One-variable and Multi-variable Integral Calculus over the Levi-Civita Field and Applications

Khodr Shamseddine

University of Manitoba
Canada

Contents

(1) Preliminaries
(a) The Levi-Civita Fields \mathcal{R} and \mathcal{C}
(b) Power Series and Analytic Functions
(2) Measure Theory and Integration on $\mathcal{R}, \mathcal{R}^{2}$, and \mathcal{R}^{3}
(3) Delta Functions and Applications

The Levi-Civita Fields \mathcal{R} and \mathcal{C}

- Let $\mathcal{R}=\{f: \mathbb{Q} \rightarrow \mathbb{R} \mid \operatorname{supp}(f)$ is left-finite $\}$.
- For $x \in \mathcal{R}$, define

$$
\lambda(x)=\left\{\begin{array}{ll}
\min (\operatorname{supp}(x)) & \text { if } x \neq 0 \\
\infty & \text { if } x=0
\end{array} .\right.
$$

- Arithmetic on \mathcal{R} : Let $x, y \in \mathcal{R}$. We define $x+y$ and $x \cdot y$ as follows. For $q \in \mathbb{Q}$, let

$$
\begin{aligned}
(x+y)[q] & =x[q]+y[q] \\
(x \cdot y)[q] & =\sum_{q_{1}+q_{2}=q} x\left[q_{1}\right] \cdot y\left[q_{2}\right] .
\end{aligned}
$$

Then $x+y \in \mathcal{R}$ and $x \cdot y \in \mathcal{R}$.
Result: $(\mathcal{R},+, \cdot)$ is a field.

Definition: $\mathcal{C}:=\mathcal{R}+i \mathcal{R}$. Then $(\mathcal{C},+, \cdot)$ is also a field.

Order in \mathcal{R}

- Define the relation \leq on $\mathcal{R} \times \mathcal{R}$ as follows: $x \leq y$ if $x=y$ or $(x \neq y$ and $(x-y)[\lambda(x-y)]<0)$.
- $(\mathcal{R},+, \cdot, \leq)$ is an ordered field.
- \mathcal{R} is real closed.

$$
\Downarrow
$$

\mathcal{C} is algebraically closed.

- The $\operatorname{map} E: \mathbb{R} \rightarrow \mathcal{R}$, given by

$$
E(r)[q]= \begin{cases}r & \text { if } q=0 \\ 0 & \text { else }\end{cases}
$$

is an order preserving embedding.

- There are infinitely small and infinitely large elements in \mathcal{R} : The number d, given by

$$
d[q]= \begin{cases}1 & \text { if } q=1 \\ 0 & \text { else }\end{cases}
$$

is infinitely small; while d^{-1} is infinitely large.

For $x \in \mathcal{R}$, define

$$
\begin{aligned}
|x| & = \begin{cases}x & \text { if } x \geq 0 \\
-x & \text { if } x<0\end{cases} \\
|x|_{u} & = \begin{cases}e^{-\lambda(x)} & \text { if } x \neq 0 \\
0 & \text { if } x=0\end{cases}
\end{aligned}
$$

For $z=x+i y \in \mathcal{C}$, define

$$
\begin{aligned}
|z| & =\sqrt{|x|^{2}+|y|^{2}} \\
|z|_{u} & = \begin{cases}e^{-\lambda(z)} & \text { if } z \neq 0 \\
0 & \text { if } z=0\end{cases} \\
& =\max \left\{|x|_{u},|y|_{u}\right\} \text { since } \lambda(z)=\min \{\lambda(x), \lambda(y)\} .
\end{aligned}
$$

Note that $|\cdot|$ and $|\cdot|_{u}$ induce the same topology τ_{v} on \mathcal{R} (or \mathcal{C}). Moreover, \mathcal{C} is topologically isomorphic to \mathcal{R}^{2} provided with the product topology induced by $|\cdot|$ in \mathcal{R}.

Topological Structure of \mathcal{R}

Properties of the Topology τ_{v} (induced by $|\cdot|$ or $|\cdot|{ }_{u}$):

- $\left(\mathcal{R}, \tau_{v}\right)$ is a disconnected topological space.
- $\left(\mathcal{R}, \tau_{v}\right)$ is Hausdorff.
- There are no countable bases.
- The topology induced to \mathbb{R} is the discrete topology.
- $\left(\mathcal{R}, \tau_{v}\right)$ is not locally compact.
- τ_{v} is zero-dimensional (i.e. it has a base consisting of clopen sets).
- τ_{v} is not a vector topology.
- For all $x \in \mathcal{R}$ (or \mathcal{C}): $x=\sum_{n=1}^{\infty} x\left[q_{n}\right] \cdot d^{q_{n}}$.

Weak Topology τ_{w} : Induced by the family of semi-norms $\left(\|\cdot\|_{r}\right)_{r \in \mathbb{Q}}$, where $\|\cdot\|_{r}: \mathcal{R} \rightarrow \mathbb{R}$ is given by

$$
\|x\|_{r}=\sup \{|x[q]|: q \leq r\} .
$$

It is a metric topology, induced by the metric

$$
\Delta(x, y)=\sum_{k \in \mathbb{N}} 2^{-k} \frac{\|x-y\|_{k}}{1+\|x-y\|_{k}} .
$$

Properties of the Weak Topology:

- $\left(\mathcal{R}, \tau_{w}\right)$ is Hausdorff with countable bases.
- τ_{w} is a vector topology.
- The topology induced on \mathbb{R} is the usual order topology on \mathbb{R}.
- $\left(\mathcal{R}, \tau_{w}\right)$ is not locally bounded (hence not locally compact).

Further Useful Notations

For $x, y \in \mathcal{R}$, we say

- $x \sim y$ if $\lambda(x)=\lambda(y)$.
- $x \approx y$ if $x \sim y$ and $x[\lambda(x)]=y[\lambda(y)]$.
- $x={ }_{r} y$ if $x[q]=y[q] \forall q \leq r$.
- For nonnegative x, y in \mathcal{R}, say $x \ll y$ if $x<$ y and $x \nsim y$; say $x \gg y$ if $y \ll x$.

Examples: $100 \sim 1 ; 3+d \approx 3 ; d^{q} \ll 1$ if $q>0$.

Uniqueness of \mathcal{R} and \mathcal{C}

- \mathcal{R} is the smallest Cauchy-complete and real closed non-Archimedean field extension of \mathbb{R}.
- It is small enough so that the \mathcal{R}-numbers can be implemented on a computer, thus allowing for computational applications.
- \mathcal{C} is the smallest Cauchy-complete and algebraically closed non-Archimedean field extension of \mathbb{C}.

Power Series and Analytic Functions

[Shamseddine-2011]. Absolute and relative extrema, the mean value theorem and the inverse function theorem for analytic functions on a Levi-Civita field, Contemporary Mathematics, American Mathematical Society, Volume 551 (Advances in Non-Archimedean Analysis), pp. 257-268.
[Shamseddine-Berz-2007]. Intermediate value theorem for analytic functions on a Levi-Civita field, Bulletin of the Belgian Mathematical Society-Simon Stevin, Volume 14, pp. 1001-1015.
[Shamseddine-Berz-2005]. Analytical properties of power series on Levi-Civita fields, Annales Mathmatiques Blaise Pascal, Volume 12 \# 2, pp. 309-329.
[Shamseddine-Berz-2001]. Convergence on the LeviCivita field and study of power series, Lecture Notes in Pure and Applied Mathematics, Marcel Dekker, 2001, ISBN 0-8247-0611-0, pp. 283-299.

Theorem (Strong Convergence Criterion): Let $\left(a_{n}\right)$ be a sequence in \mathcal{R}, and let

$$
\lambda_{0}=\limsup _{n \rightarrow \infty}\left(\frac{-\lambda\left(a_{n}\right)}{n}\right) \text { in } \mathbb{R} .
$$

Let $x_{0} \in \mathcal{R}$ be fixed and let $x \in \mathcal{R}$ be given. Then $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ converges strongly if $\lambda(x-$ $\left.x_{0}\right)>\lambda_{0}$ and is divergent if $\lambda\left(x-x_{0}\right)<\lambda_{0}$ or if $\lambda\left(x-x_{0}\right)=\lambda_{0}$ and $-\lambda\left(a_{n}\right) / n>\lambda_{0}$ for infinitely many n.

