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The Levi-Civita Fields R and C

• Let R = {f : Q→ R|supp(f ) is left-finite}.

• For x ∈ R, define

λ(x) =

{
min(supp(x)) if x 6= 0
∞ if x = 0

.

•Arithmetic on R: Let x, y ∈ R. We define
x + y and x · y as follows. For q ∈ Q, let

(x + y)[q] = x[q] + y[q]

(x · y)[q] =
∑

q1+q2=q

x[q1] · y[q2].

Then x + y ∈ R and x · y ∈ R.

Result: (R,+, ·) is a field.

Definition: C := R + iR. Then (C,+, ·) is also a
field.



Order in R

•Define the relation ≤ on R×R as follows:

x ≤ y if x = y or (x 6= y and (x− y)[λ(x− y)] < 0) .

• (R,+, ·,≤) is an ordered field.

• R is real closed.

⇓

C is algebraically closed.

• The map E : R→ R, given by

E(r)[q] =

{
r if q = 0
0 else

,

is an order preserving embedding.

• There are infinitely small and infinitely large
elements in R: The number d, given by

d[q] =

{
1 if q = 1
0 else

,

is infinitely small; while d−1 is infinitely large.



For x ∈ R, define

|x| =

{
x if x ≥ 0
−x if x < 0

;

|x|u =

{
e−λ(x) if x 6= 0
0 if x = 0

.

For z = x + iy ∈ C, define

|z| =
√
|x|2 + |y|2;

|z|u =

{
e−λ(z) if z 6= 0
0 if z = 0

= max{|x|u, |y|u} since λ(z) = min{λ(x), λ(y)}.

Note that |·| and |·|u induce the same topology
τv on R (or C). Moreover, C is topologically
isomorphic to R2 provided with the product
topology induced by |·| in R.



Topological Structure of R

Properties of the Topology τv (induced by | · |
or | · |u):

• (R, τv) is a disconnected topological space.

• (R, τv) is Hausdorff.

• There are no countable bases.

• The topology induced to R is the discrete
topology.

• (R, τv) is not locally compact.

• τv is zero-dimensional (i.e. it has a base
consisting of clopen sets).

• τv is not a vector topology.

• For all x ∈ R (or C): x =
∑∞

n=1 x[qn] · dqn.



Weak Topology τw: Induced by the family of
semi-norms (‖ · ‖r)r∈Q, where ‖ · ‖r : R → R is
given by

‖x‖r = sup{|x[q]| : q ≤ r}.
It is a metric topology, induced by the metric

∆(x, y) =
∑
k∈N

2−k
‖x− y‖k

1 + ‖x− y‖k
.

Properties of the Weak Topology:

• (R, τw) is Hausdorff with countable bases.

• τw is a vector topology.

• The topology induced on R is the usual or-
der topology on R.

• (R, τw) is not locally bounded (hence not lo-
cally compact).



Further Useful Notations

For x, y ∈ R, we say

• x ∼ y if λ(x) = λ(y).

• x ≈ y if x ∼ y and x[λ(x)] = y[λ(y)].

• x =r y if x[q] = y[q] ∀q ≤ r.

• For nonnegative x, y in R, say x � y if x <
y and x 6∼ y; say x� y if y � x.

Examples: 100 ∼ 1; 3 + d ≈ 3; dq � 1 if q > 0.



Uniqueness of R and C

• R is the smallest Cauchy-complete and real
closed non-Archimedean field extension of
R.

– It is small enough so that the R-numbers
can be implemented on a computer, thus
allowing for computational applications.

• C is the smallest Cauchy-complete and alge-
braically closed non-Archimedean field ex-
tension of C.



Power Series and Analytic Functions
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Theorem (Strong Convergence Criterion): Let
(an) be a sequence in R, and let

λ0 = lim sup
n→∞

(
−λ(an)

n

)
in R.

Let x0 ∈ R be fixed and let x ∈ R be given.
Then

∑∞
n=0 an(x−x0)n converges strongly if λ(x−

x0) > λ0 and is divergent if λ(x − x0) < λ0 or if
λ(x − x0) = λ0 and −λ(an)/n > λ0 for infinitely
many n.



Theorem (Weak Convergence Criterion): Let
(an), λ0 and x0 be as above, and let x ∈ R be such
that λ(x−x0) = λ0. For each n ≥ 0, let bn = and

nλ0.
Suppose that the sequence (bn) is regular and
write ∪∞n=0supp(bn) = {q1, q2, . . .}; with qj1 < qj2 if
j1 < j2. For each n, write bn =

∑∞
j=1 bnjd

qj; let

r =
1

sup
{

lim supn→∞ |bnj|1/n : j ≥ 1
}.

Then
∑∞

n=0 an(x−x0)n converges absolutely weakly
in R if |(x− x0)[λ0]| < r and is weakly divergent
in R if |(x− x0)[λ0]| > r.

Corollary (Power Series with Real Coefficients):
Let

∑∞
n=0 anX

n, an ∈ R, be a power series with
classical radius of convergence equal to η. Let
x ∈ R, and let An(x) =

∑n
i=0 aix

i ∈ R. Then, for
|x| < η and |x| 6≈ η, the sequence (An(x)) con-
verges absolutely weakly. We define the limit
to be the continuation of the power series on R.



