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The Levi-Civita Fields R and C

e Let R ={f:Q — R|supp(f) is left-finite}.

e For r € R, define

o - {on) 22y

e Arithmetic on R: Let z,y € R. We define
x+vy and z -y as follows. For g € QQ, let

(z +y)lg] = zlq] + ylq]

(-9l = > zln]-ylgl.

q1+92=q

Then z+y € R and -y € R.

Result: (R,+, ) is a field.

Definition: C := R +iR. Then (C,+,:) is also a
field.




Order in R

e Define the relation < on R x R as follows:
r<yifr=yor (zr+#yand (z —y) Nz —y)] <0).

e (R,+,-,<) is an ordered field.

e R is real closed.

4

C is algebraically closed.

e The map F: R — R, given by
r if ¢g=0
B = { b

Y

0 else
is an order preserving embedding.

e There are infinitely small and infinitely large
elements in R: The number d, given by

d[Q]Z{l Ha=1

0 else

is infinitely small; while d~! is infinitely large.



For © € R, define

]

’x|u =

r ifz>0
—x ifz <0’

e M) if ¢ £ 0
0 ifx=0"

For z = x4+ 1y € C, define

2] = V]l + [yl%

2], = e M) if 2 £ 0
“ 10 if 2 =10

= max{|z|,, |y|.} since A(z) = min{A(x), A\(y)}.

Note that |-| and |- |, induce the same topology

7, on R (or C).

Moreover, C is topologically

isomorphic to R? provided with the product
topology induced by || in R.



Topological Structure of R

Properties of the Topology 7, (induced by | - |
or |- |):

e (R, 7,) is a disconnected topological space.
e (R, 7,) is Hausdorff.
e There are no countable bases.

e The topology induced to R is the discrete
topology.

e (R, 7,) is not locally compact.

e 7, is zero-dimensional (i.e. it has a base
consisting of clopen sets).

e 7, iIs not a vector topology.

eForallz ¢ R (or C): z=>_", x[g,) - d.



Weak Topology 7,: Induced by the family of
semi-norms (|| - ||;)req, Where || - ||, : R — R is
given by

]l = sup{|zlg]| : ¢ < 7}.
It is a metric topology, induced by the metric

A(az,y) _ ZQ—k HZE — ka

2" T -yl

Properties of the Weak Topology:

¢ (R, 7,) is Hausdorff with countable bases.
e 7, is a vector topology.

e The topology induced on R is the usual or-
der topology on R.

e (R, 7,) is not locally bounded (hence not lo-
cally compact).



Further Useful Notations
For z,y € R, we say

o~y if A\Nz)= \y)-

o r ~y if x ~y and z|\(z)] = y[\(y)].

o v =,y if z[q] = ylq] Vg <.

e For nonnegative =,y in R, say z < y if x <
y and z o4 y; say ¢ >y if y < .

Examples: 100 ~ 1; 3+d =~ 3; d? < 1 if ¢ > 0.



Uniqueness of R and C

e R is the smallest Cauchy-complete and real
closed non-Archimedean field extension of

R.

— It is small enough so that the R-numbers
can be implemented on a computer, thus
allowing for computational applications.

e C is the smallest Cauchy-complete and alge-
braically closed non-Archimedean field ex-
tension of C.



Power Series and Analytic Functions
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Theorem (Strong Convergence Criterion): Let
(a,) be a sequence in R, and let

Ap = lim sup (—)\(an)) in R.

n—00 n
Let o € R be fixed and let + € R be given.
Then )~ a,(x—1zp)" converges strongly if \(z —
ro) > Ao and is divergent if \(z — zy) < ¢ or if
Mz — xg) = A and —A(a,)/n > Ay for infinitely
many n.



Theorem (Weak Convergence Criterion): Let
(an), Ao and zy be as above, and let x € R be such
that \(z—x9) = \. For each n > 0, let b, = a,d"".
Suppose that the sequence (b,) is regular and
write U2 jsupp(b,) = {q1, ¢, - . .}; with ¢;, < g, if
j1 < jo. For each n, write b, = >~ b, d"; let
1

sup {limsup,, o, [by |71 > 1}
Then > >, a,(x—x()" converges absolutely weakly
in R if |(x — xo)[Mo]| < r and is weakly divergent
in R if |(x — zo)[N\o]| > 7.

r

Corollary (Power Series with Real Coefficients):
Let > a,X", a, € R, be a power series with
classical radius of convergence equal to 1. Let
r € R, and let A,(z) => " ,a;x' € R. Then, for
lz| < n and |x| % 7, the sequence (A,(z)) con-
verges absolutely weakly. We define the limit
to be the continuation of the power series on R.



