A \cup B$ and $A \cap B$.

Proposition: Let $A \subset \mathcal{R}^2$ be measurable, let $f, g : A \to \mathcal{R}$ be measurable and let $\alpha \in \mathcal{R}$ be given. Then $f + \alpha g$ and $f \cdot g$ are measurable on A.

Integration on \mathcal{R}^2

Definition: Let $G \subset \mathcal{R}^2$ be a simple region given by

 $G = \{(x, y) \in \mathcal{R}^2 : y \in I(h_1(x), h_2(x)), x \in I(a, b)\}$ and let $f : G \to \mathcal{R}$ be analytic on G. We define the integral of f over G as follows:

$$\iint_{(x,y)\in G} f(x,y) = \int_{x\in I(a,b)} \left[\int_{y\in I(h_1(x),h_2(x))} f(x,y) \right]$$

Proposition: Let $G \subset \mathcal{R}^2$ be a simple region, let $f, g : G \to \mathcal{R}$ be analytic on G, and let $\alpha \in \mathcal{R}$ be given. Then

$$\begin{split} \bullet & \iint_{(x,y)\in G} \alpha = \alpha a(G); \\ \bullet & \iint_{(x,y)\in G} (f + \alpha g)(x,y) = \iint_{(x,y)\in G} f(x,y) + \alpha \iint_{(x,y)\in G} g(x,y); \\ \bullet & \text{if } f \leq g \text{ on } G \text{ then } \iint_{(x,y)\in G} f(x,y) \leq \iint_{(x,y)\in G} g(x,y); \\ \bullet & \text{if } |f| \leq M \text{ on } G \text{ then } \left| \iint_{(x,y)\in G} f(x,y) \right| \leq Ma(G). \end{split}$$

Integral of a Measurable Function: Let $A \subset \mathbb{R}^2$ be a measurable set, let $f : A \to \mathbb{R}$ be measurable on A, and let M be a bound for |f| on A. For every $k \in \mathbb{N}$ there exists a sequence of mutually disjoint simple regions $(G_n^k)_{n=1}^{\infty}$ such that for every $n \in \mathbb{N}$, f is analytic on G_n^k , $\bigcup_{n=1}^{\infty} G_n^k \subset A$, $\sum_{n=1}^{\infty} a(G_n^k)$ converges, and $m(A) - \sum_{n=1}^{\infty} a(G_n^k) \leq d^k$.

Since $\sum_{n=1}^{\infty} a(G_n^k)$ converges we have that $\lim_{n \to \infty} a(G_n^k) = 0$. Since $|\iint_{(x,y)\in G_n^k} f(x,y)| \le Ma(G_n^k)$, it follows that $\lim_{n \to \infty} \iint_{(x,y)\in G_n^k} f(x,y) = 0$. Therefore, for every $k \in \mathbb{N}$, $\sum_{n=1}^{\infty} \iint_{(x,y)\in G_n^k} f(x,y)$ converges.

We show that $(\sum_{n=1}^{\infty} \iint_{\substack{(x,y)\in G_n^k}} f(x,y))_{k=1}^{\infty}$ is a Cauchy sequence and hence it converges. We define $\iint_{\substack{(x,y)\in A}} f(x,y) = \lim_{\substack{\sum \\ n=1 \\ f \text{ is analytic on } G_n \text{ for every n}}} \sum_{n=1}^{\infty} \iint_{\substack{(x,y)\in G_n}} f(x,y)$ Theorem (Properties of the Double Integral): Let $A, B \subset \mathcal{R}^2$ be measurable sets, let $f, g : A, B \to \mathcal{R}$ be measurable functions on A, B, and let $\alpha \in \mathcal{R}$ be given. Then

$$\begin{split} \bullet & \iint_{(x,y)\in A} \alpha = \alpha m(A); \\ \bullet & \iint_{(x,y)\in A} (f + \alpha g)(x,y) = \iint_{(x,y)\in A} f(x,y) + \alpha \iint_{(x,y)\in A} g(x,y); \\ \bullet & \text{if } f \leq g \text{ on } A \text{ then } \iint_{(x,y)\in A} f(x,y) \leq \iint_{(x,y)\in A} g(x,y); \\ \bullet & \text{if } |f| \leq M \text{ on } A \text{ then } | \iint_{(x,y)\in A} f(x,y)| \leq Mm(A); \\ \bullet & \iint_{(x,y)\in A\cup B} f(x,y) = \iint_{(x,y)\in A} f(x,y) + \iint_{(x,y)\in B} f(x,y) - \\ & \iint_{(x,y)\in A\cap B} f(x,y); \end{split}$$