Transcendental Functions: For any x ∈ R, at
most finite in absolute value, define

exp(x) =

∞∑
n=0

xn

n!
;

cos(x) =

∞∑
n=0

(−1)n
x2n

(2n)!
;

sin(x) =

∞∑
n=0

(−1)n
x2n+1

(2n + 1)!
;

cosh(x) =

∞∑
n=0

x2n

(2n)!
;

sinh(x) =

∞∑
n=0

x2n+1

(2n + 1)!
.



Definition: Let a < b in R be given and let
f : [a, b] → R. Then f is analytic on [a, b] means
for all x ∈ [a, b] there exists a positive δ ∼ b − a
in R, and there exists a sequence (an (x)) in R
such that

f (y) =

∞∑
n=0

an (x) (y − x)n

for all y ∈ (x− δ, x + δ) ∩ [a, b].

Lemma: Let f, g : [a, b] → R be analytic on [a, b]
and let α ∈ R be given. Then f + αg and f · g
are analytic on [a, b].

Lemma: Let f : [a, b] → R be analytic on [a, b],
let g : [c, e] → R be analytic on [c, e], and let
f ([a, b]) ⊂ [c, e]. Then g ◦ f is analytic on [a, b].



Main Results on Analytic Functions: Let a < b
in R be given, and let f : [a, b] → R be analytic
on [a, b]. Then

• f is bounded on [a, b]. In particular,

i(f ) := min{λ(f (x)) : x ∈ [a, b]}
exists and is called the index of f on [a, b].

• Intermediate Value Theorem: f assumes on
[a, b] every intermediate value between f (a)
and f (b).

•Differentiability of the Analytic Functions:
f is infinitely often differentiable on [a, b],
and for all m ∈ N, we have that f (m) is ana-
lytic on [a, b]. Moreover, if f is given around
x0 ∈ [a, b] by f (x) =

∑∞
n=0 an (x0) (x− x0)n, then

f (m) (x) =

∞∑
n=m

n · · · (n−m + 1) an (x0) (x− x0)n−m .

In particular, we have that

am (x0) =
f (m) (x0)

m!
for all m = 0, 1, 2, . . . .



• Extreme Value Theorem: f assumes a max-
imum and a minimum on [a, b].

• The Mean Value Theorem: There exists c ∈
(a, b) such that

f ′ (c) =
f (b)− f (a)

b− a
.

•Corollary: The following are true.

(i) If f ′ (x) 6= 0 for all x ∈ (a, b) then either

(a) f ′ (x) > 0 for all x ∈ (a, b) and f is
strictly increasing on [a, b], or

(b) f ′ (x) < 0 for all x ∈ (a, b) and f is
strictly decreasing on [a, b].

(ii) If f ′ (x) = 0 for all x ∈ (a, b) then f is con-
stant on [a, b].



Measure Theory and Integration
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Measure Theory and Integration on R

Definition (Measurable Set): We say that A ⊂
R is measurable if ∀ ε > 0 in R, ∃ sequences
of mutually disjoint intervals (In) and (Jn) such
that⋃∞

n=1 In ⊂ A ⊂
⋃∞
n=1 Jn,∑∞

n=1 l(In) and
∑∞

n=1 l(Jn) converge in R, and
∞∑
n=1

l(Jn)−
∞∑
n=1

l(In) ≤ ε.



Definition (The Measure of a Measurable Set):
Suppose A ⊂ R is a measurable set. Then for
every k ∈ N there are two sequences of mutually
disjoint intervals (Ikn)∞n=1 and (Jkn)∞n=1 such that
∞⋃
n=1

Ikn ⊂ A ⊂
∞⋃
n=1

Jkn,
∞∑
n=1

l
(
Ikn
)

and
∞∑
n=1

l
(
Jkn
)

both

converge, and
∞∑
n=1

l
(
Jkn
)
−
∞∑
n=1

l
(
Ikn
)
< dk.

•
( ∞∑
n=1

l
(
Ikn
))∞

k=1

and

( ∞∑
n=1

l
(
Jkn
))∞

k=1

are Cauchy

sequences in R. Therefore, lim
k→∞

∞∑
n=1

l
(
Ikn
)

and

lim
k→∞

∞∑
n=1

l
(
Jkn
)

both exist in R.

• lim
k→∞

( ∞∑
n=1

l
(
Jkn
)
−
∞∑
n=1

l
(
Ikn
))

= 0.

•We define m(A) = lim
k→∞

∞∑
n=1

l
(
Ikn
)

= lim
k→∞

∞∑
n=1

l
(
Jkn
)

and we call this the measure of A.



Consequences:

• If A ⊂ R is measurable then

m(A) = inf

{ ∞∑
n=1

l (Jn) : Jn’s are (mutually disjoint)

intervals, A ⊂
∞⋃
n=1

Jn, and

∞∑
n=1

l (Jn) converges

}

= sup

{ ∞∑
n=1

l (In) : In’s are mutually disjoint

intervals,
∞⋃
n=1

In ⊂ A, and

∞∑
n=1

l (In) converges

}
.