Theorem (Weak Convergence Criterion): Let $\left(a_{n}\right), \lambda_{0}$ and x_{0} be as above, and let $x \in \mathcal{R}$ be such that $\lambda\left(x-x_{0}\right)=\lambda_{0}$. For each $n \geq 0$, let $b_{n}=a_{n} d^{n \lambda_{0}}$. Suppose that the sequence $\left(b_{n}\right)$ is regular and write $\cup_{n=0}^{\infty} \operatorname{supp}\left(b_{n}\right)=\left\{q_{1}, q_{2}, \ldots\right\}$; with $q_{j_{1}}<q_{j_{2}}$ if $j_{1}<j_{2}$. For each n, write $b_{n}=\sum_{j=1}^{\infty} b_{n_{j}} d^{q_{j}}$; let

$$
r=\frac{1}{\sup \left\{\lim \sup _{n \rightarrow \infty}\left|b_{n_{j}}\right|^{1 / n}: j \geq 1\right\}}
$$

Then $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}$ converges absolutely weakly in \mathcal{R} if $\left|\left(x-x_{0}\right)\left[\lambda_{0}\right]\right|<r$ and is weakly divergent in \mathcal{R} if $\left|\left(x-x_{0}\right)\left[\lambda_{0}\right]\right|>r$.

Corollary (Power Series with Real Coefficients): Let $\sum_{n=0}^{\infty} a_{n} X^{n}, a_{n} \in \mathbb{R}$, be a power series with classical radius of convergence equal to η. Let $x \in \mathcal{R}$, and let $A_{n}(x)=\sum_{i=0}^{n} a_{i} x^{i} \in \mathcal{R}$. Then, for $|x|<\eta$ and $|x| \not \approx \eta$, the sequence $\left(A_{n}(x)\right)$ converges absolutely weakly. We define the limit to be the continuation of the power series on \mathcal{R}.

Transcendental Functions: For any $x \in \mathcal{R}$, at most finite in absolute value, define

$$
\begin{aligned}
\exp (x) & =\sum_{n=0}^{\infty} \frac{x^{n}}{n!} \\
\cos (x) & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n}}{(2 n)!} ; \\
\sin (x) & =\sum_{n=0}^{\infty}(-1)^{n} \frac{x^{2 n+1}}{(2 n+1)!} ; \\
\cosh (x) & =\sum_{n=0}^{\infty} \frac{x^{2 n}}{(2 n)!} ; \\
\sinh (x) & =\sum_{n=0}^{\infty} \frac{x^{2 n+1}}{(2 n+1)!} .
\end{aligned}
$$

Definition: Let $a<b$ in \mathcal{R} be given and let $f:[a, b] \rightarrow \mathcal{R}$. Then f is analytic on $[a, b]$ means for all $x \in[a, b]$ there exists a positive $\delta \sim b-a$ in \mathcal{R}, and there exists a sequence $\left(a_{n}(x)\right)$ in \mathcal{R} such that

$$
f(y)=\sum_{n=0}^{\infty} a_{n}(x)(y-x)^{n}
$$

for all $y \in(x-\delta, x+\delta) \cap[a, b]$.

Lemma: Let $f, g:[a, b] \rightarrow \mathcal{R}$ be analytic on $[a, b]$ and let $\alpha \in \mathcal{R}$ be given. Then $f+\alpha g$ and $f \cdot g$ are analytic on $[a, b]$.

Lemma: Let $f:[a, b] \rightarrow \mathcal{R}$ be analytic on $[a, b]$, let $g:[c, e] \rightarrow \mathcal{R}$ be analytic on $[c, e]$, and let $f([a, b]) \subset[c, e]$. Then $g \circ f$ is analytic on $[a, b]$.

Main Results on Analytic Functions: Let $a<b$ in \mathcal{R} be given, and let $f:[a, b] \rightarrow \mathcal{R}$ be analytic on $[a, b]$. Then

- f is bounded on $[a, b]$. In particular,

$$
i(f):=\min \{\lambda(f(x)): x \in[a, b]\}
$$

exists and is called the index of f on $[a, b]$.

- Intermediate Value Theorem: f assumes on $[a, b]$ every intermediate value between $f(a)$ and $f(b)$.
- Differentiability of the Analytic Functions: f is infinitely often differentiable on $[a, b]$, and for all $m \in \mathbb{N}$, we have that $f^{(m)}$ is analytic on $[a, b]$. Moreover, if f is given around $x_{0} \in[a, b]$ by $f(x)=\sum_{n=0}^{\infty} a_{n}\left(x_{0}\right)\left(x-x_{0}\right)^{n}$, then

$$
f^{(m)}(x)=\sum_{n=m}^{\infty} n \cdots(n-m+1) a_{n}\left(x_{0}\right)\left(x-x_{0}\right)^{n-m} .
$$

In particular, we have that

$$
a_{m}\left(x_{0}\right)=\frac{f^{(m)}\left(x_{0}\right)}{m!} \text { for all } m=0,1,2, \ldots
$$

- Extreme Value Theorem: f assumes a maximum and a minimum on $[a, b]$.
- The Mean Value Theorem: There exists $c \in$ (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

- Corollary: The following are true.
(i) If $f^{\prime}(x) \neq 0$ for all $x \in(a, b)$ then either
(a) $f^{\prime}(x)>0$ for all $x \in(a, b)$ and f is strictly increasing on $[a, b]$, or
(b) $f^{\prime}(x)<0$ for all $x \in(a, b)$ and f is strictly decreasing on $[a, b]$.
(ii) If $f^{\prime}(x)=0$ for all $x \in(a, b)$ then f is constant on $[a, b]$.

Measure Theory and Integration

[Shamseddine-Flynn-2016]. Measure theory and Lebesgue-like integration in two and three dimensions over the Levi-Civita field, Contemporary Mathematics, American Mathematical Society, Volume 665 (Advances in non-Archimedean Analysis), pp. 289- 325.
[Shamseddine-2013]. New results on integration on the Levi-Civita field, Indagationes Mathematicae, Volume 24 \# 1, pp. 199-211.
[Shamseddine-Berz-2003]. Measure theory and integration on the Levi-Civita field, Contemporary Mathematics, American Mathematical Society, Volume 319 (Ultrametric Functional Analysis), pp. 369-387.

Measure Theory and Integration on \mathcal{R}
Definition (Measurable Set): We say that $A \subset$ \mathcal{R} is measurable if $\forall \epsilon>0$ in \mathcal{R}, \exists sequences of mutually disjoint intervals $\left(I_{n}\right)$ and $\left(J_{n}\right)$ such that

$$
\bigcup_{n=1}^{\infty} I_{n} \subset A \subset \bigcup_{n=1}^{\infty} J_{n},
$$

$\sum_{n=1}^{\infty} l\left(I_{n}\right)$ and $\sum_{n=1}^{\infty} l\left(J_{n}\right)$ converge in \mathcal{R}, and

$$
\sum_{n=1}^{\infty} l\left(J_{n}\right)-\sum_{n=1}^{\infty} l\left(I_{n}\right) \leq \epsilon .
$$

Definition (The Measure of a Measurable Set): Suppose $A \subset \mathcal{R}$ is a measurable set. Then for every $k \in \mathbb{N}$ there are two sequences of mutually disjoint intervals $\left(I_{n}^{k}\right)_{n=1}^{\infty}$ and $\left(J_{n}^{k}\right)_{n=1}^{\infty}$ such that $\bigcup_{n=1}^{\infty} I_{n}^{k} \subset A \subset \bigcup_{n=1}^{\infty} J_{n}^{k}, \sum_{n=1}^{\infty} l\left(I_{n}^{k}\right)$ and $\sum_{n=1}^{\infty} l\left(J_{n}^{k}\right)$ both converge, and $\sum_{n=1}^{\infty} l\left(J_{n}^{k}\right)-\sum_{n=1}^{\infty} l\left(I_{n}^{k}\right)<d^{k}$.