• (f_n) converges uniformly to f on A and f_n is measurable on A for each $n \Rightarrow \lim_{n \to \infty} \iint_{(x,y) \in A} f_n(x,y)$

exists and

$$\lim_{n \to \infty} \iint_{(x,y) \in A} f_n(x,y) = \iint_{(x,y) \in A} f(x,y).$$

Measure Theory and Integration on \mathcal{R}^3

Definition (Simple Region): Let $S \subset \mathbb{R}^3$. Then we say that S is simple if there exists a simple region $A \subset \mathbb{R}^2$ and two analytic functions h_1, h_2 : $A \to \mathbb{R}$ such that $h_1 \leq h_2$ everywhere on A and $S = \{(x, y, z) \in \mathbb{R}^3 : z \in I(h_1(x, y), h_2(x, y)), (x, y) \in A\}$ or

$$S = \{(x, y, z) \in \mathcal{R}^3 : y \in I(h_1(x, z), h_2(x, z)), (x, z) \in A\}$$
 or

$$S = \{ (x, y, z) \in \mathcal{R}^3 : x \in I(h_1(y, z), h_2(y, z)), (y, z) \in A \}.$$

Definition (Volume of a Simple Region): Let $S = \{(x, y, z) \in \mathbb{R}^3 : z \in I(h_1(x, y), h_2(x, y)), (x, y) \in A\}$ be a simple region in \mathbb{R}^3 , with A, h_1 , and h_2 as above. Then we denote the volume of S with v(S) and define it as

$$v(S) = \iint_{(x,y)\in A} \left[h_2(x,y) - h_1(x,y) \right].$$

A similar definition can be used in the other two cases.

Definition: Let

 $S = \{(x, y, z) \in \mathbb{R}^3 : z \in I(h_1(x, y), h_2(x, y)), (x, y) \in A\}$ be a simple region in \mathbb{R}^3 . We define $\lambda_x(S) = \lambda_x(A), \lambda_y(S) = \lambda_y(A)$ and $\lambda_z(S) = i(h_2(x, y) - h_1(x, y))$ on A. We do similarly in the other two cases. Then we say that that S is a finite region if $\lambda_x(S) = \lambda_y(S) = \lambda_z(S) = 0.$

Definition (Analytic Function in \mathcal{R}^3): Suppose $S \subset \mathcal{R}^3$ is a simple region and let $f : S \to \mathcal{R}$. Then we say that f is analytic on S if for every $(x_0, y_0, z_0) \in S$ there exists a simple region $A \subset \mathcal{R}^3$ containing (x_0, y_0, z_0) and a sequence $(a_{ijk})_{i,j,k=0}^{\infty}$ in \mathcal{R} such that $\lambda_x(A) = \lambda_x(S), \lambda_y(A) = \lambda_y(S), \lambda_z(A) = \lambda_z(S)$, and if $(x_0 + r, y_0 + s, z_0 + t) \in S \cap A$ then

$$f(x_0 + r, y_0 + s, z_0 + t) = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} a_{ijk} r^i s^j t^k.$$

Proposition: Let $A \subset \mathbb{R}^3$ be a simple region, let $f, g : A \to \mathbb{R}$ be analytic on A, and let $\alpha \in \mathbb{R}$ be given. Then $f + \alpha g$ and $f \cdot g$ are analytic on A.