• If A ⊂ R is measurable then m(A) ≥ 0.
• I(a, b) is measurable and m(I(a, b)) = b− a.
• If B ⊂ A ⊂ R and if A and B are measurable,

then m(B) ≤ m(A).
• If A ⊂ R is countable, then A is measurable

and m(A) = 0.



Proposition: For each k ∈ N, let Ak ⊂ R be mea-
surable such that (m(Ak)) forms a null sequence.
Then

⋃∞
k=1Ak is measurable and

m

( ∞⋃
k=1

Ak

)
≤

∞∑
k=1

m (Ak) .

If the sets (Ak)
∞
k=1 are mutually disjoint, then

m

( ∞⋃
k=1

Ak

)
=

∞∑
k=1

m (Ak) .

Proposition: Let K ∈ N be given and for each
k ∈ {1, . . . , K}, let Ak be measurable. Then⋂K
k=1Ak is measurable.

Proposition: Let A,B ⊂ R be measurable. Then

m(A ∪B) = m(A) + m(B)−m(A ∩B).



Measurable Functions

Definition: Let A ⊂ R be measurable and let
f : A→ R be bounded on A. Then we say that
f is measurable on A if ∀ ε > 0, ∃ a sequence of
mutually disjoint intervals (In) such that In ⊂ A
and f is analytic on In for all n;

∑∞
n=1 l (In) con-

verges; and m(A)−
∑∞

n=1 l(In) ≤ ε.

Proposition: Let f : I(a, b) → R be measur-
able. Then f is continuous almost everywhere
on I(a, b). Moreover, if f is differentiable on
I(a, b) and if f ′ = 0 everywhere, then f is con-
stant on I(a, b).

Proposition: Let A,B ⊂ R be measurable, let f
be a measurable function on A and B. Then f
is measurable on A ∪B and A ∩B.

Proposition: Let A ⊂ R be measurable, let
f, g : A → R be measurable and let α ∈ R be
given. Then f + αg and f · g are measurable on
A.



Integration

Definition (Integral of an Analytic Function):
Let f : I(a, b)→ R be analytic on I(a, b), and let
F be an analytic anti-derivative of f on I(a, b).
Then the integral of f over I(a, b) is the R num-
ber ∫

I(a,b)

f = lim
x→b

F (x)− lim
x→a

F (x).

⇓

Definition (Integral of a Measurable Function):
Let A ⊂ R be measurable and let f : A→ R be
measurable. Then∫

A

f = lim∑∞
n=1 l(In)→ m(A)

∪∞n=1In ⊂ A

(In) are mutually disjoint
f is analytic on In

∞∑
n=1

∫
In

f.



Properties of the Integral:

•
∫
A α = αm(A).

• f ≤ 0 on A ⇒
∫
A f ≤ 0.

•
∫
A(f + αg) =

∫
A f + α

∫
A g.

•
∫
A∪B f =

∫
A f +

∫
B f −

∫
A∩B f .

• |f | ≤M on A ⇒
∣∣∫
A f
∣∣ ≤Mm(A).

• (fn) converges uniformly to f on A and fn is
measurable on A for each n ⇒ f is measur-
able on A and

lim
n→∞

∫
A

fn =

∫
A

f.



Measure Theory and Integration on R2

Definition (Simple Region): Let G ⊂ R2. Then
we say that G is a simple region if there exist
constants a, b ∈ R, a ≤ b and analytic functions
g1, g2 : I(a, b)→ R, g1 ≤ g2 on I(a, b) such that

G = {(x, y) ∈ R2 : y ∈ I(g1(x), g2(x)), x ∈ I(a, b)}
or

G = {(x, y) ∈ R2 : x ∈ I(g1(y), g2(y)), y ∈ I(a, b)}.

Definition (Area of a Simple Region): Let G ⊂
R2 be a simple region given by

G = {(x, y) ∈ R2 : y ∈ I(g1(x), g2(x)), x ∈ I(a, b)}.

Then we define the area of G, denoted by a(G),
as:

a(G) =

∫
x∈I(a,b)

[g2(x)− g1(x)]



Lemma: Let H,G ⊂ R be simple regions. Then
H ∩G, H \G and H ∪G can each be written as a
finite union of mutually disjoint simple regions.

Definition (Measurable Set): Let A ⊂ R2. Then
we say that A is measurable if for every ε >
0 in R there exist two sequences of mutually
disjoint simple regions (Gn)∞n=1 and (Hn)∞n=1 such
that ∞⋃

n=1

Gn ⊂ A ⊂
∞⋃
n=1

Hn,

∞∑
n=1

a(Gn) and
∞∑
n=1

a(Hn) both converge, and

∞∑
n=1

a(Hn)−
∞∑
n=1

a(Gn) < ε.



Definition (The Measure of a Measurable Set):
Suppose A ⊂ R2 is a measurable set. Then for
every k ∈ N there are two sequences of mutually
disjoint simple regions (Gk

n)∞n=1 and (Hk
n)∞n=1 such

that
∞⋃
n=1

Gk
n ⊂ A ⊂

∞⋃
n=1

Hk
n,

∞∑
n=1

Gk
n and

∞∑
n=1

Hk
n both

converge, and
∞∑
n=1

a(Hk
n)−

∞∑
n=1

a(Gk
n) < dk.