- $\left(\sum_{n=1}^{\infty} l\left(I_{n}^{k}\right)\right)_{k=1}^{\infty}$ and $\left(\sum_{n=1}^{\infty} l\left(J_{n}^{k}\right)\right)_{k=1}^{\infty}$ are Cauchy sequences in \mathcal{R}. Therefore, $\lim _{k \rightarrow \infty} \sum_{n=1}^{\infty} l\left(I_{n}^{k}\right)$ and $\lim _{k \rightarrow \infty} \sum_{n=1}^{\infty} l\left(J_{n}^{k}\right)$ both exist in \mathcal{R}.
- $\lim _{k \rightarrow \infty}\left(\sum_{n=1}^{\infty} l\left(J_{n}^{k}\right)-\sum_{n=1}^{\infty} l\left(I_{n}^{k}\right)\right)=0$.
- We define $m(A)=\lim _{k \rightarrow \infty} \sum_{n=1}^{\infty} l\left(I_{n}^{k}\right)=\lim _{k \rightarrow \infty} \sum_{n=1}^{\infty} l\left(J_{n}^{k}\right)$ and we call this the measure of A.

Consequences:

- If $A \subset \mathcal{R}$ is measurable then
$m(A)=\inf \left\{\sum_{n=1}^{\infty} l\left(J_{n}\right): J_{n}\right.$'s are (mutually disjoint)
intervals, $A \subset \bigcup_{n=1}^{\infty} J_{n}$, and
$\sum_{n=1}^{\infty} l\left(J_{n}\right)$ converges $\}$
$=\sup \left\{\sum_{n=1}^{\infty} l\left(I_{n}\right): I_{n}\right.$,s are mutually disjoint
intervals, $\bigcup_{n=1}^{\infty} I_{n} \subset A$, and

$$
\left.\sum_{n=1}^{\infty} l\left(I_{n}\right) \text { converges }\right\} .
$$

- If $A \subset \mathcal{R}$ is measurable then $m(A) \geq 0$.
- $I(a, b)$ is measurable and $m(I(a, b))=b-a$.
- If $B \subset A \subset \mathcal{R}$ and if A and B are measurable, then $m(B) \leq m(A)$.
- If $A \subset \mathcal{R}$ is countable, then A is measurable and $m(A)=0$.

Proposition: For each $k \in \mathbb{N}$, let $A_{k} \subset \mathcal{R}$ be measurable such that $\left(m\left(A_{k}\right)\right)$ forms a null sequence. Then $\bigcup_{k=1}^{\infty} A_{k}$ is measurable and

$$
m\left(\bigcup_{k=1}^{\infty} A_{k}\right) \leq \sum_{k=1}^{\infty} m\left(A_{k}\right) .
$$

If the sets $\left(A_{k}\right)_{k=1}^{\infty}$ are mutually disjoint, then

$$
m\left(\bigcup_{k=1}^{\infty} A_{k}\right)=\sum_{k=1}^{\infty} m\left(A_{k}\right) .
$$

Proposition: Let $K \in \mathbb{N}$ be given and for each $k \in\{1, \ldots, K\}$, let A_{k} be measurable. Then $\bigcap_{k=1}^{K} A_{k}$ is measurable.

Proposition: Let $A, B \subset \mathcal{R}$ be measurable. Then

$$
m(A \cup B)=m(A)+m(B)-m(A \cap B) .
$$

Measurable Functions

Definition: Let $A \subset \mathcal{R}$ be measurable and let $f: A \rightarrow \mathcal{R}$ be bounded on A. Then we say that f is measurable on A if $\forall \epsilon>0, \exists$ a sequence of mutually disjoint intervals $\left(I_{n}\right)$ such that $I_{n} \subset A$ and f is analytic on I_{n} for all n; $\sum_{n=1}^{\infty} l\left(I_{n}\right)$ converges; and $m(A)-\sum_{n=1}^{\infty} l\left(I_{n}\right) \leq \epsilon$.

Proposition: Let $f: I(a, b) \rightarrow \mathcal{R}$ be measurable. Then f is continuous almost everywhere on $I(a, b)$. Moreover, if f is differentiable on $I(a, b)$ and if $f^{\prime}=0$ everywhere, then f is constant on $I(a, b)$.

Proposition: Let $A, B \subset \mathcal{R}$ be measurable, let f be a measurable function on A and B. Then f is measurable on $A \cup B$ and $A \cap B$.

Proposition: Let $A \subset \mathcal{R}$ be measurable, let $f, g: A \rightarrow \mathcal{R}$ be measurable and let $\alpha \in \mathcal{R}$ be given. Then $f+\alpha g$ and $f \cdot g$ are measurable on A.

Integration

Definition (Integral of an Analytic Function): Let $f: I(a, b) \rightarrow \mathcal{R}$ be analytic on $I(a, b)$, and let F be an analytic anti-derivative of f on $I(a, b)$. Then the integral of f over $I(a, b)$ is the \mathcal{R} number

$$
\int_{I(a, b)} f=\lim _{x \rightarrow b} F(x)-\lim _{x \rightarrow a} F(x) .
$$

\Downarrow

Definition (Integral of a Measurable Function): Let $A \subset \mathcal{R}$ be measurable and let $f: A \rightarrow \mathcal{R}$ be measurable. Then

Properties of the Integral:

- $\int_{A} \alpha=\alpha m(A)$.
- $f \leq 0$ on $A \Rightarrow \int_{A} f \leq 0$.
- $\int_{A}(f+\alpha g)=\int_{A} f+\alpha \int_{A} g$.
- $\int_{A \cup B} f=\int_{A} f+\int_{B} f-\int_{A \cap B} f$.
- $|f| \leq M$ on $A \Rightarrow\left|\int_{A} f\right| \leq M m(A)$.
- $\left(f_{n}\right)$ converges uniformly to f on A and f_{n} is measurable on A for each $n \Rightarrow f$ is measurable on A and

$$
\lim _{n \rightarrow \infty} \int_{A} f_{n}=\int_{A} f
$$

Measure Theory and Integration on \mathcal{R}^{2}

Definition (Simple Region): Let $G \subset \mathcal{R}^{2}$. Then we say that G is a simple region if there exist constants $a, b \in \mathcal{R}, a \leq b$ and analytic functions $g_{1}, g_{2}: I(a, b) \rightarrow \mathcal{R}, g_{1} \leq g_{2}$ on $I(a, b)$ such that

$$
G=\left\{(x, y) \in \mathcal{R}^{2}: y \in I\left(g_{1}(x), g_{2}(x)\right), x \in I(a, b)\right\}
$$

or

$$
G=\left\{(x, y) \in \mathcal{R}^{2}: x \in I\left(g_{1}(y), g_{2}(y)\right), y \in I(a, b)\right\} .
$$

Definition (Area of a Simple Region): Let $G \subset$ \mathcal{R}^{2} be a simple region given by

$$
G=\left\{(x, y) \in \mathcal{R}^{2}: y \in I\left(g_{1}(x), g_{2}(x)\right), x \in I(a, b)\right\} .
$$

Then we define the area of G, denoted by $a(G)$, as:

$$
a(G)=\int_{x \in I(a, b)}\left[g_{2}(x)-g_{1}(x)\right]
$$

Lemma: Let $H, G \subset \mathcal{R}$ be simple regions. Then $H \cap G, H \backslash G$ and $H \cup G$ can each be written as a finite union of mutually disjoint simple regions.

