Recent progress in p-adic quantum field theory

Abdelmalek Abdesselam
Mathematics Department, University of Virginia

Sixth International Conference on p-adic Mathematical Physics and its Applications, Mexico City, October 25, 2017
(1) Introduction
(2) The Euclidean CFT model: conjectures
(3) The p-adic model: some theorems
(4) New method: space-dependent Wilsonian renormalization group

1) Scaling limits:

1) Scaling limits:

Simple random walk on a lattice

(by László Németh via Wikimedia Commons)

from far away. ..

(by László Németh via Wikimedia Commons)

from far, far, far away...

(by László Németh via Wikimedia Commons)

At the end of this scaling limit one obtains Brownian motion: random function $[0,+\infty) \rightarrow \mathbb{R}^{D}, t \mapsto B(t)$.

At the end of this scaling limit one obtains Brownian motion: random function $[0,+\infty) \rightarrow \mathbb{R}^{D}, t \mapsto B(t)$.
This kind of limiting object has two important properties:
(1) universality (many discrete models share this same limit)
(2) more symmetries (e.g., 90 degree rotations \rightarrow all rotations)

At the end of this scaling limit one obtains Brownian motion: random function $[0,+\infty) \rightarrow \mathbb{R}^{D}, t \mapsto B(t)$.
This kind of limiting object has two important properties:
(1) universality (many discrete models share this same limit)
(2) more symmetries (e.g., 90 degree rotations \rightarrow all rotations)

Scale invariance: $\lambda^{[\phi]} B(\lambda t) \stackrel{d}{=} B(t)$ for all $\lambda>0$. Here $[\phi]=-\frac{1}{2}$ is the dimension of the field. Related to the Hurst (homogeneity) exponent by $[\phi]=-H$.

At the end of this scaling limit one obtains Brownian motion: random function $[0,+\infty) \rightarrow \mathbb{R}^{D}, t \mapsto B(t)$.
This kind of limiting object has two important properties:
(1) universality (many discrete models share this same limit)
(2) more symmetries (e.g., 90 degree rotations \rightarrow all rotations)

Scale invariance: $\lambda^{[\phi]} B(\lambda t) \stackrel{d}{=} B(t)$ for all $\lambda>0$. Here $[\phi]=-\frac{1}{2}$ is the dimension of the field. Related to the Hurst (homogeneity) exponent by $[\phi]=-H$. Equivalently, $B(\lambda t) \stackrel{d}{=} \lambda^{\frac{1}{2}} B(t)$.

At the end of this scaling limit one obtains Brownian motion: random function $[0,+\infty) \rightarrow \mathbb{R}^{D}, t \mapsto B(t)$.
This kind of limiting object has two important properties:
(1) universality (many discrete models share this same limit)
(2) more symmetries (e.g., 90 degree rotations \rightarrow all rotations)

Scale invariance: $\lambda^{[\phi]} B(\lambda t) \stackrel{d}{=} B(t)$ for all $\lambda>0$. Here $[\phi]=-\frac{1}{2}$ is the dimension of the field. Related to the Hurst (homogeneity) exponent by $[\phi]=-H$. Equivalently, $B(\lambda t) \stackrel{d}{=} \lambda^{\frac{1}{2}} B(t)$.
Global conformal invariance (P. Lévy 1940): For all $t>0$, $\left|f^{\prime}(t)\right|^{[\phi]} B(f(t)) \stackrel{d}{=} B(t)$ where f denotes the inversion $f(t)=\frac{1}{t}$.

At the end of this scaling limit one obtains Brownian motion: random function $[0,+\infty) \rightarrow \mathbb{R}^{D}, t \mapsto B(t)$.
This kind of limiting object has two important properties:
(1) universality (many discrete models share this same limit)
(2) more symmetries (e.g., 90 degree rotations \rightarrow all rotations)

Scale invariance: $\lambda^{[\phi]} B(\lambda t) \stackrel{d}{=} B(t)$ for all $\lambda>0$. Here $[\phi]=-\frac{1}{2}$ is the dimension of the field. Related to the Hurst (homogeneity) exponent by $[\phi]=-H$. Equivalently, $B(\lambda t) \stackrel{d}{=} \lambda^{\frac{1}{2}} B(t)$.
Global conformal invariance (P. Lévy 1940): For all $t>0$, $\left|f^{\prime}(t)\right|^{[\phi]} B(f(t)) \stackrel{d}{=} B(t)$ where f denotes the inversion $f(t)=\frac{1}{t}$. Equivalently, $t B\left(\frac{1}{t}\right) \stackrel{d}{=} B(t)$.