•
( ∞∑
n=1

a(Gk
n)

)∞
k=1

and

( ∞∑
n=1

a(Hk
n)

)∞
k=1

are Cauchy

sequences inR. Therefore, lim
k→∞

∞∑
n=1

a(Gk
n) and

lim
k→∞

∞∑
n=1

a(Hk
n) both exist in R.

• lim
k→∞

( ∞∑
n=1

a(Hk
n)−

∞∑
n=1

a(Gk
n)

)
= 0.

•We define m(A) = lim
k→∞

∞∑
n=1

a(Gk
n) = lim

k→∞

∞∑
n=1

a(Hk
n)

and we call this the measure of A.



Consequences:

• If A ⊂ R2 is measurable then

m(A) = inf

{ ∞∑
n=1

a(Hn) : Hn’s are mutually disjoint

simple regions, A ⊂
∞⋃
n=1

Hn, and

∞∑
n=1

a(Hn) converges

}

= sup

{ ∞∑
n=1

a(Gn) : Gn’s are mutually disjoint

simple regions,
∞⋃
n=1

Gn ⊂ A, and

∞∑
n=1

a(Gn) converges

}
.

• If A ⊂ R2 is measurable then m(A) ≥ 0.

• If B ⊂ A ⊂ R2 and if A and B are measur-
able, then m(B) ≤ m(A).

• If A ⊂ R2 is countable, then A is measurable
and m(A) = 0.



Proposition: For each k ∈ N, let Ak ⊂ R2 be
measurable such that (m(Ak)) forms a null se-
quence. Then

⋃∞
k=1Ak is measurable and

m

( ∞⋃
k=1

Ak

)
≤

∞∑
k=1

m (Ak) .

If the sets (Ak)
∞
k=1 are mutually disjoint, then

equality holds.

Proposition: Let K ∈ N be given and for each
k ∈ {1, . . . , K}, let Ak ⊂ R2 be measurable. Then⋂K
k=1Ak is measurable.

Definition: Let A ⊂ R2 be a simple region.

If A = {(x, y) ∈ R2 : y ∈ I(h1(x), h2(x)), x ∈ I(a, b)},
we define λx(A) = λ(b − a) and λy(A) = i(h2(x) −
h1(x)) on I(a, b).

If A = {(x, y) ∈ R2 : x ∈ I(h1(y), h2(y)), y ∈ I(a, b)},
we define λy(A) = λ(b − a) and λx(A) = i(h2(y) −
h1(y)) on I(a, b).

If λx(A) = λy(A) = 0 then we say that A is finite.



Measurable Functions

Definition: Let A ⊂ R2 be a simple region.
Then we say that f : A → R2 is analytic on
A if for every (x0, y0) ∈ A, there is a simple re-
gion A0 around (x0, y0) satisfying λx(A0) = λx(A),
λy(A0) = λy(A) and a sequence (aij)

∞
i,j=0 such that

for every s, t ∈ R, if (x0 + s, y0 + t) ∈ A ∩A0, then

f (x0 + s, y0 + t) =

∞∑
i=0

∞∑
j=0

aijs
itj.

Proposition: Let A ⊂ R2 be a simple region and
let f : A→ R be an analytic function on A. Let
a < b in R and let g : I(a, b)→ R be analytic on
I(a, b) such that for every x ∈ I(a, b), (x, g(x)) ∈ A.
Then F (x) := f (x, g(x)) is an analytic function on
I(a, b).

Proposition: Let A ⊂ R2 be simple and let f :
A→ R be analytic. Then f is bounded on A.



Definition (Measurable Function): Let A ⊂ R2

be measurable and let f : A → R be bounded
on A. Then we say that f is measurable on A
if ∀ ε > 0, there exists a sequence of mutually
disjoint simple regions (Gn) such that Gn ⊂ A
and f is analytic on Gn for all n;

∑∞
n=1 a (Gn)

converges; and m(A)−
∑∞

n=1 a(Gn) ≤ ε.

Proposition: Let A ⊂ R2 be a measurable set
and let f : A→ R be measurable on A. Then f
is given locally by a power series almost every-
where on A. Moreover, if ∂

∂xf (x, y) = ∂
∂yf (x, y) = 0

everywhere on A then f (x, y) is constant on A.

Proposition: Let A,B ⊂ R2 be measurable, let
f be a measurable function on A and B. Then
f is measurable on A ∪B and A ∩B.

Proposition: Let A ⊂ R2 be measurable, let
f, g : A → R be measurable and let α ∈ R be
given. Then f + αg and f · g are measurable on
A.



Integration on R2

Definition: Let G ⊂ R2 be a simple region given
by

G = {(x, y) ∈ R2 : y ∈ I(h1(x), h2(x)), x ∈ I(a, b)}
and let f : G → R be analytic on G. We define
the integral of f over G as follows:∫∫

(x,y)∈G

f (x, y) =

∫
x∈I(a,b)

 ∫
y∈I(h1(x),h2(x))

f (x, y)

 .
Proposition: Let G ⊂ R2 be a simple region, let
f, g : G→ R be analytic on G, and let α ∈ R be
given. Then

•
∫∫

(x,y)∈G
α = αa(G);

•
∫∫

(x,y)∈G
(f +αg)(x, y) =

∫∫
(x,y)∈G

f (x, y)+α
∫∫

(x,y)∈G
g(x, y);

• if f ≤ g on G then
∫∫

(x,y)∈G
f (x, y) ≤

∫∫
(x,y)∈G

g(x, y);

• if |f | ≤M on G then

∣∣∣∣∣ ∫∫(x,y)∈G
f (x, y)

∣∣∣∣∣ ≤Ma(G).