Definition (Measurable Set): Let $A \subset \mathcal{R}^{2}$. Then we say that A is measurable if for every $\epsilon>$ 0 in \mathcal{R} there exist two sequences of mutually disjoint simple regions $\left(G_{n}\right)_{n=1}^{\infty}$ and $\left(H_{n}\right)_{n=1}^{\infty}$ such that

$$
\begin{gathered}
\bigcup_{n=1}^{\infty} G_{n} \subset A \subset \bigcup_{n=1}^{\infty} H_{n}, \\
\sum_{n=1}^{\infty} a\left(G_{n}\right) \text { and } \sum_{n=1}^{\infty} a\left(H_{n}\right) \text { both converge, and } \\
\sum_{n=1}^{\infty} a\left(H_{n}\right)-\sum_{n=1}^{\infty} a\left(G_{n}\right)<\epsilon
\end{gathered}
$$

Definition (The Measure of a Measurable Set): Suppose $A \subset \mathcal{R}^{2}$ is a measurable set. Then for every $k \in \mathbb{N}$ there are two sequences of mutually disjoint simple regions $\left(G_{n}^{k}\right)_{n=1}^{\infty}$ and $\left(H_{n}^{k}\right)_{n=1}^{\infty}$ such that $\bigcup_{n=1}^{\infty} G_{n}^{k} \subset A \subset \bigcup_{n=1}^{\infty} H_{n}^{k}, \sum_{n=1}^{\infty} G_{n}^{k}$ and $\sum_{n=1}^{\infty} H_{n}^{k}$ both converge, and $\sum_{n=1}^{\infty} a\left(H_{n}^{k}\right)-\sum_{n=1}^{\infty} a\left(G_{n}^{k}\right)<d^{k}$.

- $\left(\sum_{n=1}^{\infty} a\left(G_{n}^{k}\right)\right)_{k=1}^{\infty}$ and $\left(\sum_{n=1}^{\infty} a\left(H_{n}^{k}\right)\right)_{k=1}^{\infty}$ are Cauchy sequences in \mathcal{R}. Therefore, $\lim _{k \rightarrow \infty} \sum_{n=1}^{\infty} a\left(G_{n}^{k}\right)$ and $\lim _{k \rightarrow \infty} \sum_{n=1}^{\infty} a\left(H_{n}^{k}\right)$ both exist in \mathcal{R}.
- $\lim _{k \rightarrow \infty}\left(\sum_{n=1}^{\infty} a\left(H_{n}^{k}\right)-\sum_{n=1}^{\infty} a\left(G_{n}^{k}\right)\right)=0$.
- We define $m(A)=\lim _{k \rightarrow \infty} \sum_{n=1}^{\infty} a\left(G_{n}^{k}\right)=\lim _{k \rightarrow \infty} \sum_{n=1}^{\infty} a\left(H_{n}^{k}\right)$ and we call this the measure of A.

Consequences:

- If $A \subset \mathcal{R}^{2}$ is measurable then
$m(A)=\inf \left\{\sum_{n=1}^{\infty} a\left(H_{n}\right): H_{n}\right.$'s are mutually disjoint
simple regions, $A \subset \bigcup_{n=1}^{\infty} H_{n}$, and
$\sum_{n=1}^{\infty} a\left(H_{n}\right)$ converges $\}$
$=\sup \left\{\sum_{n=1}^{\infty} a\left(G_{n}\right): G_{n}\right.$'s are mutually disjoint
simple regions, $\bigcup_{n=1}^{\infty} G_{n} \subset A$, and

$$
\left.\sum_{n=1}^{\infty} a\left(G_{n}\right) \text { converges }\right\} .
$$

- If $A \subset \mathcal{R}^{2}$ is measurable then $m(A) \geq 0$.
- If $B \subset A \subset \mathcal{R}^{2}$ and if A and B are measurable, then $m(B) \leq m(A)$.
- If $A \subset \mathcal{R}^{2}$ is countable, then A is measurable and $m(A)=0$.

Proposition: For each $k \in \mathbb{N}$, let $A_{k} \subset \mathcal{R}^{2}$ be measurable such that ($m\left(A_{k}\right)$) forms a null sequence. Then $\bigcup_{k=1}^{\infty} A_{k}$ is measurable and

$$
m\left(\bigcup_{k=1}^{\infty} A_{k}\right) \leq \sum_{k=1}^{\infty} m\left(A_{k}\right)
$$

If the sets $\left(A_{k}\right)_{k=1}^{\infty}$ are mutually disjoint, then equality holds.

Proposition: Let $K \in \mathbb{N}$ be given and for each $k \in\{1, \ldots, K\}$, let $A_{k} \subset \mathcal{R}^{2}$ be measurable. Then $\bigcap_{k=1}^{K} A_{k}$ is measurable.

Definition: Let $A \subset \mathcal{R}^{2}$ be a simple region.
If $A=\left\{(x, y) \in \mathcal{R}^{2}: y \in I\left(h_{1}(x), h_{2}(x)\right), x \in I(a, b)\right\}$, we define $\lambda_{x}(A)=\lambda(b-a)$ and $\lambda_{y}(A)=i\left(h_{2}(x)-\right.$ $\left.h_{1}(x)\right)$ on $I(a, b)$.

If $A=\left\{(x, y) \in \mathcal{R}^{2}: x \in I\left(h_{1}(y), h_{2}(y)\right), y \in I(a, b)\right\}$, we define $\lambda_{y}(A)=\lambda(b-a)$ and $\lambda_{x}(A)=i\left(h_{2}(y)-\right.$ $\left.h_{1}(y)\right)$ on $I(a, b)$.

If $\lambda_{x}(A)=\lambda_{y}(A)=0$ then we say that A is finite.

Measurable Functions

Definition: Let $A \subset \mathcal{R}^{2}$ be a simple region. Then we say that $f: A \rightarrow \mathcal{R}^{2}$ is analytic on A if for every $\left(x_{0}, y_{0}\right) \in A$, there is a simple region A_{0} around (x_{0}, y_{0}) satisfying $\lambda_{x}\left(A_{0}\right)=\lambda_{x}(A)$, $\lambda_{y}\left(A_{0}\right)=\lambda_{y}(A)$ and a sequence $\left(a_{i j}\right)_{i, j=0}^{\infty}$ such that for every $s, t \in \mathcal{R}$, if $\left(x_{0}+s, y_{0}+t\right) \in A \cap A_{0}$, then

$$
f\left(x_{0}+s, y_{0}+t\right)=\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} a_{i j} s^{i} t^{j} .
$$

Proposition: Let $A \subset \mathcal{R}^{2}$ be a simple region and let $f: A \rightarrow \mathcal{R}$ be an analytic function on A. Let $a<b$ in \mathcal{R} and let $g: I(a, b) \rightarrow \mathcal{R}$ be analytic on $I(a, b)$ such that for every $x \in I(a, b),(x, g(x)) \in A$. Then $F(x):=f(x, g(x))$ is an analytic function on $I(a, b)$.

Proposition: Let $A \subset \mathcal{R}^{2}$ be simple and let f : $A \rightarrow \mathcal{R}$ be analytic. Then f is bounded on A.

Definition (Measurable Function): Let $A \subset \mathcal{R}^{2}$ be measurable and let $f: A \rightarrow \mathcal{R}$ be bounded on A. Then we say that f is measurable on A if $\forall \epsilon>0$, there exists a sequence of mutually disjoint simple regions $\left(G_{n}\right)$ such that $G_{n} \subset A$ and f is analytic on G_{n} for all $n ; \sum_{n=1}^{\infty} a\left(G_{n}\right)$ converges; and $m(A)-\sum_{n=1}^{\infty} a\left(G_{n}\right) \leq \epsilon$.

Proposition: Let $A \subset \mathcal{R}^{2}$ be a measurable set and let $f: A \rightarrow \mathcal{R}$ be measurable on A. Then f is given locally by a power series almost everywhere on A. Moreover, if $\frac{\partial}{\partial x} f(x, y)=\frac{\partial}{\partial y} f(x, y)=0$ everywhere on A then $f(x, y)$ is constant on A.

Proposition: Let $A, B \subset \mathcal{R}^{2}$ be measurable, let f be a measurable function on A and B. Then f is measurable on $A \cup B$ and $A \cap B$.

Proposition: Let $A \subset \mathcal{R}^{2}$ be measurable, let $f, g: A \rightarrow \mathcal{R}$ be measurable and let $\alpha \in \mathcal{R}$ be given. Then $f+\alpha g$ and $f \cdot g$ are measurable on A.