Proposition: Let $A \subset \mathcal{R}^3$ be a simple region and let $f : A \to \mathcal{R}$ be analytic on A. Let $B \subset \mathcal{R}^2$ be a simple region and let $g : B \to \mathcal{R}$ be an analytic function on B such that for every $(x, y) \in B$, $(x, y, g(x, y)) \in A$. Then F(x, y) := f(x, y, g(x, y)) is analytic on B.

Definition (Measurable Set): Let $S \subset \mathcal{R}^3$. Then we say that S is a measurable set if for every $\epsilon > 0$ there exist two sequences of mutually disjoint simple regions $(G_n)_{n=1}^{\infty}$ and $(H_n)_{n=1}^{\infty}$ such that $\bigcup_{n=1}^{\infty} G_n \subset S \subset \bigcup_{n=1}^{\infty} H_n$, $\sum_{n=1}^{\infty} v(G_n)$ and $\sum_{n=1}^{\infty} v(H_n)$ converge, and $\sum_{n=1}^{\infty} v(H_n) - \sum_{n=1}^{\infty} v(G_n) < \epsilon$.

Measure of a Measurable Set: Let $S \subset \mathcal{R}^3$ be a measurable set. For every $k \in \mathbb{N}$, there exist two sequences of mutually disjoint simple regions, $(G_n^k)_{n=1}^{\infty}$ and $(H_n^k)_{n=1}^{\infty}$, such that $\bigcup_{n=1}^{\infty} G_n^k \subset$ $S \subset \bigcup_{n=1}^{\infty} H_n^k$, $\sum_{n=1}^{\infty} v(G_n^k)$ and $\sum_{n=1}^{\infty} v(H_n^k)$ converge, and $\sum_{n=1}^{\infty} v(H_n^k) - \sum_{n=1}^{\infty} v(G_n^k) < d^k$. We show that $(\sum_{n=1}^{\infty} v(G_n^k))_{k=1}^{\infty}$ and $(\sum_{n=1}^{\infty} v(H_n^k))_{k=1}^{\infty}$ are Cauchy sequences; and hence they converge. Moreover,

$$\lim_{k \to \infty} \sum_{n=1}^{\infty} v(G_n^k) = \lim_{k \to \infty} \sum_{n=1}^{\infty} v(H_n^k).$$

We call this limit the measure of S and we denote it by m(S).

 \downarrow

Similar properties to those in the one-dimensional and two-dimensional cases!

Definition (Measurable Function):

Let $S \subset \mathbb{R}^3$ be measurable and let $f: S \to \mathbb{R}$ be bounded on S. Then we say that f is measurable on S if for every $\epsilon > 0$ in \mathbb{R} , there exists a sequence of mutually disjoint simple regions $(G_n)_{n=1}^{\infty}$ such that $\bigcup_{n=1}^{\infty} G_n \subset S$, $\sum_{n=1}^{\infty} v(G_n)$ converges, $m(S) - \sum_{n=1}^{\infty} v(G_n) < \epsilon$, and for every $n \in \mathbb{N}$ f is analytic on G_n .

Integration in Three Dimensions

Definition (Integral of an Analytic Function over a Simple Region in \mathcal{R}^3): Let $S = \{(x, y, z) \in \mathcal{R}^3 : z \in I(h_1(x, y), h_2(x, y)), (x, y) \in A\};$ and let $f : S \to \mathcal{R}$ be analytic on S. We define the integral of f over S as follows:

$$\iiint_{(x,y,z)\in S} f(x,y,z) = \iint_{(x,y)\in A} \left[\int_{z\in I(h_1(x,y),h_2(x,y))} f(x,y,z) \right].$$

Consequences:

• For any $\alpha \in \mathcal{R}$: $\iint_{(x,y,z)\in S} \alpha = \alpha v(S)$.

• If
$$|f(x)| \le M$$
 for all $x \in S$ then
$$\left| \iint_{(x,y,z)\in S} f(x,y,z) \right| \le Mv(S)$$

• etc...