Integral of a Measurable Function: Let A ⊂ R2

be a measurable set, let f : A → R be measur-
able on A, and let M be a bound for |f | on A.
For every k ∈ N there exists a sequence of mu-
tually disjoint simple regions (Gk

n)∞n=1 such that

for every n ∈ N, f is analytic on Gk
n,

∞⋃
n=1

Gk
n ⊂ A,

∞∑
n=1

a(Gk
n) converges, and m(A)−

∞∑
n=1

a(Gk
n) ≤ dk.

Since
∞∑
n=1

a(Gk
n) converges we have that lim

n→∞
a(Gk

n) =

0. Since |
∫∫

(x,y)∈Gkn

f (x, y)| ≤ Ma(Gk
n), it follows that

lim
n→∞

∫∫
(x,y)∈Gkn

f (x, y) = 0. Therefore, for every k ∈ N,

∞∑
n=1

∫∫
(x,y)∈Gkn

f (x, y) converges.

We show that (
∞∑
n=1

∫∫
(x,y)∈Gkn

f (x, y))∞k=1 is a Cauchy

sequence and hence it converges. We define∫∫
(x,y)∈A

f (x, y) = lim
∞∑

n=1
a(Gn)→m(A),

∞⋃
n=1

Gn⊂A,Gn’s mutually disjoint,

f is analytic on Gn for every n

∞∑
n=1

∫∫
(x,y)∈Gn

f (x, y)



Theorem (Properties of the Double Integral):
Let A,B ⊂ R2 be measurable sets, let f, g :
A,B → R be measurable functions on A,B, and
let α ∈ R be given. Then

•
∫∫

(x,y)∈A
α = αm(A);

•
∫∫

(x,y)∈A
(f +αg)(x, y) =

∫∫
(x,y)∈A

f (x, y) +α
∫∫

(x,y)∈A
g(x, y);

• if f ≤ g on A then
∫∫

(x,y)∈A
f (x, y) ≤

∫∫
(x,y)∈A

g(x, y);

• if |f | ≤M on A then |
∫∫

(x,y)∈A
f (x, y)| ≤Mm(A);

•
∫∫

(x,y)∈A∪B
f (x, y) =

∫∫
(x,y)∈A

f (x, y) +
∫∫

(x,y)∈B
f (x, y)−∫∫

(x,y)∈A∩B
f (x, y);

• (fn) converges uniformly to f on A and fn is
measurable on A for each n⇒ lim

n→∞

∫∫
(x,y)∈A

fn(x, y)

exists and

lim
n→∞

∫∫
(x,y)∈A

fn(x, y) =

∫∫
(x,y)∈A

f (x, y).



Measure Theory and Integration on R3

Definition (Simple Region): Let S ⊂ R3. Then
we say that S is simple if there exists a simple
region A ⊂ R2 and two analytic functions h1, h2 :
A→ R such that h1 ≤ h2 everywhere on A and

S = {(x, y, z) ∈ R3 : z ∈ I(h1(x, y), h2(x, y)), (x, y) ∈ A}
or

S = {(x, y, z) ∈ R3 : y ∈ I(h1(x, z), h2(x, z)), (x, z) ∈ A}
or

S = {(x, y, z) ∈ R3 : x ∈ I(h1(y, z), h2(y, z)), (y, z) ∈ A}.

Definition (Volume of a Simple Region): Let

S = {(x, y, z) ∈ R3 : z ∈ I(h1(x, y), h2(x, y)), (x, y) ∈ A}
be a simple region in R3, with A, h1, and h2 as
above. Then we denote the volume of S with
v(S) and define it as

v(S) =

∫∫
(x,y)∈A

[h2(x, y)− h1(x, y)] .

A similar definition can be used in the other
two cases.



Definition: Let

S = {(x, y, z) ∈ R3 : z ∈ I(h1(x, y), h2(x, y)), (x, y) ∈ A}
be a simple region in R3. We define λx(S) =
λx(A), λy(S) = λy(A) and λz(S) = i(h2(x, y)−h1(x, y))
on A. We do similarly in the other two cases.
Then we say that that S is a finite region if
λx(S) = λy(S) = λz(S) = 0.

Definition (Analytic Function in R3): Suppose
S ⊂ R3 is a simple region and let f : S → R.
Then we say that f is analytic on S if for ev-
ery (x0, y0, z0) ∈ S there exists a simple region
A ⊂ R3 containing (x0, y0, z0) and a sequence
(aijk)

∞
i,j,k=0 in R such that λx(A) = λx(S), λy(A) =

λy(S), λz(A) = λz(S), and if (x0 + r, y0 + s, z0 + t) ∈
S ∩ A then

f (x0 + r, y0 + s, z0 + t) =

∞∑
i=0

∞∑
j=0

∞∑
k=0

aijkr
isjtk.