Integration on \mathcal{R}^{2}

Definition: Let $G \subset \mathcal{R}^{2}$ be a simple region given by

$$
G=\left\{(x, y) \in \mathcal{R}^{2}: y \in I\left(h_{1}(x), h_{2}(x)\right), x \in I(a, b)\right\}
$$

and let $f: G \rightarrow \mathcal{R}$ be analytic on G. We define the integral of f over G as follows:

$$
\iint_{(x, y) \in G} f(x, y)=\int_{x \in I(a, b)}\left[\int_{y \in I\left(h_{1}(x), h_{2}(x)\right)} f(x, y)\right] .
$$

Proposition: Let $G \subset \mathcal{R}^{2}$ be a simple region, let $f, g: G \rightarrow \mathcal{R}$ be analytic on G, and let $\alpha \in \mathcal{R}$ be given. Then

- $\iint \alpha=\alpha a(G)$;

$$
(x, y) \in G
$$

- $\iint(f+\alpha g)(x, y)=\iint f(x, y)+\alpha \iint g(x, y)$; $(x, y) \in G \quad(x, y) \in G \quad(x, y) \in G$
- if $f \leq g$ on G then $\iint f(x, y) \leq \iint g(x, y)$;
- if $|f| \leq M$ on G then $\left|\iint_{(x, y) \in G} f(x, y)\right| \leq M a(G)$.

Integral of a Measurable Function: Let $A \subset \mathcal{R}^{2}$ be a measurable set, let $f: A \rightarrow \mathcal{R}$ be measurable on A, and let M be a bound for $|f|$ on A. For every $k \in \mathbb{N}$ there exists a sequence of mutually disjoint simple regions $\left(G_{n}^{k}\right)_{n=1}^{\infty}$ such that for every $n \in \mathbb{N}, f$ is analytic on $G_{n}^{k}, \bigcup_{n=1}^{\infty} G_{n}^{k} \subset A$, $\sum_{n=1}^{\infty} a\left(G_{n}^{k}\right)$ converges, and $m(A)-\sum_{n=1}^{\infty} a\left(G_{n}^{k}\right) \leq d^{k}$.

Since $\sum_{n=1}^{\infty} a\left(G_{n}^{k}\right)$ converges we have that $\lim _{n \rightarrow \infty} a\left(G_{n}^{k}\right)=$ 0 . Since $\left|\iint f(x, y)\right| \leq M a\left(G_{n}^{k}\right)$, it follows that $(x, y) \in G_{n}^{k}$
$\lim _{n \rightarrow \infty} \iint_{(x, y) \in G_{n}^{k}} f(x, y)=0$. Therefore, for every $k \in \mathbb{N}$,
$\sum_{n=1}^{\infty} \iint_{(x, y) \in G_{n}^{k}} f(x, y)$ converges.
We show that $\left(\sum_{n=1}^{\infty} \iint_{(x, y) \in G_{n}^{k}} f(x, y)\right)_{k=1}^{\infty}$ is a Cauchy sequence and hence it converges. We define

Theorem (Properties of the Double Integral): Let $A, B \subset \mathcal{R}^{2}$ be measurable sets, let f, g : $A, B \rightarrow \mathcal{R}$ be measurable functions on A, B, and let $\alpha \in \mathcal{R}$ be given. Then

- $\iint \alpha=\alpha m(A)$;

$$
(x, y) \in A
$$

- $\iint(f+\alpha g)(x, y)=\iint f(x, y)+\alpha \iint g(x, y)$;

$$
(x, y) \in A \quad(x, y) \in A \quad(x, y) \in A
$$

- if $f \leq g$ on A then $\iint f(x, y) \leq \iint g(x, y)$;

$$
(x, y) \in A \quad(x, y) \in A
$$

- if $|f| \leq M$ on A then $\left|\iint f(x, y)\right| \leq M m(A)$; $(x, y) \in A$
- $\quad \iint f(x, y)=\iint f(x, y)+\iint f(x, y)-$ $(x, y) \in A \cup B$
$(x, y) \in A \quad(x, y) \in B$ $\iint_{(x, y \in A \cap B} f(x, y) ;$
- $\left(f_{n}\right)$ converges uniformly to f on A and f_{n} is measurable on A for each $n \Rightarrow \lim _{n \rightarrow \infty} \iint_{(x, y) \in A} f_{n}(x, y)$ exists and

$$
\lim _{n \rightarrow \infty} \iint_{(x, y) \in A} f_{n}(x, y)=\iint_{(x, y) \in A} f(x, y) .
$$

Measure Theory and Integration on \mathcal{R}^{3}

Definition (Simple Region): Let $S \subset \mathcal{R}^{3}$. Then we say that S is simple if there exists a simple region $A \subset \mathcal{R}^{2}$ and two analytic functions h_{1}, h_{2} : $A \rightarrow \mathcal{R}$ such that $h_{1} \leq h_{2}$ everywhere on A and $S=\left\{(x, y, z) \in \mathcal{R}^{3}: z \in I\left(h_{1}(x, y), h_{2}(x, y)\right),(x, y) \in A\right\}$ or
$S=\left\{(x, y, z) \in \mathcal{R}^{3}: y \in I\left(h_{1}(x, z), h_{2}(x, z)\right),(x, z) \in A\right\}$ or
$S=\left\{(x, y, z) \in \mathcal{R}^{3}: x \in I\left(h_{1}(y, z), h_{2}(y, z)\right),(y, z) \in A\right\}$.
Definition (Volume of a Simple Region): Let $S=\left\{(x, y, z) \in \mathcal{R}^{3}: z \in I\left(h_{1}(x, y), h_{2}(x, y)\right),(x, y) \in A\right\}$ be a simple region in \mathcal{R}^{3}, with A, h_{1}, and h_{2} as above. Then we denote the volume of S with $v(S)$ and define it as

$$
v(S)=\iint_{(x, y) \in A}\left[h_{2}(x, y)-h_{1}(x, y)\right] .
$$

A similar definition can be used in the other two cases.

Definition: Let

$S=\left\{(x, y, z) \in \mathcal{R}^{3}: z \in I\left(h_{1}(x, y), h_{2}(x, y)\right),(x, y) \in A\right\}$ be a simple region in \mathcal{R}^{3}. We define $\lambda_{x}(S)=$ $\lambda_{x}(A), \lambda_{y}(S)=\lambda_{y}(A)$ and $\lambda_{z}(S)=i\left(h_{2}(x, y)-h_{1}(x, y)\right)$ on A. We do similarly in the other two cases. Then we say that that S is a finite region if $\lambda_{x}(S)=\lambda_{y}(S)=\lambda_{z}(S)=0$.

Definition (Analytic Function in \mathcal{R}^{3}): Suppose $S \subset \mathcal{R}^{3}$ is a simple region and let $f: S \rightarrow \mathcal{R}$. Then we say that f is analytic on S if for every $\left(x_{0}, y_{0}, z_{0}\right) \in S$ there exists a simple region $A \subset \mathcal{R}^{3}$ containing (x_{0}, y_{0}, z_{0}) and a sequence $\left(a_{i j k}\right)_{i, j, k=0}^{\infty}$ in \mathcal{R} such that $\lambda_{x}(A)=\lambda_{x}(S), \lambda_{y}(A)=$ $\lambda_{y}(S), \lambda_{z}(A)=\lambda_{z}(S)$, and if $\left(x_{0}+r, y_{0}+s, z_{0}+t\right) \in$ $S \cap A$ then

$$
f\left(x_{0}+r, y_{0}+s, z_{0}+t\right)=\sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sum_{k=0}^{\infty} a_{i j k} r^{i} s^{j} t^{k} .
$$

Proposition: Let $A \subset \mathcal{R}^{3}$ be a simple region, let $f, g: A \rightarrow \mathcal{R}$ be analytic on A, and let $\alpha \in \mathcal{R}$ be given. Then $f+\alpha g$ and $f \cdot g$ are analytic on A.