At the end of this scaling limit one obtains Brownian motion: random function $[0,+\infty) \rightarrow \mathbb{R}^{D}, t \mapsto B(t)$.
This kind of limiting object has two important properties:
(1) universality (many discrete models share this same limit)
(2) more symmetries (e.g., 90 degree rotations \rightarrow all rotations)

Scale invariance: $\lambda^{[\phi]} B(\lambda t) \stackrel{d}{=} B(t)$ for all $\lambda>0$. Here $[\phi]=-\frac{1}{2}$ is the dimension of the field. Related to the Hurst (homogeneity) exponent by $[\phi]=-H$. Equivalently, $B(\lambda t) \stackrel{d}{=} \lambda^{\frac{1}{2}} B(t)$.
Global conformal invariance (P. Lévy 1940): For all $t>0$, $\left|f^{\prime}(t)\right|^{[\phi]} B(f(t)) \stackrel{d}{=} B(t)$ where f denotes the inversion $f(t)=\frac{1}{t}$. Equivalently, $t B\left(\frac{1}{t}\right) \stackrel{d}{=} B(t)$.
The dilation factor λ becomes $\left|f^{\prime}(t)\right|$, i.e., local or space-dependent.

2) Quantum field theory:

(by Julian Herzog via Wikimedia Commons)

(by Maximilien Brice, CERN, via Wikimedia Commons)

The purpose of the LHC is to explore physics beyond the Standard Model. The latter is a (very complicated) example of quantum field theory.

The purpose of the LHC is to explore physics beyond the Standard Model. The latter is a (very complicated) example of quantum field theory.

A simpler model (in fact part of the standard model related to the Higgs particle) is that of a scalar field with a quartic self-interaction or ϕ^{4} model.

The purpose of the LHC is to explore physics beyond the Standard Model. The latter is a (very complicated) example of quantum field theory.

A simpler model (in fact part of the standard model related to the Higgs particle) is that of a scalar field with a quartic self-interaction or ϕ^{4} model.
Mathematically, the problem is to construct a probability measure on the space of "functions" $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ heuristically given by

The purpose of the LHC is to explore physics beyond the Standard Model. The latter is a (very complicated) example of quantum field theory.

A simpler model (in fact part of the standard model related to the Higgs particle) is that of a scalar field with a quartic self-interaction or ϕ^{4} model.

Mathematically, the problem is to construct a probability measure on the space of "functions" $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ heuristically given by

$$
\frac{1}{\mathcal{Z}} \exp \left(-\int_{\mathbb{R}^{d}}\left\{\frac{1}{2}(\nabla \phi)^{2}(x)+\mu \phi(x)^{2}+g \phi(x)^{4}\right\} d^{d} x\right) \quad D \phi
$$

3) Mathematical formalization:

3) Mathematical formalization:

A scaling limit is a particular case of limit theorem in probability. For this one needs a fixed measurable space (Ω, \mathcal{F}) on which one can study the weak convergence of probability measures $\mathbb{P}_{n} \rightarrow \mathbb{P}$. Thus Ω must be a topological space and \mathcal{F} must be the corresponding Borel σ-algebra.

3) Mathematical formalization:

A scaling limit is a particular case of limit theorem in probability. For this one needs a fixed measurable space (Ω, \mathcal{F}) on which one can study the weak convergence of probability measures $\mathbb{P}_{n} \rightarrow \mathbb{P}$. Thus Ω must be a topological space and \mathcal{F} must be the corresponding Borel σ-algebra.