Proposition: Let A ⊂ R3 be a simple region, let
f, g : A→ R be analytic on A, and let α ∈ R be
given. Then f + αg and f · g are analytic on A.



Proposition: Let A ⊂ R3 be a simple region and
let f : A→ R be analytic on A. Let B ⊂ R2 be a
simple region and let g : B → R be an analytic
function on B such that for every (x, y) ∈ B,
(x, y, g(x, y)) ∈ A. Then F (x, y) := f (x, y, g(x, y)) is
analytic on B.

Definition (Measurable Set): Let S ⊂ R3. Then
we say that S is a measurable set if for ev-
ery ε > 0 there exist two sequences of mutually
disjoint simple regions (Gn)∞n=1 and (Hn)∞n=1 such

that
∞⋃
n=1

Gn ⊂ S ⊂
∞⋃
n=1

Hn,
∞∑
n=1

v(Gn) and
∞∑
n=1

v(Hn)

converge, and
∞∑
n=1

v(Hn)−
∞∑
n=1

v(Gn) < ε.

Measure of a Measurable Set: Let S ⊂ R3 be
a measurable set. For every k ∈ N, there ex-
ist two sequences of mutually disjoint simple

regions, (Gk
n)∞n=1 and (Hk

n)∞n=1, such that
∞⋃
n=1

Gk
n ⊂

S ⊂
∞⋃
n=1

Hk
n,

∞∑
n=1

v(Gk
n) and

∞∑
n=1

v(Hk
n) converge, and

∞∑
n=1

v(Hk
n)−

∞∑
n=1

v(Gk
n) < dk.



We show that (
∞∑
n=1

v(Gk
n))∞k=1 and (

∞∑
n=1

v(Hk
n))∞k=1 are

Cauchy sequences; and hence they converge.
Moreover,

lim
k→∞

∞∑
n=1

v(Gk
n) = lim

k→∞

∞∑
n=1

v(Hk
n).

We call this limit the measure of S and we de-
note it by m(S).

⇓

Similar properties to those in the one-dimensional
and two-dimensional cases!

Definition (Measurable Function):
Let S ⊂ R3 be measurable and let f : S → R be
bounded on S. Then we say that f is measur-
able on S if for every ε > 0 in R, there exists
a sequence of mutually disjoint simple regions

(Gn)∞n=1 such that
∞⋃
n=1

Gn ⊂ S,
∞∑
n=1

v(Gn) converges,

m(S) −
∞∑
n=1

v(Gn) < ε, and for every n ∈ N f is

analytic on Gn.



Integration in Three Dimensions

Definition (Integral of an Analytic Function over
a Simple Region in R3): Let

S = {(x, y, z) ∈ R3 : z ∈ I(h1(x, y), h2(x, y)), (x, y) ∈ A};
and let f : S → R be analytic on S. We define
the integral of f over S as follows:∫∫∫
(x,y,z)∈S

f (x, y, z) =

∫∫
(x,y)∈A

 ∫
z∈I(h1(x,y),h2(x,y))

f (x, y, z)

 .
Consequences:

• For any α ∈ R:
∫∫∫

(x,y,z)∈S
α = αv(S).

• If |f (x)| ≤M for all x ∈ S then∣∣∣∣∣∣∣
∫∫∫

(x,y,z)∈S

f (x, y, z)

∣∣∣∣∣∣∣ ≤Mv(S).

• etc...



Integral of a Measurable Function over a Mea-
surable Set: Let S ⊂ R3 be a measurable set, let
f : S → R be measurable on S, and let M be a
bound for f on S. For every k ∈ N, there exists
a sequence of mutually disjoint simple regions

(Gk
n)∞n=1 such that

∞⋃
n=1

Gk
n ⊂ S,

∞∑
n=1

v(Gk
n) converges,

m(S) −
∞∑
n=1

v(Gk
n) < dk, and for every n ∈ N f is

analytic on Gk
n.

For every k, n ∈ N:∣∣∣∣∣∣∣
∫∫∫

(x,y,z)∈Gkn

f (x, y, z)

∣∣∣∣∣∣∣ ≤Mv(Gk
n).

It follows that

lim
n→∞

∫∫∫
(x,y,z)∈Gkn

f (x, y, z) = 0

and so
∞∑
n=1

∫∫∫
(x,y,z)∈Gkn

f (x, y, z) converges.



We show that

(
∞∑
n=1

∫∫∫
(x,y,z)∈Gkn

f (x, y, z)

)∞
k=1

is a Cauchy

sequence and hence it converges.

We define the limit to be the integral of f over
S: ∫∫∫

(x,y,z)∈S

f (x, y, z) = lim
k→∞

∞∑
n=1

∫∫∫
(x,y,z)∈Gkn

f (x, y, z).

⇓

Similar properties of the triple integral as for
double and single integrals!



The Delta Function on the Levi-Civita Field

Definition: Let δ : R → R be given by

δ(x) =


3
4d
−3(d2 − x2) if |x| < d

0 if |x| ≥ d

.

Proposition: Let I ⊂ R be an interval. If (−d, d) ⊂
I then ∫

x∈I
δ(x) = 1.