Integral of a Measurable Function over a Measurable Set: Let $S \subset \mathcal{R}^3$ be a measurable set, let $f: S \to \mathcal{R}$ be measurable on S, and let M be a bound for f on S. For every $k \in \mathbb{N}$, there exists a sequence of mutually disjoint simple regions $(G_n^k)_{n=1}^{\infty}$ such that $\bigcup_{n=1}^{\infty} G_n^k \subset S$, $\sum_{n=1}^{\infty} v(G_n^k)$ converges, $m(S) - \sum_{n=1}^{\infty} v(G_n^k) < d^k$, and for every $n \in \mathbb{N}$ f is analytic on G_n^k .

For every
$$k, n \in \mathbb{N}$$
:
$$\left| \iint_{(x,y,z)\in G_n^k} f(x,y,z) \right| \le Mv(G_n^k).$$

It follows that

$$\lim_{n \to \infty} \iiint_{(x,y,z) \in G_n^k} f(x,y,z) = 0$$

and so $\sum_{n=1}^{\infty} \iiint_{(x,y,z)\in G_n^k} f(x,y,z)$ converges.

We show that
$$\left(\sum_{n=1}^{\infty} \iiint_{(x,y,z)\in G_n^k} f(x,y,z)\right)_{k=1}^{\infty}$$
 is a Cauchy

sequence and hence it converges.

We define the limit to be the integral of f over S:

$$\iiint_{(x,y,z)\in S} f(x,y,z) = \lim_{k\to\infty} \sum_{n=1}^{\infty} \iiint_{(x,y,z)\in G_n^k} f(x,y,z).$$

 \Downarrow

Similar properties of the triple integral as for double and single integrals!

The Delta Function on the Levi-Civita Field

Definition: Let $\delta : \mathcal{R} \to \mathcal{R}$ be given by

$$\delta(x) = \begin{cases} \frac{3}{4}d^{-3}(d^2 - x^2) & \text{if } |x| < d \\ \\ 0 & \text{if } |x| \ge d \end{cases}$$

Proposition: Let $I \subset \mathcal{R}$ be an interval. If $(-d, d) \subset I$ then

$$\int_{x \in I} \delta(x) = 1.$$

Moreover, if $(-d, d) \cap I = \emptyset$ then
$$\int_{x \in I} \delta(x) = 0.$$

Proof: If
$$(-d, d) \subset I$$
 then

$$\int_{x \in I} \delta(x) = \int_{x \in (-d,d)} \frac{3}{4} d^{-3} (d^2 - x^2) = 1.$$
If $(-d, d) \cap I = \emptyset$ then $\delta(x) = 0$ for all $x \in I$; hence

$$\int_{x \in I} \delta(x) = \int_{x \in I} 0 = 0.$$

Proposition: Let $I \subset \mathcal{R}$ be an interval containing (-d, d). Then $\delta(x)$ has a measurable antiderivative on I that is equal to the Heaviside function on $I \cap \mathbb{R}$.

Proof: Let $H: I \to \mathcal{R}$ be given by

$$H(x) = \begin{cases} 0 & \text{if } x \leq -d \\ \frac{3}{4}d^{-3}(d^2x - \frac{1}{3}x^3) + \frac{1}{2} & \text{if } -d < x < d \\ 1 & \text{if } x \geq d \end{cases}$$

Then H(x) is measurable and differentiable on I with $H'(x) = \delta(x)$. Moreover,

$$H(x)|_{\mathbb{R}} = \begin{cases} 0 & \text{if } x < 0\\ 1/2 & \text{if } x = 0\\ 1 & \text{if } x > 0 \end{cases}$$

Proposition: Let a < b in \mathcal{R} be such that $\lambda(b - a) < 1$; and let $f : [a, b] \to \mathcal{R}$ be an analytic function with i(f) = 0. Then for any $x_0 \in [a+d, b-d]$, we have that

$$\int_{x \in [a,b]} f(x)\delta(x - x_0) =_0 f(x_0).$$

Proof: Fix $x_0 \in [a+d, b-d]$. There exists $\eta > 0$ in \mathcal{R} with $\lambda(\eta) = \lambda(b-a)$ such that, for any $x \in [a, b]$ satisfying $|x - x_0| < \eta$, we have that

$$f(x) = f(x_0) + \sum_{k=1}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k.$$