Proposition: Let $A \subset \mathcal{R}^{3}$ be a simple region and let $f: A \rightarrow \mathcal{R}$ be analytic on A. Let $B \subset \mathcal{R}^{2}$ be a simple region and let $g: B \rightarrow \mathcal{R}$ be an analytic function on B such that for every $(x, y) \in B$, $(x, y, g(x, y)) \in A$. Then $F(x, y):=f(x, y, g(x, y))$ is analytic on B.

Definition (Measurable Set): Let $S \subset \mathcal{R}^{3}$. Then we say that S is a measurable set if for every $\epsilon>0$ there exist two sequences of mutually disjoint simple regions $\left(G_{n}\right)_{n=1}^{\infty}$ and $\left(H_{n}\right)_{n=1}^{\infty}$ such that $\bigcup_{n=1}^{\infty} G_{n} \subset S \subset \bigcup_{n=1}^{\infty} H_{n}, \sum_{n=1}^{\infty} v\left(G_{n}\right)$ and $\sum_{n=1}^{\infty} v\left(H_{n}\right)$ converge, and $\sum_{n=1}^{\infty} v\left(H_{n}\right)-\sum_{n=1}^{\infty} v\left(G_{n}\right)<\epsilon$.

Measure of a Measurable Set: Let $S \subset \mathcal{R}^{3}$ be a measurable set. For every $k \in \mathbb{N}$, there exist two sequences of mutually disjoint simple regions, $\left(G_{n}^{k}\right)_{n=1}^{\infty}$ and $\left(H_{n}^{k}\right)_{n=1}^{\infty}$, such that $\bigcup_{n=1}^{\infty} G_{n}^{k} \subset$ $S \subset \bigcup_{n=1}^{\infty} H_{n}^{k}, \sum_{n=1}^{\infty} v\left(G_{n}^{k}\right)$ and $\sum_{n=1}^{\infty} v\left(H_{n}^{k}\right)$ converge, and $\sum_{n=1}^{\infty} v\left(H_{n}^{k}\right)-\sum_{n=1}^{\infty} v\left(G_{n}^{k}\right)<d^{k}$.

We show that $\left(\sum_{n=1}^{\infty} v\left(G_{n}^{k}\right)\right)_{k=1}^{\infty}$ and $\left(\sum_{n=1}^{\infty} v\left(H_{n}^{k}\right)\right)_{k=1}^{\infty}$ are Cauchy sequences; and hence they converge. Moreover,

$$
\lim _{k \rightarrow \infty} \sum_{n=1}^{\infty} v\left(G_{n}^{k}\right)=\lim _{k \rightarrow \infty} \sum_{n=1}^{\infty} v\left(H_{n}^{k}\right) .
$$

We call this limit the measure of S and we denote it by $m(S)$.
\Downarrow
Similar properties to those in the one-dimensional and two-dimensional cases!

Definition (Measurable Function):
Let $S \subset \mathcal{R}^{3}$ be measurable and let $f: S \rightarrow \mathcal{R}$ be bounded on S. Then we say that f is measurable on S if for every $\epsilon>0$ in \mathcal{R}, there exists a sequence of mutually disjoint simple regions $\left(G_{n}\right)_{n=1}^{\infty}$ such that $\bigcup_{n=1}^{\infty} G_{n} \subset S, \sum_{n=1}^{\infty} v\left(G_{n}\right)$ converges, $m(S)-\sum_{n=1}^{\infty} v\left(G_{n}\right)<\epsilon$, and for every $n \in \mathbb{N} f$ is analytic on G_{n}.

Integration in Three Dimensions

Definition (Integral of an Analytic Function over a Simple Region in \mathcal{R}^{3}): Let
$S=\left\{(x, y, z) \in \mathcal{R}^{3}: z \in I\left(h_{1}(x, y), h_{2}(x, y)\right),(x, y) \in A\right\} ;$ and let $f: S \rightarrow \mathcal{R}$ be analytic on S. We define the integral of f over S as follows:
$\iiint_{(x, y, z) \in S} f(x, y, z)=\iint_{(x, y) \in A}\left[\int_{z \in I\left(h_{1}(x, y), h_{2}(x, y)\right)} f(x, y, z)\right]$.

Consequences:

- For any $\alpha \in \mathcal{R}: \quad \iiint \alpha=\alpha v(S)$.

$$
(x, y, z) \in S
$$

- If $|f(x)| \leq M$ for all $x \in S$ then

$$
\left|\iiint_{(x, y, z) \in S} f(x, y, z)\right| \leq M v(S) .
$$

- etc...

Integral of a Measurable Function over a Measurable Set: Let $S \subset \mathcal{R}^{3}$ be a measurable set, let $f: S \rightarrow \mathcal{R}$ be measurable on S, and let M be a bound for f on S. For every $k \in \mathbb{N}$, there exists a sequence of mutually disjoint simple regions $\left(G_{n}^{k}\right)_{n=1}^{\infty}$ such that $\bigcup_{n=1}^{\infty} G_{n}^{k} \subset S, \sum_{n=1}^{\infty} v\left(G_{n}^{k}\right)$ converges, $m(S)-\sum_{n=1}^{\infty} v\left(G_{n}^{k}\right)<d^{k}$, and for every $n \in \mathbb{N} f$ is analytic on G_{n}^{k}.

For every $k, n \in \mathbb{N}$:

$$
\left|\iiint_{(x, y, z) \in G_{n}^{k}} f(x, y, z)\right| \leq M v\left(G_{n}^{k}\right) .
$$

It follows that

$$
\lim _{n \rightarrow \infty} \iiint_{(x, y, z) \in G_{n}^{k}} f(x, y, z)=0
$$

and so $\sum_{n=1}^{\infty} \iiint_{(x, y, z) \in G \in} f(x, y, z)$ converges.

We show that $\left(\sum_{n=1}^{\infty} \iiint_{(x, y, z) \in G_{n}^{k}} f(x, y, z)\right)_{k=1}^{\infty}$ is a Cauchy sequence and hence it converges.

We define the limit to be the integral of f over S :

$$
\iiint_{(x, y, z) \in S} f(x, y, z)=\lim _{k \rightarrow \infty} \sum_{n=1}^{\infty} \iiint_{(x, y, z) \in G_{n}^{k}} f(x, y, z) .
$$

$$
\Downarrow
$$

Similar properties of the triple integral as for double and single integrals!

The Delta Function on the Levi-Civita Field
Definition: Let $\delta: \mathcal{R} \rightarrow \mathcal{R}$ be given by

$$
\delta(x)=\left\{\begin{array}{ll}
\frac{3}{4} d^{-3}\left(d^{2}-x^{2}\right) & \text { if }|x|<d \\
0 & \text { if }|x| \geq d
\end{array} .\right.
$$

Proposition: Let $I \subset \mathcal{R}$ be an interval. If $(-d, d) \subset$ I then

$$
\int_{x \in I} \delta(x)=1
$$

Moreover, if $(-d, d) \cap I=\emptyset$ then

$$
\int_{x \in I} \delta(x)=0
$$

Proof: If $(-d, d) \subset I$ then

$$
\int_{x \in I} \delta(x)=\int_{x \in(-d, d)} \frac{3}{4} d^{-3}\left(d^{2}-x^{2}\right)=1
$$

If $(-d, d) \cap I=\emptyset$ then $\delta(x)=0$ for all $x \in I$; hence

$$
\int_{x \in I} \delta(x)=\int_{x \in I} 0=0 .
$$

Proposition: Let $I \subset \mathcal{R}$ be an interval containing $(-d, d)$. Then $\delta(x)$ has a measurable antiderivative on I that is equal to the Heaviside function on $I \cap \mathbb{R}$.