Moreover, if (−d, d) ∩ I = ∅ then∫
x∈I

δ(x) = 0.

Proof: If (−d, d) ⊂ I then∫
x∈I

δ(x) =

∫
x∈(−d,d)

3

4
d−3(d2 − x2) = 1.

If (−d, d)∩ I = ∅ then δ(x) = 0 for all x ∈ I; hence∫
x∈I

δ(x) =

∫
x∈I

0 = 0.



Proposition: Let I ⊂ R be an interval contain-
ing (−d, d). Then δ(x) has a measurable anti-
derivative on I that is equal to the Heaviside
function on I ∩ R.

Proof: Let H : I → R be given by

H(x) =


0 if x ≤ −d
3
4d
−3(d2x− 1

3x
3) + 1

2 if − d < x < d

1 if x ≥ d

.

Then H(x) is measurable and differentiable on
I with H ′(x) = δ(x). Moreover,

H(x)|R =


0 if x < 0

1/2 if x = 0

1 if x > 0

.

Proposition: Let a < b in R be such that λ(b −
a) < 1; and let f : [a, b]→ R be an analytic func-
tion with i(f ) = 0. Then for any x0 ∈ [a+d, b−d],
we have that∫

x∈[a,b]
f (x)δ(x− x0) =0 f (x0).



Proof: Fix x0 ∈ [a+d, b−d]. There exists η > 0 in
R with λ(η) = λ(b−a) such that, for any x ∈ [a, b]
satisfying |x− x0| < η, we have that

f (x) = f (x0) +

∞∑
k=1

f (k)(x0)

k!
(x− x0)k.

Therefore,∫
x∈[a,b]

f (x)δ(x− x0) =

∫
x∈[x0−d,x0+d]

f (x)δ(x− x0)

=

∫
x∈[x0−d,x0+d]

f (x0)δ(x− x0)

+

∫
x∈[x0−d,x0+d]

∞∑
k=1

f (k)(x0)

k!
(x− x0)kδ(x− x0)

= f (x0) +

∫
x∈[x0−d,x0+d]

∞∑
k=1

f (k)(x0)

k!
(x− x0)kδ(x− x0).

For any x ∈ [x0 − d, x0 + d], |x− x0| ≤ d. Thus,



∣∣∣∣∣∣∣
∫

x∈[x0−d,x0+d]

∞∑
k=1

f (k)(x0)

k!
(x− x0)kδ(x− x0)

∣∣∣∣∣∣∣
≤

∞∑
k=1

∣∣f (k)(x0)∣∣
k!

dk
∫

x∈[x0−d,x0+d]

δ(x− x0)

=

∞∑
k=1

∣∣f (k)(x0)∣∣
k!

dk.

Since i(f ) = 0 on [a, b], it follows that for all k ∈ N

λ
(
f (k)(x0)(b− a)k

)
≥ 0 and hence λ

(
f (k)(x0)d

k
)
> 0.

Thus,

λ

( ∞∑
k=1

f (k)(x0)

k!
dk

)
> 0.

It follows that

λ

 ∫
x∈[x0−d,x0+d]

∞∑
k=1

f (k)(x0)

k!
(x− x0)kδ(x− x0)

 > 0;

and hence ∫
x∈[a,b]

f (x)δ(x− x0) =0 f (x0).



Proposition: Let a < b < c in R be such that
λ(b − a) < 1 and λ(c − b) < 1; let g : [a, b] → R
and h : [b, c] → R be analytic functions satisfy-
ing g(b) = h(b) and i(h) = i(g) = 0; and let the
function f : [a, c]→ R be given by

f (x) =

{
g(x) if x ∈ [a, b)

h(x) if x ∈ [b, c]
.

Then for any x0 ∈ [a + d, c− d], we have that∫
x∈[a,c]

f (x)δ(x− x0) =0 f (x0).



Definition (Delta Function in Two Dimensions):

Let δ2 : R2 → R be given by

δ2(x, y) = δ(x)δ(y)

Proposition: Let S ⊂ R2 be measurable. If
(−d, d)× (−d, d) ⊂ S then∫∫

S

δ2(x, y) = 1.

If (−d, d)× (−d, d) ∩ S = ∅ then∫∫
S

δ2(x, y) = 0.

Proposition: Let S ⊂ R2 be a simple region
with λx(S) < 1 and λy(S) < 1, let f : S → R
be an analytic function with index i(f ) = 0 on
S. Then, for any (x0, y0) ∈ S that satisfies (x0 −
a, x0 + a) × (y0 − a, y0 + a) ⊂ S for some positive
a� d in R, we have that∫∫

(x,y)∈S

f (x, y)δ2(x− x0, y − y0) =0 f (x0, y0).



Definition (Delta Function in Three Dimensions):

Let δ3 : R3 → R be given by

δ3(x, y, z) = δ(x)δ(y)δ(z).

Proposition: Let S ⊂ R3 be measurable. If
(−d, d)× (−d, d)× (−d, d) ⊂ S then∫∫∫

S

δ3(x, y, z) = 1.

If (−d, d)× (−d, d)× (−d, d) ∩ S = ∅ then∫∫∫
S

δ3(x, y, z) = 0.