Transcendental Functions: For any z € R, at

most finite in absolute value, define

©.@) n

exp(z) = ;%

cos(x) = ?;(Dn(i;!;
sin(z) = ni)(w(szll)!’
cosh(z) = f; é:;,,

) = 3



Definition: Let a < b in R be given and let
f :la,b] - R. Then f is analytic on [a,b] means
for all x € |a,b] there exists a positive § ~ b —a

in R, and there exists a sequence (a, (z)) in R
such that

fly) =) an(@)(y—a)

n

—0
for all y € (x — 6,2+ )N |a,b].

Lemma: Let f ¢g: |a,b] — R be analytic on |a, ]
and let &« € R be given. Then f+ «ag and f - ¢
are analytic on |a,].

Lemma: Let f : [a,b] — R be analytic on |a, b,
let g : [c,e] — R be analytic on |c,e], and let
f (la,b]) C [c,e]. Then go f is analytic on [a, b|.



Main Results on Analytic Functions: Let a < b
in R be given, and let f : [a,0] — R be analytic
on |a,b]. Then

e f is bounded on [a,b|. In particular,

0(f) == min{A(f(x)) : = € [a, 0]}

exists and is called the index of f on |[a,b|.

e Intermediate Value Theorem: f assumes on
la, b] every intermediate value between f (a)

and f (b).

e Differentiability of the Analytic Functions:
f is infinitely often differentiable on |a, b,
and for all m € N, we have that (™ is ana-
lytic on |a,b]. Moreover, if f is given around
Ty € [a,b] by f(z) =" a,(x) (x — xp)", then

Fim (x) = Zn“-(n—erl)an(a:o) (x — )" "
In particular, we have that

f(m) (20)

m!

A (T0) = for all m=0,1,2,....



e Eixtreme Value Theorem: f assumes a max-
imum and a minimum on |a, b|.

e T'The Mean Value Theorem: There exists c €
(a,b) such that

o fO =@

b—a

e Corollary: The following are true.
(i) If f'(x) # 0 for all x € (a,b) then either

(a) f'(x) > 0 for all z € (a,b) and [ is
strictly increasing on |a, ], or

(b) f'(z) < 0 for all x € (a,b) and f is
strictly decreasing on |a, ).

(ii) If f'(x) =0 for all z € (a,b) then f is con-
stant on |a, ).



Measure Theory and Integration
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Measure Theory and Integration on R

Definition (Measurable Set): We say that A C
R is measurable if V ¢ > 0 in R, d sequences
of mutually disjoint intervals (/,,) and (J,) such
that

Ui L. cAc U~ Jus

> 2 U(I,) and > 7 I(J,) converge in R, and

n=1
00

DU =) UL <e.

n=1



Definition (The Measure of a Measurable Set):
Suppose A C R is a measurable set. Then for

every k € N there are two sequences of mutually
disjoint intervals (]k) °, and (JF)> 1 such that

Ufk C AC U Zl([k) and Zl(]k) both

n—= 1

converge, and Z L(JF) — i L(IF) < d".
n=1

n=1

(Z z (Ik))k 1 and (Z z (Jk)) are Cauchy

k= 1

sequences in R. Therefore, khm Z [ (]f;f) and
—00 =1

lim Z [ (JF) both exist in R.

k—00 n—

o lim (i’fzuf;) _ i’fz(ﬁ;)) — 0.

k—oo \ =1 n=1

e We define m(A) = klim i [ (If,f) = klim i [ (Jﬁf)
—00 51 —00 =1

and we call this the measure of A.



Consequences:

o If A C R is measurable then

m(A) = inf {Zl(]n) . J,’s are (mutually disjoint)
n=1

©.@)
intervals, A C U J,, and

n=1

Zl(Jn) converges}

n=1

= sup {Z [(I,): I,’s are mutually disjoint
n=1

intervals, U I, C A, and

n=1

Z L (I,) converges} .
n=1

e If A C R is measurable then m(A) > 0.

e /(a,b) is measurable and m(I(a,b)) = b — a.

o If BC AC R and if A and B are measurable,
then m(B) < m(A).

o If A C 'R is countable, then A is measurable
and m(A) = 0.