Very general and canonical choice: $\Omega=S^{\prime}\left(\mathbb{R}^{d}\right)$ with strong topology.

3) Mathematical formalization:

A scaling limit is a particular case of limit theorem in probability. For this one needs a fixed measurable space (Ω, \mathcal{F}) on which one can study the weak convergence of probability measures $\mathbb{P}_{n} \rightarrow \mathbb{P}$. Thus Ω must be a topological space and \mathcal{F} must be the corresponding Borel σ-algebra.

Very general and canonical choice: $\Omega=S^{\prime}\left(\mathbb{R}^{d}\right)$ with strong topology.
Recall: Let $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be smooth and of temperate growth.

3) Mathematical formalization:

A scaling limit is a particular case of limit theorem in probability. For this one needs a fixed measurable space (Ω, \mathcal{F}) on which one can study the weak convergence of probability measures $\mathbb{P}_{n} \rightarrow \mathbb{P}$. Thus Ω must be a topological space and \mathcal{F} must be the corresponding Borel σ-algebra.

Very general and canonical choice: $\Omega=S^{\prime}\left(\mathbb{R}^{d}\right)$ with strong topology.
Recall: Let $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be smooth and of temperate growth. Let L be an integer > 1 (zooming-out factor).

3) Mathematical formalization:

A scaling limit is a particular case of limit theorem in probability. For this one needs a fixed measurable space (Ω, \mathcal{F}) on which one can study the weak convergence of probability measures $\mathbb{P}_{n} \rightarrow \mathbb{P}$. Thus Ω must be a topological space and \mathcal{F} must be the corresponding Borel σ-algebra.

Very general and canonical choice: $\Omega=S^{\prime}\left(\mathbb{R}^{d}\right)$ with strong topology.
Recall: Let $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be smooth and of temperate growth. Let L be an integer >1 (zooming-out factor). Dyadic techniques in harmonic analysis $\leftrightarrow L=2$.

3) Mathematical formalization:

A scaling limit is a particular case of limit theorem in probability. For this one needs a fixed measurable space (Ω, \mathcal{F}) on which one can study the weak convergence of probability measures $\mathbb{P}_{n} \rightarrow \mathbb{P}$. Thus Ω must be a topological space and \mathcal{F} must be the corresponding Borel σ-algebra.

Very general and canonical choice: $\Omega=S^{\prime}\left(\mathbb{R}^{d}\right)$ with strong topology.
Recall: Let $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be smooth and of temperate growth. Let L be an integer >1 (zooming-out factor). Dyadic techniques in harmonic analysis $\leftrightarrow L=2$.
For all test function $f \in S\left(\mathbb{R}^{d}\right)$ we have $L^{r d} \sum_{x \in L^{r} \mathbb{Z}^{d}} \phi(x) f(x) \rightarrow \int_{\mathbb{R}^{d}} \phi(x) f(x) d^{d} x$ when $r \rightarrow-\infty$.

3) Mathematical formalization:

A scaling limit is a particular case of limit theorem in probability. For this one needs a fixed measurable space (Ω, \mathcal{F}) on which one can study the weak convergence of probability measures $\mathbb{P}_{n} \rightarrow \mathbb{P}$. Thus Ω must be a topological space and \mathcal{F} must be the corresponding Borel σ-algebra.
Very general and canonical choice: $\Omega=S^{\prime}\left(\mathbb{R}^{d}\right)$ with strong topology.
Recall: Let $\phi: \mathbb{R}^{d} \rightarrow \mathbb{R}$ be smooth and of temperate growth. Let L be an integer >1 (zooming-out factor). Dyadic techniques in harmonic analysis $\leftrightarrow L=2$.
For all test function $f \in S\left(\mathbb{R}^{d}\right)$ we have $L^{r d} \sum_{x \in L^{r} \mathbb{Z}^{d}} \phi(x) f(x) \rightarrow \int_{\mathbb{R}^{d}} \phi(x) f(x) d^{d} x$ when $r \rightarrow-\infty$.