Proposition: Let S ⊂ R3 be a simple region
with λx(S) < 1, λy(S) < 1, λz(S) < 1, and let
f : S → R be an analytic function on S with
i(f ) = 0 on S. Then, for any (x0, y0, z0) ∈ S that
satisfies

(x0− a, x0 + a)× (y0− a, y0 + a)× (z0− a, z0 + a) ⊂ S

for some positive a� d in R, we have that∫∫∫
(x,y,z)∈S

f (x, y, z)δ3(x−x0, y− y0, z− z0) =0 f (x0, y0, z0).



Example (Damped Driven Harmonic Oscilla-
tor): Consider an underdamped, driven har-
monic oscillator with mass m, viscous damping
constant c, spring constant k, and driving force
f (t). Let x(t) be the position of the oscillator at
time t with x(0) = 0 and ẋ(0) = 0.

ẍ(t) +
c

m
ẋ(t) +

k

m
x(t) =

f (t)

m
.

Let γ = c
2
√
mk

and let ω0 =
√

k
m. Thus,

ẍ(t) + 2γω0ẋ(t) + ω2
0x(t) =

f (t)

m
.

Consider the underdamped case: γ2ω2
0 − ω2

0 < 0
(that is, γ < 1).

We first find a piecewise analytic solution to

(
∂2

∂t2
+ 2γω0

∂

∂t
+ ω2

0

)
G(t, t′) = δ(t− t′).



We get:

G(t, t′) = e−γω0(t−t
′) (A1 sin(ω(t− t′)) + B1 cos(ω(t− t′)))

if t ≤ t′ − d;

G(t, t′) =

e−γω0(t−t
′) (A2 sin(ω(t− t′)) + B2 cos(ω(t− t′)))

+ 3
ω20

(
d2−(t−t′)2

4 + γ(t−t′)
ω0

+ 1−4γ2
2ω20

)
if t′ − d < t < t′ + d; and

G(t, t′) = e−γω0(t−t
′)(A3 sin(ω(t− t′)) +B3 cos(ω(t− t′)))

if t ≥ t′ + d.

We want the solution to satisfy the initial con-
ditions G(t′ − d, t′) = 0 and ∂

∂tG(t, t′)|t=t′−d = 0

as well as continuity of G(t, t′) and ∂
∂tG(t, t′) at

t = t′ − d and t = t′ + d.

From the initial conditions we get

A1 = B1 = 0.



From the continuity of G and its derivative at
t = t′ − d we then have

A2 =
3

ω2
0

d−3 exp(−γω0d)·[(
2γ3

ω0
− 3γ

2ω0
+

(
γ2 − 1

2

)
d

)
cosωd

ω

−
(
γ

ω0
− 1− 4γ2

2ω2
0

)
sinωd

]

B2 =
3

ω2
0

d−3 exp(−γω0d)·[(
2γ3

ω0
− 3γ

2ω0
+

(
γ2 − 1

2

)
d

)
sinωd

ω

+

(
γ

ω0
− 1− 4γ2

2ω2
0

)
cosωd

]
.



Finally, from the continuity of G and its deriv-
ative at t = t′ + d we get:

A3 =
3

ω2
0

d−3 exp(−γω0d)·[(
2γ3

ω0
− 3γ

2ω0
+

(
γ2 − 1

2

)
d

)
cosωd

ω

−
(
γ

ω0
− 1− 4γ2

2ω2
0

)
sinωd

+

(
3γ

2ω0
− 2γ3

ω0
+

(
γ2 − 1

2

)
d

)
cosωd

ω

+

(
γ

ω0
− 1− 4γ2

2ω2
0

)
sinωd

]

B3 =
3

ω2
0

d−3 exp(−γω0d)·[(
2γ3

ω0
− 3γ

2ω0
+

(
γ2 − 1

2

)
d

)
sinωd

ω

+

(
γ

ω0
− 1− 4γ2

2ω2
0

)
cosωd

−
(

3γ

2ω0
− 2γ3

ω0
+

(
γ2 − 1

2

)
d

)
sinωd

ω

+

(
γ

ω0
− 1− 4γ2

2ω2
0

)
cosωd

]
.



Note that A3 =0
1
ω and B3 =0 0; and hence

G(t, t′)|R =0

{
0 if t < t′

1
ω exp (−γω0(t− t′)) sin(ω(t− t′)) if t ≥ t′

which is the classical Green’s function for this
problem.

Now assume the driving force is given by

f (t) =

{
m exp(−γω0t) if t ≥ 0

0 if t < 0
.

Then we obtain the real solution as:

x(t) =0

∫
t′∈[−d−1,d−1]

G(t, t′)
f (t′)

m
.

But G(t, t′) = 0 for t′ > t + d and f (t′) = 0 for
t′ < 0; thus,



x(t) =0

∫
t′∈[0,t+d]

G(t, t′) exp(−γω0t
′)

=

∫
t′∈[0,t−d]

G(t, t′) exp(−γω0t
′)

+

∫
t′∈[t−d,t+d]

G(t, t′) exp(−γω0t
′)

=0 e
−γω0tcos(ωt)− 1

ω2
,

which agrees with the classical solution.