Proposition: For each k£ € N, let A, C 'R be mea-
surable such that (m(A;)) forms a null sequence.
Then |J,-, A; is measurable and

If the sets (A;)?°, are mutually disjoint, then

Proposition: Let K € N be given and for each
k e {l1,...,K}, let Ay be measurable. Then

K .
(i Ar is measurable.

Proposition: Let A, B C R be measurable. Then
m(AUB)=m(A)+m(B) —m(AN B).



Measurable Functions

Definition: Let A C 'R be measurable and let
f: A— R be bounded on A. Then we say that
f is measurable on A if V ¢ > 0, 4 a sequence of
mutually disjoint intervals (/) such that I, C A
and f is analytic on [, for all n; >~ [(I,) con-
verges; and m(A) — > (I, <.

n=1

Proposition: Let f : I(a,b) — R be measur-
able. Then f is continuous almost everywhere
on [(a,b). Moreover, if f is differentiable on
I(a,b) and if f’ = 0 everywhere, then f is con-
stant on /(a,b).

Proposition: Let A, B C R be measurable, let f
be a measurable function on A and B. Then f
is measurable on AU B and AN B.

Proposition: Let A C R be measurable, let
f,g : A — R be measurable and let a € R be
given. Then f + ag and f - g are measurable on

A.



Integration

Definition (Integral of an Analytic Function):
Let f: I(a,b) - R be analytic on I(a,b), and let
F' be an analytic anti-derivative of f on I(a,b).
Then the integral of f over [(a,b) is the R num-
ber

r—b T—>a

/ f = lim F(z) — lim F(x).
I(ab)

Definition (Integral of a Measurable Function):
Let A C R be measurable and let f: A — R be

measurable. Then

/ f B P BGea llnlm(A) Z f
(In)

u°° InC A :1 [ n
are mutually disjoint
f is analytic on I,



Properties of the Integral:

o [,a=am(A).
ef<0OonA= [, f<O.

o ulf+ag)=[,f+al,g
 [wpf=JLaf+ st~ Janf
o|f|<Mon A= |[,f| <Mm(A).

e (f,) converges uniformly to f on A and f, is
measurable on A for each n = f is measur-
able on A and

ERY



Measure Theory and Integration on R?

Definition (Simple Region): Let G C R?. Then
we say that (G is a simple region if there exist
constants a,b € R,a < b and analytic functions
91,92 I(a,b) = R,q1 < go on I(a,b) such that

G={(z,y) € R*: y € I{g1(x), g2()), x € I(a,b)}

G={(z,y) e R?*:z € I(g1(y), 32(y)), y € I(a,b)}.

Definition (Area of a Simple Region): Let G C
R? be a simple region given by

G ={(z,y) e R*:y € I(ga(x), g2(x)), = € I(a,b)}.

Then we define the area of GG, denoted by a(G),
as:



Lemma: Let H,G C 'R be simple regions. Then
HNG, H\G and HUG can each be written as a
finite union of mutually disjoint simple regions.

Definition (Measurable Set): Let A C R*. Then
we say that A is measurable if for every ¢ >
0 in R there exist two sequences of mutually
disjoint simple regions (G,)>, and (H,)>°; such
that

GGHCAC GHn,

1 n=1

> a(G,) and > a(H,) both converge, and
n=1 1

n=1 n=1



Definition (The Measure of a Measurable Set):
Suppose A C R? is a measurable set. Then for
every k € N there are two sequences of mutually
d13301nt simple reglons (Gk) °, and (H’“) °, such

that UchAc U ,ZG’C and ZH‘“ both

n=1

converge, and Z a(H") — Z a(GF) < d".

n=1 n=1

. (f a(Gg))oo and (i a<H§))OO are Cauchy

n=1 k=1 n=1 k=1
sequences in R. Therefore, khm > a(GF) and
—0 =1
lim " a(HY) both exist in R.
k—00 n=1
e lim (Z a(HY) — > a(Gﬁ)) = 0.
k=00 \ p=1 n=1
e We define m(A) = lim Y a(GF) = lim Y a(HF)
k—o0 , k—o0 ,

and we call this the measure of A.