In fact $L^{r d} \sum_{x \in L^{r} \mathbb{Z}^{d}} \phi(x) \delta_{x} \rightarrow \phi$ in $S^{\prime}\left(\mathbb{R}^{d}\right)$.

The random situation:

The random situation:

Let $\left(\sigma_{\mathrm{x}}\right)_{\mathbf{x} \in \mathbb{Z}^{d}}$ be a random field on the lattice with values in $\{1,-1\}$ or \mathbb{R} (provided a.s. temperate).

The random situation:

Let $\left(\sigma_{\mathbf{x}}\right)_{\mathbf{x} \in \mathbb{Z}^{d}}$ be a random field on the lattice with values in $\{1,-1\}$ or \mathbb{R} (provided a.s. temperate).
One obtains a random Schwartz distribution supported on the fine lattice with mesh L^{r} by taking

$$
L^{r(d-[\phi])} \sum_{\mathbf{x} \in \mathbb{Z}^{d}} \sigma_{\mathbf{x}} \delta_{L^{r} \mathbf{x}}
$$

with suitable choice of the scaling dimension [ϕ] for weak convergence of probability law.

2D Ising Model:

2D Ising Model:

At the critical temperature, the Ising random field $\left(\sigma_{\mathrm{x}}\right)_{\mathrm{x} \in \mathbb{Z}^{2}}$ with ± 1 values is such that the law of $\phi_{r}=L^{r(d-[\phi])} \sum_{x \in \mathbb{Z}^{d}} \sigma_{\mathrm{x}} \delta_{L^{\prime} \mathrm{x}}$, with $d=2$ and $[\phi]=\frac{1}{8}$ converges weakly, when $r \rightarrow-\infty$, to a conformally invariant non-Gaussian probability measure on $S^{\prime}\left(\mathbb{R}^{2}\right)$.

2D Ising Model:

At the critical temperature, the Ising random field $\left(\sigma_{\mathrm{x}}\right)_{\mathrm{x} \in \mathbb{Z}^{2}}$ with ± 1 values is such that the law of
$\phi_{r}=L^{r(d-[\phi])} \sum_{x \in \mathbb{Z}^{d}} \sigma_{\mathrm{x}} \delta_{L^{\prime} \mathrm{x}}$, with $d=2$ and $[\phi]=\frac{1}{8}$ converges weakly, when $r \rightarrow-\infty$, to a conformally invariant non-Gaussian probability measure on $S^{\prime}\left(\mathbb{R}^{2}\right)$.

Result due to Dubédat (arXiv 2011), Camia-Garban-Newman (Ann. Probab. 2015) and Chelkak-Hongler-Izyurov (Ann.
Math. 2015).
(1) Introduction
(2) The Euclidean CFT model: conjectures
(3) The p-adic model: some theorems
(4) New method: space-dependent Wilsonian renormalization group

1) The 3D fractional ϕ^{4} model:

1) The 3D fractional ϕ^{4} model:

Studied by Brydges-Mitter-Scoppola CMP 2003 and A. A. CMP 2007. It is a generalization of the ϕ^{4} model to fractional powers of the Laplacien.

1) The 3D fractional ϕ^{4} model:

Studied by Brydges-Mitter-Scoppola CMP 2003 and A. A. CMP 2007. It is a generalization of the ϕ^{4} model to fractional powers of the Laplacien. Analogy: The Navier-Stokes Equation

$$
\partial_{t} u+u \cdot \nabla u=\Delta u-\nabla p
$$

generalizes to

1) The 3D fractional ϕ^{4} model:

Studied by Brydges-Mitter-Scoppola CMP 2003 and A. A. CMP 2007. It is a generalization of the ϕ^{4} model to fractional powers of the Laplacien. Analogy: The Navier-Stokes Equation

$$
\partial_{t} u+u \cdot \nabla u=\Delta u-\nabla p
$$

generalizes to

$$
\partial_{t} u+u \cdot \nabla u=-(-\Delta)^{\alpha} u-\nabla p
$$

the hyperdissipative Navier-Stokes Equation.