Therefore,

$$\int_{x \in [a,b]} f(x)\delta(x-x_0) = \int_{x \in [x_0-d,x_0+d]} f(x)\delta(x-x_0)$$

$$= \int_{x \in [x_0 - d, x_0 + d]} f(x_0) \delta(x - x_0)$$

$$+ \int_{x \in [x_0 - d, x_0 + d]} \sum_{k=1}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k \delta(x - x_0)$$

$$= f(x_0) + \int_{x \in [x_0 - d, x_0 + d]} \sum_{k=1}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k \delta(x - x_0).$$

For any $x \in [x_0 - d, x_0 + d]$, $|x - x_0| \le d$. Thus,

$$\begin{split} & \int_{x \in [x_0 - d, x_0 + d]} \sum_{k=1}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k \delta(x - x_0) \\ & \leq \sum_{k=1}^{\infty} \frac{\left| f^{(k)}(x_0) \right|}{k!} d^k \int_{x \in [x_0 - d, x_0 + d]} \delta(x - x_0) \\ & = \sum_{k=1}^{\infty} \frac{\left| f^{(k)}(x_0) \right|}{k!} d^k. \end{split}$$

Since i(f) = 0 on [a, b], it follows that for all $k \in \mathbb{N}$ $\lambda \left(f^{(k)}(x_0)(b-a)^k \right) \ge 0$ and hence $\lambda \left(f^{(k)}(x_0)d^k \right) > 0$. Thus,

$$\lambda\left(\sum_{k=1}^{\infty} \frac{f^{(k)}(x_0)}{k!} d^k\right) > 0.$$

It follows that

$$\lambda \left(\int_{x \in [x_0 - d, x_0 + d]} \sum_{k=1}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k \delta(x - x_0) \right) > 0;$$

and hence

$$\int_{x \in [a,b]} f(x)\delta(x-x_0) =_0 f(x_0).$$

Proposition: Let a < b < c in \mathcal{R} be such that $\lambda(b-a) < 1$ and $\lambda(c-b) < 1$; let $g : [a,b] \to \mathcal{R}$ and $h : [b,c] \to \mathcal{R}$ be analytic functions satisfying g(b) = h(b) and i(h) = i(g) = 0; and let the function $f : [a,c] \to \mathcal{R}$ be given by

$$f(x) = \begin{cases} g(x) & \text{if } x \in [a, b) \\ h(x) & \text{if } x \in [b, c] \end{cases}$$

Then for any $x_0 \in [a+d, c-d]$, we have that

$$\int_{x \in [a,c]} f(x)\delta(x-x_0) =_0 f(x_0).$$

Definition (Delta Function in Two Dimensions):

Let $\delta_2 : \mathcal{R}^2 \to \mathcal{R}$ be given by

$$\delta_2(x,y) = \delta(x)\delta(y)$$

Proposition: Let $S \subset \mathcal{R}^2$ be measurable. If $(-d, d) \times (-d, d) \subset S$ then

$$\iint_S \delta_2(x,y) = 1.$$

If $(-d, d) \times (-d, d) \cap S = \emptyset$ then

$$\iint_S \delta_2(x,y) = 0.$$

Proposition: Let $S \subset \mathcal{R}^2$ be a simple region with $\lambda_x(S) < 1$ and $\lambda_y(S) < 1$, let $f : S \to \mathcal{R}$ be an analytic function with index i(f) = 0 on S. Then, for any $(x_0, y_0) \in S$ that satisfies $(x_0 - a, x_0 + a) \times (y_0 - a, y_0 + a) \subset S$ for some positive $a \gg d$ in \mathcal{R} , we have that

$$\iint_{(x,y)\in S} f(x,y)\delta_2(x-x_0,y-y_0) =_0 f(x_0,y_0).$$

Definition (Delta Function in Three Dimensions):