Consequences:

e If A C R? is measurable then

m(A) = inf {Z a(H,) : H,’s are mutually disjoint

n=1

@)
simple regions, A C J H,, and

n=1
\

Za(Hn) converges

n=1 y

= sup {Z a(Gp) : G)’s are mutually disjoint

n=1

simple regions, U G, C A, and

n=1

Z a(Gh) converges} .

n=1

o If A C R? is measurable then m(A4) > 0.

oIf BC AC R? and if A and B are measur-
able, then m(B) < m(A).

o If A C R?is countable, then A is measurable
and m(A) = 0.



Proposition: For each k € N, let A, C R? be
measurable such that (m(A;)) forms a null se-
quence. Then | J;-, A; is measurable and

If the sets (A;)?°, are mutually disjoint, then
equality holds.

Proposition: Let K € N be given and for each
ke{l,...,K}, let Ay C R? be measurable. Then

K .
(.—; Ak is measurable.

Definition: Let A C R? be a simple region.

If A= {(I’,:g) c RZ Y S [(h1<$>, h2<$>),$ S [(CL, b)}u
we define \,(A) = A\(b—a) and )\, (A) = i(ha(x) —
hi(z)) on I(a,b).

If A={(z,y) € R*: z € I(m(y), haly)),y € I(a,b)},
we define \,(A) = A0 —a) and \,(A) = i(ha(y) —
hi(y)) on I(a,b).

If \.(A) = \,(A) = 0 then we say that A is finite.



Measurable Functions

Definition: Let A C R? be a simple region.
Then we say that f : A — R? is analytic on
A if for every (xg,1yy) € A, there is a simple re-
gion A, around (zg, 1) satisfying \,(Ay) = A\.(A4),
Ay(Ao) = Ay(A) and a sequence (a;;);_, such that
for every s, t € R, if (xo+ s,y0+t) € AN Ay, then

©.9) ©.¢)
flro+s,y0+1) = Z Z a;;s't.

i=0 j=0

Proposition: Let A C R? be a simple region and
let f: A — 'R be an analytic function on A. Let
a<bin R and let g : I(a,b) — R be analytic on
I(a,b) such that for every x € I(a,b), (z,g(z)) € A.
Then F(z) := f(x,g(x)) is an analytic function on
I(a,b).

Proposition: Let A C R? be simple and let f :
A — R be analytic. Then f is bounded on A.



Definition (Measurable Function): Let A C R?
be measurable and let f : A — R be bounded
on A. Then we say that f is measurable on A
if V ¢ > 0, there exists a sequence of mutually
disjoint simple regions (G,) such that G, C A
and f is analytic on G, for all n; > * a(G,)
converges; and m(A) — > a(G,) <e.

n=1

Proposition: Let A C R’ be a measurable set
and let f: A — R be measurable on A. Then f
is given locally by a power series almost every-
where on A. Moreover, if 2 f(z,y) = a%f(a:, y) =0
everywhere on A then f(z,y) is constant on A.

Proposition: Let A, B C R? be measurable, let
f be a measurable function on A and B. Then
f is measurable on AU B and AN B.

Proposition: Let A C R? be measurable, let
f,g : A — R be measurable and let o« € R be
given. Then f + ag and f - g are measurable on

A.



Integration on R*

Definition: Let G C R? be a simple region given
by
G={(z,y) € R*:y € I(hi(x), ho(x)),z € I(a,b)}

and let f : G — R be analytic on G. We define
the integral of f over G as follows:

[ [ | [ s

(x,y)eG z€l(ab) | yel(hi(z),ho(x))

Proposition: Let G C R? be a simple region, let
f,g: G — R be analytic on G, and let o € R be
given. Then

e [[ a=a(G

(x,y)eG

o [[ (f+ag)x,y)= [[ fle,y)+a [[ g(z,y);
(x,y)eG (x,y)eG (x,y)eG

oif f<gon G then [[ f(z,y)< [[ g(z,y);

(z.y)eG (x,y)eG

1] flzy)

(x,y)€G

oif |f| < M on G then < Ma(G).