1) The 3D fractional ϕ^{4} model:

Studied by Brydges-Mitter-Scoppola CMP 2003 and A. A. CMP 2007. It is a generalization of the ϕ^{4} model to fractional powers of the Laplacien. Analogy: The Navier-Stokes Equation

$$
\partial_{t} u+u \cdot \nabla u=\Delta u-\nabla p
$$

generalizes to

$$
\partial_{t} u+u \cdot \nabla u=-(-\Delta)^{\alpha} u-\nabla p
$$

the hyperdissipative Navier-Stokes Equation.
For $\alpha>\frac{5}{4}$, global regularity of solutions was proved by Katz-Pavlović GAFA 2002.

1) The 3D fractional ϕ^{4} model:

Studied by Brydges-Mitter-Scoppola CMP 2003 and A. A. CMP 2007. It is a generalization of the ϕ^{4} model to fractional powers of the Laplacien. Analogy: The Navier-Stokes Equation

$$
\partial_{t} u+u \cdot \nabla u=\Delta u-\nabla p
$$

generalizes to

$$
\partial_{t} u+u \cdot \nabla u=-(-\Delta)^{\alpha} u-\nabla p
$$

the hyperdissipative Navier-Stokes Equation.
For $\alpha>\frac{5}{4}$, global regularity of solutions was proved by Katz-Pavlović GAFA 2002. For all exponant $\alpha<\frac{5}{4}$, this is an open problem.

1) The 3D fractional ϕ^{4} model:

Studied by Brydges-Mitter-Scoppola CMP 2003 and A. A. CMP 2007. It is a generalization of the ϕ^{4} model to fractional powers of the Laplacien. Analogy: The Navier-Stokes Equation

$$
\partial_{t} u+u \cdot \nabla u=\Delta u-\nabla p
$$

generalizes to

$$
\partial_{t} u+u \cdot \nabla u=-(-\Delta)^{\alpha} u-\nabla p
$$

the hyperdissipative Navier-Stokes Equation.
For $\alpha>\frac{5}{4}$, global regularity of solutions was proved by Katz-Pavlović GAFA 2002. For all exponant $\alpha<\frac{5}{4}$, this is an open problem. Main result in this talk is similar in spirit to the case $\alpha=\frac{5}{4}-\epsilon$ for the hyperdissipative Navier-Stokes Equation.

Indeed, one can generalize the ϕ^{4} model

$$
\frac{1}{\mathcal{Z}} \exp \left(-\frac{1}{2}\langle\phi,(-\Delta) \phi\rangle_{L^{2}}-\int_{\mathbb{R}^{d}}\left\{g \phi(x)^{4}+\mu \phi(x)^{2}\right\} d^{d} x\right) D \phi
$$

to

Indeed, one can generalize the ϕ^{4} model

$$
\frac{1}{\mathcal{Z}} \exp \left(-\frac{1}{2}\langle\phi,(-\Delta) \phi\rangle_{L^{2}}-\int_{\mathbb{R}^{d}}\left\{g \phi(x)^{4}+\mu \phi(x)^{2}\right\} d^{d} x\right) \quad D \phi
$$

to

$$
\frac{1}{\mathcal{Z}} \exp \left(-\frac{1}{2}\left\langle\phi,(-\Delta)^{\alpha} \phi\right\rangle_{L^{2}}-\int_{\mathbb{R}^{d}}\left\{g \phi(x)^{4}+\mu \phi(x)^{2}\right\} d^{d} x\right) D \phi
$$

Indeed, one can generalize the ϕ^{4} model

$$
\frac{1}{\mathcal{Z}} \exp \left(-\frac{1}{2}\langle\phi,(-\Delta) \phi\rangle_{L^{2}}-\int_{\mathbb{R}^{d}}\left\{g \phi(x)^{4}+\mu \phi(x)^{2}\right\} d^{d} x\right) \quad D \phi
$$

to
$\frac{1}{\mathcal{Z}} \exp \left(-\frac{1}{2}\left\langle\phi,(-\Delta)^{\alpha} \phi\right\rangle_{L^{2}}-\int_{\mathbb{R}^{d}}\left\{g \phi(x)^{4}+\mu \phi(x)^{2}\right\} d^{d} x\right) D \phi$
We will focus on the particular case $d=3$ and $\alpha=\frac{3+\epsilon}{4}$ with $0<\epsilon \ll 1$.