Proof: Let $H: I \rightarrow \mathcal{R}$ be given by

$$
H(x)= \begin{cases}0 & \text { if } x \leq-d \\ \frac{3}{4} d^{-3}\left(d^{2} x-\frac{1}{3} x^{3}\right)+\frac{1}{2} & \text { if }-d<x<d \\ 1 & \text { if } x \geq d\end{cases}
$$

Then $H(x)$ is measurable and differentiable on I with $H^{\prime}(x)=\delta(x)$. Moreover,

$$
\left.H(x)\right|_{\mathbb{R}}= \begin{cases}0 & \text { if } x<0 \\ 1 / 2 & \text { if } x=0 \\ 1 & \text { if } x>0\end{cases}
$$

Proposition: Let $a<b$ in \mathcal{R} be such that $\lambda(b-$ $a)<1$; and let $f:[a, b] \rightarrow \mathcal{R}$ be an analytic function with $i(f)=0$. Then for any $x_{0} \in[a+d, b-d]$, we have that

$$
\int_{x \in[a, b]} f(x) \delta\left(x-x_{0}\right)==_{0} f\left(x_{0}\right) .
$$

Proof: Fix $x_{0} \in[a+d, b-d]$. There exists $\eta>0$ in \mathcal{R} with $\lambda(\eta)=\lambda(b-a)$ such that, for any $x \in[a, b]$ satisfying $\left|x-x_{0}\right|<\eta$, we have that

$$
f(x)=f\left(x_{0}\right)+\sum_{k=1}^{\infty} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k} .
$$

Therefore,

$$
\begin{aligned}
& \int_{x \in[a, b]} f(x) \delta\left(x-x_{0}\right)=\int_{x \in\left[x_{0}-d, x_{0}+d\right]} f(x) \delta\left(x-x_{0}\right) \\
& =\int_{x \in\left[x_{0}-d, x_{0}+d\right]} f\left(x_{0}\right) \delta\left(x-x_{0}\right) \\
& +\int_{x \in\left[x_{0}-d, x_{0}+d\right]} \sum_{k=1}^{\infty} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k} \delta\left(x-x_{0}\right) \\
& =f\left(x_{0}\right)+\int_{x \in\left[x_{0}-d, x_{0}+d\right]} \sum_{k=1}^{\infty} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k} \delta\left(x-x_{0}\right) .
\end{aligned}
$$

For any $x \in\left[x_{0}-d, x_{0}+d\right],\left|x-x_{0}\right| \leq d$. Thus,

$$
\begin{aligned}
& \left|\int_{x \in\left[x_{0}-d, x_{0}+d\right]} \sum_{k=1}^{\infty} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k} \delta\left(x-x_{0}\right)\right| \\
& \leq \sum_{k=1}^{\infty} \frac{\left|f^{(k)}\left(x_{0}\right)\right|}{k!} d^{k} \int_{x \in\left[x_{0}-d, x_{0}+d\right]} \delta\left(x-x_{0}\right) \\
& =\sum_{k=1}^{\infty} \frac{\left|f^{(k)}\left(x_{0}\right)\right|}{k!} d^{k} .
\end{aligned}
$$

Since $i(f)=0$ on $[a, b]$, it follows that for all $k \in \mathbb{N}$ $\lambda\left(f^{(k)}\left(x_{0}\right)(b-a)^{k}\right) \geq 0$ and hence $\lambda\left(f^{(k)}\left(x_{0}\right) d^{k}\right)>0$.
Thus,

$$
\lambda\left(\sum_{k=1}^{\infty} \frac{f^{(k)}\left(x_{0}\right)}{k!} d^{k}\right)>0
$$

It follows that
$\lambda\left(\int_{x \in\left[x_{0}-d, x_{0}+d\right]} \sum_{k=1}^{\infty} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k} \delta\left(x-x_{0}\right)\right)>0 ;$
and hence

$$
\int_{x \in[a, b]} f(x) \delta\left(x-x_{0}\right)={ }_{0} f\left(x_{0}\right) .
$$

Proposition: Let $a<b<c$ in \mathcal{R} be such that $\lambda(b-a)<1$ and $\lambda(c-b)<1$; let $g:[a, b] \rightarrow \mathcal{R}$ and $h:[b, c] \rightarrow \mathcal{R}$ be analytic functions satisfying $g(b)=h(b)$ and $i(h)=i(g)=0$; and let the function $f:[a, c] \rightarrow \mathcal{R}$ be given by

$$
f(x)=\left\{\begin{array}{ll}
g(x) & \text { if } x \in[a, b) \\
h(x) & \text { if } x \in[b, c]
\end{array} .\right.
$$

Then for any $x_{0} \in[a+d, c-d]$, we have that

$$
\int_{x \in[a, c]} f(x) \delta\left(x-x_{0}\right)==_{0} f\left(x_{0}\right) .
$$

Definition (Delta Function in Two Dimensions):
Let $\delta_{2}: \mathcal{R}^{2} \rightarrow \mathcal{R}$ be given by

$$
\delta_{2}(x, y)=\delta(x) \delta(y)
$$

Proposition: Let $S \subset \mathcal{R}^{2}$ be measurable. If $(-d, d) \times(-d, d) \subset S$ then

$$
\iint_{S} \delta_{2}(x, y)=1
$$

If $(-d, d) \times(-d, d) \cap S=\emptyset$ then

$$
\iint_{S} \delta_{2}(x, y)=0
$$

Proposition: Let $S \subset \mathcal{R}^{2}$ be a simple region with $\lambda_{x}(S)<1$ and $\lambda_{y}(S)<1$, let $f: S \rightarrow \mathcal{R}$ be an analytic function with index $i(f)=0$ on S. Then, for any $\left(x_{0}, y_{0}\right) \in S$ that satisfies $\left(x_{0}-\right.$ $\left.a, x_{0}+a\right) \times\left(y_{0}-a, y_{0}+a\right) \subset S$ for some positive $a \gg d$ in \mathcal{R}, we have that

$$
\iint_{(x, y) \in S} f(x, y) \delta_{2}\left(x-x_{0}, y-y_{0}\right)=_{0} f\left(x_{0}, y_{0}\right)
$$

Definition (Delta Function in Three Dimensions):

Let $\delta_{3}: \mathcal{R}^{3} \rightarrow \mathcal{R}$ be given by

$$
\delta_{3}(x, y, z)=\delta(x) \delta(y) \delta(z) .
$$

Proposition: Let $S \subset \mathcal{R}^{3}$ be measurable. If $(-d, d) \times(-d, d) \times(-d, d) \subset S$ then

$$
\iiint_{S} \delta_{3}(x, y, z)=1
$$

If $(-d, d) \times(-d, d) \times(-d, d) \cap S=\emptyset$ then

$$
\iiint_{S} \delta_{3}(x, y, z)=0
$$

Proposition: Let $S \subset \mathcal{R}^{3}$ be a simple region with $\lambda_{x}(S)<1, \lambda_{y}(S)<1, \lambda_{z}(S)<1$, and let $f: S \rightarrow \mathcal{R}$ be an analytic function on S with $i(f)=0$ on S. Then, for any $\left(x_{0}, y_{0}, z_{0}\right) \in S$ that satisfies
$\left(x_{0}-a, x_{0}+a\right) \times\left(y_{0}-a, y_{0}+a\right) \times\left(z_{0}-a, z_{0}+a\right) \subset S$ for some positive $a \gg d$ in \mathcal{R}, we have that $\iiint f(x, y, z) \delta_{3}\left(x-x_{0}, y-y_{0}, z-z_{0}\right)={ }_{0} f\left(x_{0}, y_{0}, z_{0}\right)$. $(x, y, z) \in S$

Example (Damped Driven Harmonic Oscillator): Consider an underdamped, driven harmonic oscillator with mass m, viscous damping constant c, spring constant k, and driving force $f(t)$. Let $x(t)$ be the position of the oscillator at time t with $x(0)=0$ and $\dot{x}(0)=0$.

$$
\ddot{x}(t)+\frac{c}{m} \dot{x}(t)+\frac{k}{m} x(t)=\frac{f(t)}{m} .
$$

Let $\gamma=\frac{c}{2 \sqrt{m k}}$ and let $\omega_{0}=\sqrt{\frac{k}{m}}$. Thus,

$$
\ddot{x}(t)+2 \gamma \omega_{0} \dot{x}(t)+\omega_{0}^{2} x(t)=\frac{f(t)}{m} .
$$

Consider the underdamped case: $\gamma^{2} \omega_{0}^{2}-\omega_{0}^{2}<0$ (that is, $\gamma<1$).