Integral of a Measurable Function: Let A C R?
be a measurable set, let f : A — R be measur-

able on A, and let M be a bound for |f| on A.
For every k£ € N there exists a sequence of mu-

tually disjoint simple regions (G%)> such that
for every n € N, f is analytic on G, U GF C A,
n=1

3" a(G%) converges, and m(A) — > a(GF) < d~.

n=1 n=1

Since Z a(GF) converges we have that lim a(GF) =

n—odo
0. Since \ [[ f(z,y)| < Ma(GE), it follows that
(z,y)eGy
lim [[ f(x,y) =0. Therefore, for every k € N,
n—og
(x,y)eGr,

i ff f(il?,y) converges.

n=1(zy)eGk

We show that (Z [ flx,y))32, is a Cauchy
n= 1(1,y)€(;k
sequence and hence it converges. We define

//fxy lim Z//fxy

.'L' y EA U G, CA,G,’s mutually disjoint, - :L- y EGn
f is analytic on G, for every n



Theorem (Properties of the Double Integral):
Let A, B C R? be measurable sets, let f.g :
A, B — R be measurable functions on A, B, and
let a € R be given. Then

e [[ a=am(A

(x,y)eA
o [ U+agiew)= JJ faw+a [ oy
(z,y)€A (z,y)€A (z,y)eA
oif f <gon Athen [[ f(z,y) < [[| glx,y);
(x,y)€A (x,y)eA
oif |f| <M on Athen | [[ f(z,y)| < Mm(A);
(x,y)€A
o [J fly =[] flzy+ [] flzy)-
(x,y)€AUB (x,y)€A (x,y)eB
Il @ y);
(x,y)€EANB

e (f,) converges uniformly to f on A and f, is

measurable on A for eachn = lim [[ f.(z,y)

= O?J} y)eA
exists and

nlggo/ folz,y) = /f:vy

(x,y)€A (x,y)€A



Measure Theory and Integration on R°

Definition (Simple Region): Let S C R°. Then
we say that S is simple if there exists a simple
region A C R? and two analytic functions hy, hs :
A — R such that h; < hy everywhere on A and

S={(z,y,2) € R’ : z € I(hi(x,y), ha(z, y)), (x,y) € A}
S={(z,y,2) € R’y € I(hi(x, 2), ha(z, 2)), (x, 2) € A}

S={(z,y,2) € R’ x € I(h(y, 2), ha(y, 2)), (y, 2) € A}.

Definition (Volume of a Simple Region): Let
S = {(az,y, Z) eR’:z¢€ [<h1<xay>7 hg([lﬁ,g)), (xvy> = A}
be a simple region in R?, with A, h;, and h, as

above. Then we denote the volume of S with
v(S) and define it as

)= [ o)~ izl

(x,y)€A
A similar definition can be used in the other
two cases.



Definition: Let

S={(x,y,2) €ER’: z € I(hi(z,y), halz,y)), (x,y) € A}
be a simple region in R°. We define )\,(S) =
M(A), A, (S) = A, (A) and A(S) = i(ho(, y)—hu(z, y))
on A. We do similarly in the other two cases.
Then we say that that S is a finite region if

Definition (Analytic Function in R’): Suppose
S C R? is a simple region and let f : S — R.
Then we say that f is analytic on § if for ev-
ery (xg,yo,20) € S there exists a simple region
A C R? containing (z,10,20) and a sequence
(@ijk)i5 o in R such that A\,(A) = A,(S), A\y(A) =
A(S)y A(A) = A(5), and if (zo+ 7,90+ 5,20+ 1) €
SN A then

f(ZIZ() + 7, Y0+ S, 20 T+ t) — a@jkTiSjtk.

Proposition: Let A C R? be a simple region, let
f,g: A — R be analytic on A, and let o € R be
given. Then f + ag and f - g are analytic on A.



Proposition: Let A C R? be a simple region and
let f: A — R be analytic on A. Let B C R? be a
simple region and let g : B — R be an analytic
function on B such that for every (z,y) € B,

(z,y,9(x,y)) € A. Then F(z,y) = f(z,y,9(z,y)) is
analytic on B.

Definition (Measurable Set): Let S C R°. Then
we say that S is a measurable set if for ev-
ery € > (0 there exist two sequences of mutually

disjoint simple regions (G,)>2, and (H,)>°; such

that Y G, Cc S C | Hy, > v(G,) and ) v(H,)
n=1

v(G) < e.

NE

converge, and > v(H,) —

n=1 n=1

Measure of a Measurable Set: Let S C R’ be
a measurable set. For every k € N, there ex-
ist two sequences of mutually disjoint simple

regions, (G*)>, and (H")>,, such that |J G* C
n=1

Sc U H Y v(GF) and Y v(HY) converge, and
n=1 1 n=1

v(G*) < dF.

i v(HF) -

(187

I
—_

n



©9)

We show that (3 o(GF))>, and (3 o(H!)2, are

n=1 n=1
Cauchy sequences; and hence they converge.