Indeed, one can generalize the ϕ^{4} model

$$
\frac{1}{\mathcal{Z}} \exp \left(-\frac{1}{2}\langle\phi,(-\Delta) \phi\rangle_{L^{2}}-\int_{\mathbb{R}^{d}}\left\{g \phi(x)^{4}+\mu \phi(x)^{2}\right\} d^{d} x\right) D \phi
$$

to
$\frac{1}{\mathcal{Z}} \exp \left(-\frac{1}{2}\left\langle\phi,(-\Delta)^{\alpha} \phi\right\rangle_{L^{2}}-\int_{\mathbb{R}^{d}}\left\{g \phi(x)^{4}+\mu \phi(x)^{2}\right\} d^{d} x\right) D \phi$
We will focus on the particular case $d=3$ and $\alpha=\frac{3+\epsilon}{4}$ with $0<\epsilon \ll 1$.
Can be seen as continuous limit of spin models, like Ising, with ferromagnetic long-range interactions.

Indeed, one can generalize the ϕ^{4} model

$$
\frac{1}{\mathcal{Z}} \exp \left(-\frac{1}{2}\langle\phi,(-\Delta) \phi\rangle_{L^{2}}-\int_{\mathbb{R}^{d}}\left\{g \phi(x)^{4}+\mu \phi(x)^{2}\right\} d^{d} x\right) D \phi
$$

to
$\frac{1}{\mathcal{Z}} \exp \left(-\frac{1}{2}\left\langle\phi,(-\Delta)^{\alpha} \phi\right\rangle_{L^{2}}-\int_{\mathbb{R}^{d}}\left\{g \phi(x)^{4}+\mu \phi(x)^{2}\right\} d^{d} x\right) D \phi$
We will focus on the particular case $d=3$ and $\alpha=\frac{3+\epsilon}{4}$ with $0<\epsilon \ll 1$.
Can be seen as continuous limit of spin models, like Ising, with ferromagnetic long-range interactions.
Of course, one would like to take $\epsilon=1$ which corresponds to the 3d Ising CFT.
2) Fourier regularization:

2) Fourier regularization:

Let $C_{-\infty}$ be the continuous bilinear form on $S\left(\mathbb{R}^{3}\right)$ given by

$$
C_{-\infty}(f, g)=\frac{1}{(2 \pi)^{3}} \int_{\mathbb{R}^{3}} \frac{\widehat{f}(\xi) \widehat{g}(\xi)}{|\xi|^{3-2[\phi]}} d^{3} \xi
$$

where $[\phi]=\frac{3-\epsilon}{4}$ is the scaling dimension of the field. Let $\mu_{C_{-\infty}}$ be the centered Gaussian measure with covariance $C_{-\infty}$.

2) Fourier regularization:

Let $C_{-\infty}$ be the continuous bilinear form on $S\left(\mathbb{R}^{3}\right)$ given by

$$
C_{-\infty}(f, g)=\frac{1}{(2 \pi)^{3}} \int_{\mathbb{R}^{3}} \frac{\widehat{f}(\xi) \hat{g}(\xi)}{|\xi|^{3-2[\phi]}} d^{3} \xi
$$

where $[\phi]=\frac{3-\epsilon}{4}$ is the scaling dimension of the field. Let $\mu_{C_{-\infty}}$ be the centered Gaussian measure with covariance $C_{-\infty}$. Mollifier $\rho_{\mathrm{UV}}: C^{\infty}$ function, $\mathbb{R}^{3} \rightarrow \mathbb{R}$, compact support, $O(3)$-invariant, $\int \rho_{\mathrm{UV}}=1$.