We first find a piecewise analytic solution to

$$
\left(\frac{\partial^{2}}{\partial t^{2}}+2 \gamma \omega_{0} \frac{\partial}{\partial t}+\omega_{0}^{2}\right) G\left(t, t^{\prime}\right)=\delta\left(t-t^{\prime}\right) .
$$

We get:

$G\left(t, t^{\prime}\right)=e^{-\gamma \omega_{0}\left(t-t^{\prime}\right)}\left(A_{1} \sin \left(\omega\left(t-t^{\prime}\right)\right)+B_{1} \cos \left(\omega\left(t-t^{\prime}\right)\right)\right)$ if $t \leq t^{\prime}-d ;$

$$
e^{-\gamma \omega_{0}\left(t-t^{\prime}\right)}\left(A_{2} \sin \left(\omega\left(t-t^{\prime}\right)\right)+B_{2} \cos \left(\omega\left(t-t^{\prime}\right)\right)\right)
$$

$G\left(t, t^{\prime}\right)=$

$$
+\frac{3}{\omega_{0}^{2}}\left(\frac{d^{2}-\left(t-t^{\prime}\right)^{2}}{4}+\frac{\gamma\left(t-t^{\prime}\right)}{\omega_{0}}+\frac{1-4 \gamma^{2}}{2 \omega_{0}^{2}}\right)
$$

if $t^{\prime}-d<t<t^{\prime}+d$; and
$G\left(t, t^{\prime}\right)=e^{-\gamma \omega_{0}\left(t-t^{\prime}\right)}\left(A_{3} \sin \left(\omega\left(t-t^{\prime}\right)\right)+B_{3} \cos \left(\omega\left(t-t^{\prime}\right)\right)\right)$ if $t \geq t^{\prime}+d$.

We want the solution to satisfy the initial conditions $G\left(t^{\prime}-d, t^{\prime}\right)=0$ and $\left.\frac{\partial}{\partial t} G\left(t, t^{\prime}\right)\right|_{t=t^{\prime}-d}=0$ as well as continuity of $G\left(t, t^{\prime}\right)$ and $\frac{\partial}{\partial t} G\left(t, t^{\prime}\right)$ at $t=t^{\prime}-d$ and $t=t^{\prime}+d$.

From the initial conditions we get

$$
A_{1}=B_{1}=0
$$

From the continuity of G and its derivative at $t=t^{\prime}-d$ we then have

$$
\begin{aligned}
A_{2} & =\frac{3}{\omega_{0}^{2}} d^{-3} \exp \left(-\gamma \omega_{0} d\right) . \\
& {\left[\left(\frac{2 \gamma^{3}}{\omega_{0}}-\frac{3 \gamma}{2 \omega_{0}}+\left(\gamma^{2}-\frac{1}{2}\right) d\right) \frac{\cos \omega d}{\omega}\right.} \\
& \left.-\left(\frac{\gamma}{\omega_{0}}-\frac{1-4 \gamma^{2}}{2 \omega_{0}^{2}}\right) \sin \omega d\right] \\
B_{2} & =\frac{3}{\omega_{0}^{2}} d^{-3} \exp \left(-\gamma \omega_{0} d\right) \cdot \\
& {\left[\left(\frac{2 \gamma^{3}}{\omega_{0}}-\frac{3 \gamma}{2 \omega_{0}}+\left(\gamma^{2}-\frac{1}{2}\right) d\right) \frac{\sin \omega d}{\omega}\right.} \\
& \left.+\left(\frac{\gamma}{\omega_{0}}-\frac{1-4 \gamma^{2}}{2 \omega_{0}^{2}}\right) \cos \omega d\right] .
\end{aligned}
$$

Finally, from the continuity of G and its derivative at $t=t^{\prime}+d$ we get:

$$
\begin{aligned}
A_{3} & =\frac{3}{\omega_{0}^{2}} d^{-3} \exp \left(-\gamma \omega_{0} d\right) . \\
& {\left[\left(\frac{2 \gamma^{3}}{\omega_{0}}-\frac{3 \gamma}{2 \omega_{0}}+\left(\gamma^{2}-\frac{1}{2}\right) d\right) \frac{\cos \omega d}{\omega}\right.} \\
& -\left(\frac{\gamma}{\omega_{0}}-\frac{1-4 \gamma^{2}}{2 \omega_{0}^{2}}\right) \sin \omega d \\
& +\left(\frac{3 \gamma}{2 \omega_{0}}-\frac{2 \gamma^{3}}{\omega_{0}}+\left(\gamma^{2}-\frac{1}{2}\right) d\right) \frac{\cos \omega d}{\omega} \\
& \left.+\left(\frac{\gamma}{\omega_{0}}-\frac{1-4 \gamma^{2}}{2 \omega_{0}^{2}}\right) \sin \omega d\right]
\end{aligned}
$$

$$
B_{3}=\frac{3}{\omega_{0}^{2}} d^{-3} \exp \left(-\gamma \omega_{0} d\right) .
$$

$$
\left[\left(\frac{2 \gamma^{3}}{\omega_{0}}-\frac{3 \gamma}{2 \omega_{0}}+\left(\gamma^{2}-\frac{1}{2}\right) d\right) \frac{\sin \omega d}{\omega}\right.
$$

$$
+\left(\frac{\gamma}{\omega_{0}}-\frac{1-4 \gamma^{2}}{2 \omega_{0}^{2}}\right) \cos \omega d
$$

$$
-\left(\frac{3 \gamma}{2 \omega_{0}}-\frac{2 \gamma^{3}}{\omega_{0}}+\left(\gamma^{2}-\frac{1}{2}\right) d\right) \frac{\sin \omega d}{\omega}
$$

$$
\left.+\left(\frac{\gamma}{\omega_{0}}-\frac{1-4 \gamma^{2}}{2 \omega_{0}^{2}}\right) \cos \omega d\right]
$$

Note that $A_{3}={ }_{0} \frac{1}{\omega}$ and $B_{3}={ }_{0} 0$; and hence

$$
\left.G\left(t, t^{\prime}\right)\right|_{\mathbb{R}}={ }_{0} \begin{cases}0 & \text { if } t<t^{\prime} \\ \frac{1}{\omega} \exp \left(-\gamma \omega_{0}\left(t-t^{\prime}\right)\right) \sin \left(\omega\left(t-t^{\prime}\right)\right) & \text { if } t \geq t^{\prime}\end{cases}
$$

which is the classical Green's function for this problem.

Now assume the driving force is given by

$$
f(t)= \begin{cases}m \exp \left(-\gamma \omega_{0} t\right) & \text { if } t \geq 0 \\ 0 & \text { if } t<0\end{cases}
$$

Then we obtain the real solution as:

$$
x(t)={ }_{0} \int_{t^{\prime} \in\left[-d^{-1}, d^{-1}\right]} G\left(t, t^{\prime}\right) \frac{f\left(t^{\prime}\right)}{m} .
$$

But $G\left(t, t^{\prime}\right)=0$ for $t^{\prime}>t+d$ and $f\left(t^{\prime}\right)=0$ for $t^{\prime}<0$; thus,

$$
\begin{aligned}
x(t) & =0 \int_{t^{\prime} \in[0, t+d]} G\left(t, t^{\prime}\right) \exp \left(-\gamma \omega_{0} t^{\prime}\right) \\
& =\int_{t^{\prime} \in[0, t-d]} G\left(t, t^{\prime}\right) \exp \left(-\gamma \omega_{0} t^{\prime}\right) \\
& +\int_{t^{\prime} \in[t-d, t+d]} G\left(t, t^{\prime}\right) \exp \left(-\gamma \omega_{0} t^{\prime}\right) \\
& ={ }_{0} e^{-\gamma \omega_{0} t} \frac{\cos (\omega t)-1}{\omega^{2}},
\end{aligned}
$$

which agrees with the classical solution.