Moreover,
oo oo

lim v(GF) = lim v(HF).
k—o0 1 k— o0 1

We call this limit the measure of S and we de-
note it by m/(9).

4

Similar properties to those in the one-dimensional
and two-dimensional cases!

Definition (Measurable Function):

Let S C R’ be measurable and let f: S — R be
bounded on S. Then we say that f is measur-
able on S if for every ¢ > 0 in R, there exists
a sequence of mutually disjoint simple regions

(G,)2, such that U G, CS, Z v(G,) converges,

m(S) — > v(G,) < ¢, and for every n € N f is
n=1
analytic on G,,.



Integration in Three Dimensions

Definition (Integral of an Analytic Function over
a Simple Region in R’): Let

S ={(z,y,2) € R*: z € I(h(w,), hal,y)), (w,y) € A};
and let f : S — R be analytic on S. We define
the integral of f over S as follows:

[ ff| [ s

(2,y,2)€S (z.y)eA [ zel(hi(zy).ha(z,y))

Consequences:

e For any a € R: [[[ a=av(9).

(z,y,2)eS

o If |f(z)] < M for all z € S then

[[] f@.v.21] < 2ruis).

(x,y,2)€S

e ctc...



Integral of a Measurable Function over a Mea-
surable Set: Let S C R’ be a measurable set, let

f S — R be measurable on S, and let M be a
bound for f on S. For every k£ € N, there exists
a sequence of mutually disjoint simple regions

(GF)>, such that |J G* c S, > v(G¥) converges,
n=1 n=1

m(S) — Y v(G*) < d*, and for every n € N f is
n=1
analytic on G”.

For every k.n € N:

// fla,y,2)| < Mu(GY).

(z,y,2)€GE

It follows that

i [f] stz =0

(z,y,2)€GE

and so i [ f(z,y,z) converges.

=1 (ry,2)eGh




We show that (i [ flx,v, z)) is a Cauchy

sequence and hence it converges.

We define the limit to be the integral of f over

///f” ‘JE&Z [ s

(x,y,2)€S xyzEGk

4

Similar properties of the triple integral as for
double and single integrals!



The Delta Function on the Levi-Civita Field

Definition: Let 0 : R — R be given by

(3473 (d? — 2?)  if |z < d

o(x) = <

0 if |x| > d

\

Proposition: Let I C R be an interval. If (—d,d) C

I then
/ o(x) = 1.
xel

Moreover, if (—d,d) NI = () then

/x KON

Proof: If (—d,d) C I then

/ 5(z) — / Zd?’(dQ—xQ):l.

xel re(—d,d)
If (—d,d)NI =) then §(x) =0 for all x € I; hence

/xel o) = /xel .



Proposition: Let I C R be an interval contain-
ing (—d,d). Then ¢(x) has a measurable anti-
derivative on [ that is equal to the Heaviside
function on I N R.

Proof: Let H : I — R be given by

0 if < —d
H(z) = 3d73(dPr — 3% +1 if —d<z<d.
\1 if x>d

Then H(z) is measurable and differentiable on
I with H'(x) = é(z). Moreover,

2

0 if £ <0
Hz)g=<1/2 ifx=0.
\1 if £ >0

Proposition: Let a < b in R be such that \(b —
a) < 1; and let f :[a,b] - R be an analytic func-
tion with i(f) = 0. Then for any z( € [a+d, b—d],
we have that

/ f(x)d(x — ) =0 f(x0).
r€[a,b]



Proof: Fix zy € [a+d,b—d]. There exists n > 0 in
R with A(n) = A(b—a) such that, for any z € [a, b]
satisfying |x — x| < n, we have that

) (2,
@) = flao) + 3 T —
k=1 '

Therefore,

[ r@ia-m = [ s

r€la,b r€lrg—d,zo+d]

For any z € vy — d,xo + d], |x — 29| < d. Thus,



Since z( ) =0on |a,b], it follows that for all k € N
)\( b—a)k> 20 and hence A(f( )z O)dk) > 0.

Thus,
— [P (xo)
A <;§1 x d” | > 0.