Let $\delta_3 : \mathcal{R}^3 \to \mathcal{R}$ be given by

$$\delta_3(x, y, z) = \delta(x)\delta(y)\delta(z).$$

Proposition: Let $S \subset \mathcal{R}^3$ be measurable. If $(-d, d) \times (-d, d) \times (-d, d) \subset S$ then

$$\iiint_S \delta_3(x, y, z) = 1.$$

If $(-d, d) \times (-d, d) \times (-d, d) \cap S = \emptyset$ then

$$\iiint_S \delta_3(x, y, z) = 0.$$

Proposition: Let $S \subset \mathcal{R}^3$ be a simple region with $\lambda_x(S) < 1$, $\lambda_y(S) < 1$, $\lambda_z(S) < 1$, and let $f: S \to \mathcal{R}$ be an analytic function on S with i(f) = 0 on S. Then, for any $(x_0, y_0, z_0) \in S$ that satisfies

$$(x_0 - a, x_0 + a) \times (y_0 - a, y_0 + a) \times (z_0 - a, z_0 + a) \subset S$$

for some positive $a \gg d$ in \mathcal{R} , we have that
$$\iiint_{(x,y,z)\in S} f(x, y, z)\delta_3(x - x_0, y - y_0, z - z_0) =_0 f(x_0, y_0, z_0).$$

Example (Damped Driven Harmonic Oscillator): Consider an underdamped, driven harmonic oscillator with mass m, viscous damping constant c, spring constant k, and driving force f(t). Let x(t) be the position of the oscillator at time t with x(0) = 0 and $\dot{x}(0) = 0$.

$$\ddot{x}(t) + \frac{c}{m}\dot{x}(t) + \frac{k}{m}x(t) = \frac{f(t)}{m}$$

Let
$$\gamma = \frac{c}{2\sqrt{mk}}$$
 and let $\omega_0 = \sqrt{\frac{k}{m}}$. Thus,
 $\ddot{x}(t) + 2\gamma\omega_0\dot{x}(t) + \omega_0^2x(t) = \frac{f(t)}{m}$.

Consider the underdamped case: $\gamma^2 \omega_0^2 - \omega_0^2 < 0$ (that is, $\gamma < 1$).

We first find a piecewise analytic solution to

$$\left(\frac{\partial^2}{\partial t^2} + 2\gamma\omega_0\frac{\partial}{\partial t} + \omega_0^2\right)G(t, t') = \delta(t - t').$$

We get:

$$G(t, t') = e^{-\gamma \omega_0(t-t')} (A_1 \sin(\omega(t-t')) + B_1 \cos(\omega(t-t')))$$

if $t \le t' - d$;

$$e^{-\gamma\omega_0(t-t')} \left(A_2 \sin(\omega(t-t')) + B_2 \cos(\omega(t-t'))\right) \\ = \\ + \frac{3}{\omega_0^2} \left(\frac{d^2 - (t-t')^2}{4} + \frac{\gamma(t-t')}{\omega_0} + \frac{1-4\gamma^2}{2\omega_0^2}\right) \\ \text{if } t' - d < t < t' + d; \text{ and}$$

$$G(t, t') = e^{-\gamma \omega_0(t-t')} (A_3 \sin(\omega(t-t')) + B_3 \cos(\omega(t-t')))$$

if $t \ge t' + d$.

We want the solution to satisfy the initial conditions G(t' - d, t') = 0 and $\frac{\partial}{\partial t}G(t, t')|_{t=t'-d} = 0$ as well as continuity of G(t, t') and $\frac{\partial}{\partial t}G(t, t')$ at t = t' - d and t = t' + d.

From the initial conditions we get

$$A_1 = B_1 = 0.$$

From the continuity of G and its derivative at t = t' - d we then have

$$A_{2} = \frac{3}{\omega_{0}^{2}} d^{-3} \exp(-\gamma \omega_{0} d) \cdot \\ \left[\left(\frac{2\gamma^{3}}{\omega_{0}} - \frac{3\gamma}{2\omega_{0}} + \left(\gamma^{2} - \frac{1}{2}\right) d \right) \frac{\cos \omega d}{\omega} - \left(\frac{\gamma}{\omega_{0}} - \frac{1 - 4\gamma^{2}}{2\omega_{0}^{2}} \right) \sin \omega d \right]$$

$$B_{2} = \frac{3}{\omega_{0}^{2}} d^{-3} \exp(-\gamma \omega_{0} d) \cdot \\ \left[\left(\frac{2\gamma^{3}}{\omega_{0}} - \frac{3\gamma}{2\omega_{0}} + \left(\gamma^{2} - \frac{1}{2}\right) d \right) \frac{\sin \omega d}{\omega} + \left(\frac{\gamma}{\omega_{0}} - \frac{1 - 4\gamma^{2}}{2\omega_{0}^{2}} \right) \cos \omega d \right].$$

Finally, from the continuity of G and its derivative at t = t' + d we get:

$$A_{3} = \frac{3}{\omega_{0}^{2}} d^{-3} \exp(-\gamma \omega_{0} d) \cdot \\ \left[\left(\frac{2\gamma^{3}}{\omega_{0}} - \frac{3\gamma}{2\omega_{0}} + \left(\gamma^{2} - \frac{1}{2}\right) d \right) \frac{\cos \omega d}{\omega} - \left(\frac{\gamma}{\omega_{0}} - \frac{1 - 4\gamma^{2}}{2\omega_{0}^{2}} \right) \sin \omega d + \left(\frac{3\gamma}{2\omega_{0}} - \frac{2\gamma^{3}}{\omega_{0}} + \left(\gamma^{2} - \frac{1}{2}\right) d \right) \frac{\cos \omega d}{\omega} + \left(\frac{\gamma}{\omega_{0}} - \frac{1 - 4\gamma^{2}}{2\omega_{0}^{2}} \right) \sin \omega d \right]$$

$$B_{3} = \frac{3}{\omega_{0}^{2}} d^{-3} \exp(-\gamma \omega_{0} d) \cdot \left[\left(\frac{2\gamma^{3}}{\omega_{0}} - \frac{3\gamma}{2\omega_{0}} + \left(\gamma^{2} - \frac{1}{2} \right) d \right) \frac{\sin \omega d}{\omega} + \left(\frac{\gamma}{\omega_{0}} - \frac{1 - 4\gamma^{2}}{2\omega_{0}^{2}} \right) \cos \omega d - \left(\frac{3\gamma}{2\omega_{0}} - \frac{2\gamma^{3}}{\omega_{0}} + \left(\gamma^{2} - \frac{1}{2} \right) d \right) \frac{\sin \omega d}{\omega} + \left(\frac{\gamma}{\omega_{0}} - \frac{1 - 4\gamma^{2}}{2\omega_{0}^{2}} \right) \cos \omega d \right].$$

Note that $A_3 =_0 \frac{1}{\omega}$ and $B_3 =_0 0$; and hence

$$G(t,t')|_{\mathbb{R}} =_0 \begin{cases} 0 & \text{if } t < t' \\ \frac{1}{\omega} \exp\left(-\gamma \omega_0(t-t')\right) \sin(\omega(t-t')) & \text{if } t \ge t' \end{cases}$$

which is the classical Green's function for this problem.

Now assume the driving force is given by

$$f(t) = \begin{cases} m \exp(-\gamma \omega_0 t) & \text{if } t \ge 0\\ 0 & \text{if } t < 0 \end{cases}$$

Then we obtain the real solution as:

$$x(t) =_0 \int_{t' \in [-d^{-1}, d^{-1}]} G(t, t') \frac{f(t')}{m}$$

But G(t,t') = 0 for t' > t + d and f(t') = 0 for t' < 0; thus,

$$\begin{aligned} x(t) &=_0 \int_{t' \in [0,t+d]} G(t,t') \exp(-\gamma \omega_0 t') \\ &= \int_{t' \in [0,t-d]} G(t,t') \exp(-\gamma \omega_0 t') \\ &+ \int_{t' \in [t-d,t+d]} G(t,t') \exp(-\gamma \omega_0 t') \\ &=_0 e^{-\gamma \omega_0 t} \frac{\cos(\omega t) - 1}{\omega^2}, \end{aligned}$$

which agrees with the classical solution.