It follows that

A / Z f (x — 20)"6(x — o) | > 0;

rE[rg—d,x +d]

and hence

/ F(@)5(x — 20) =0 f(z0).

r€la,b]



Proposition: Let a < b < ¢ in R be such that
AMb—a) <1 and ANc—10b) < 1; let g : [a,b] =& R
and h : [b,c] — R be analytic functions satisfy-
ing ¢(b) = h(b) and i(h) = i(g) = 0; and let the
function f : |a,c] — R be given by

)glx) ifx€la,b)
flw) = {h(x) if z € b,

Then for any z( € |a + d, c — d|, we have that

/ f(x)o(x — zg) =¢ f(x0).

r€la,c|



Definition (Delta Function in Two Dimensions):
Let §; : R* — R be given by

0o, y) = 0(x)0(y)

Proposition: Let S C R? be measurable. If
(—d,d) x (—d,d) C S then

/[ e =1

If (—d,d) x (—d,d) N S = ) then

/[ e =0

Proposition: Let S C R? be a simple region
with A\, (S) < 1 and M\(S) < 1, 1let f: S5 = R
be an analytic function with index i(f) = 0 on
S. Then, for any (z,y)) € S that satisfies () —
a,xo+ a) X (yo — a,yo + a) C S for some positive
a > d in R, we have that

/ f(z,y)02(x — 20,y — 10) =0 f(0, Yo)

(x,y)€S



Definition (Delta Function in Three Dimensions):
Let 3 : R — R be given by

Proposition: Let S C R’ be measurable. If
(—d,d) x (—=d,d) x (=d,d) C S then

///m -

If (—d,d) x (—d,d) NS =0 then

/o

Proposition: Let S C R® be a simple region
with A\, (S) < 1, A\(5) < 1, A(S) < 1, and let
f S — R be an analytic function on S with

i(f) =0 on S. Then, for any (xy,yg, 20) € S that
satisfies

(zo—a,ro+a) X (yo—a,yo+a) x (20 —a,20+a) C S
for some positive a > d in ‘R, we have that

// fxy, 5333 Lo, Y — yOaZ_ZO)_Of<IOyO>ZO>

(x,y,2)€S



Example (Damped Driven Harmonic Oscilla-
tor): Consider an underdamped, driven har-
monic oscillator with mass m, viscous damping
constant ¢, spring constant k, and driving force
f(t). Let x(t) be the position of the oscillator at
time ¢ with z(0) =0 and #(0) = 0.

# () + %m@) n %x(t) - %

Let v = 2\/217 and let wy = \/% Thus,
/(@)

B(t) + 2ywod(t) + wiz(t) = —

Consider the underdamped case: y°wi — wi < 0
(that is, v < 1).

We first find a piecewise analytic solution to
52

3 / /
(@ I wg) Glt,¥) = b(t—1).



We get:

G(t, 1) = e 00 (A sin(w(t — ) + By cos(w(t — )
if ¢t <t —d;

00 (Asin(ult — ) + By cosfilt — )

G(t,t') =
_|_% <d2_(i ) + 7(t t) + 1_472)

2
Wy 2w0

ift' —d<t<t+d; and

G(t, ) = e ) Aysin(w(t — t') + By cos(w(t — 1))
if t >t/ +d.

We want the solution to satisfy the initial con-
ditions G(t' — d,t) = 0 and %G(t,t’)]t:t/_d =0
as well as continuity of G(t,t') and 2G(t,t) at
t=t —dandt=1t+d.

From the initial conditions we get

AlzBlzo.



From the continuity of G and its derivative at
t =t' — d we then have

2By (2 L)) coswd
Wy 2wy 2 W

23y (o 1)) swd
Wy 2wy 2 W




Finally, from the continuity of G and its deriv-
ative at t =t' + d we get:
3

Az = —d ™% exp(—ywod)-




Note that A; = i and B3 = 0; and hence
0 if t <t

G(t,t)|r =0 {1

~exp (—ywo(t —t))sin(w(t —t')) ift>+¢

which is the classical Green’s function for this
problem.

Now assume the driving force is given by

m exp(—ywot if £t >0
flo = {reriTien 20
0 if £t <0

Then we obtain the real solution as:

F(t)

m

z(t) =g / G(t,t)

t'e[—d—1,d—1]

But G(t,t') =0 for t' > t+d and f(t') = 0 for
t' < 0; thus,



z(t) =g / G(t, ') exp(—ywot’)

t'€[0,t+d]

— / G(t,t') exp(—ywot')

t'e|0,t—d|

+ / G(t,t") exp(—~ywpt’)

t'e[t—d,t+d]

,cos(wt) — 1

— —wo
—0 € 2 )

w

which agrees with the classical solution.