2) Fourier regularization:

Let $C_{-\infty}$ be the continuous bilinear form on $S\left(\mathbb{R}^{3}\right)$ given by

$$
C_{-\infty}(f, g)=\frac{1}{(2 \pi)^{3}} \int_{\mathbb{R}^{3}} \frac{\widehat{f}(\xi) \hat{g}(\xi)}{|\xi|^{3-2[\phi]}} d^{3} \xi
$$

where $[\phi]=\frac{3-\epsilon}{4}$ is the scaling dimension of the field. Let $\mu_{C_{-\infty}}$ be the centered Gaussian measure with covariance $C_{-\infty}$. Mollifier $\rho_{\mathrm{UV}}: C^{\infty}$ function, $\mathbb{R}^{3} \rightarrow \mathbb{R}$, compact support, $O(3)$-invariant, $\int \rho_{\mathrm{UV}}=1$.
Volume cut-off ρ_{IR} : C^{∞} function, $\mathbb{R}^{3} \rightarrow \mathbb{R}$, compact support, $O(3)$-invariant, positive, equal to 1 near origin.

2) Fourier regularization:

Let $C_{-\infty}$ be the continuous bilinear form on $S\left(\mathbb{R}^{3}\right)$ given by

$$
C_{-\infty}(f, g)=\frac{1}{(2 \pi)^{3}} \int_{\mathbb{R}^{3}} \frac{\widehat{f}(\xi) \hat{g}(\xi)}{|\xi|^{3-2[\phi]}} d^{3} \xi
$$

where $[\phi]=\frac{3-\epsilon}{4}$ is the scaling dimension of the field. Let $\mu_{C_{-\infty}}$ be the centered Gaussian measure with covariance $C_{-\infty}$. Mollifier $\rho_{\mathrm{UV}}: C^{\infty}$ function, $\mathbb{R}^{3} \rightarrow \mathbb{R}$, compact support, $O(3)$-invariant, $\int \rho_{\mathrm{UV}}=1$.
Volume cut-off ρ_{IR} : C^{∞} function, $\mathbb{R}^{3} \rightarrow \mathbb{R}$, compact support, $O(3)$-invariant, positive, equal to 1 near origin.

Again, fix zooming-out ratio $L>1$.

For $r \in \mathbb{Z}$ (UV cut-off $r \rightarrow-\infty)$, let $\rho_{\mathrm{UV}, r}(x)=L^{-3 r} \rho_{\mathrm{UV}}\left(L^{-r} x\right)$.

For $r \in \mathbb{Z}$ (UV cut-off $r \rightarrow-\infty$), let
$\rho_{\mathrm{UV}, r}(x)=L^{-3 r} \rho_{\mathrm{UV}}\left(L^{-r} x\right)$.
For $s \in \mathbb{Z}(\operatorname{IR}$ cut-off $s \rightarrow \infty)$, let $\rho_{\mathrm{IR}, s}(x)=\rho_{\mathrm{IR}}\left(L^{-s} x\right)$.

For $r \in \mathbb{Z}$ (UV cut-off $r \rightarrow-\infty$), let
$\rho_{\mathrm{UV}, r}(x)=L^{-3 r} \rho_{\mathrm{UV}}\left(L^{-r} x\right)$.
For $s \in \mathbb{Z}$ (IR cut-off $s \rightarrow \infty)$, let $\rho_{\mathrm{IR}, s}(x)=\rho_{\mathrm{IR}}\left(L^{-s} x\right)$.
Let $\mu_{C_{r}}$ be the law of $\phi * \rho_{\mathrm{UV}, r}$ where $\phi \in S^{\prime}\left(\mathbb{R}^{3}\right)$ sampled according to the law $\mu_{C_{-\infty}}$.

For $r \in \mathbb{Z}$ (UV cut-off $r \rightarrow-\infty$), let
$\rho_{\mathrm{UV}, r}(x)=L^{-3 r} \rho_{\mathrm{UV}}\left(L^{-r} x\right)$.
For $s \in \mathbb{Z}$ (IR cut-off $s \rightarrow \infty)$, let $\rho_{\mathrm{IR}, s}(x)=\rho_{\mathrm{IR}}\left(L^{-s} x\right)$.
Let $\mu_{c_{r}}$ be the law of $\phi * \rho_{\mathrm{UV}, r}$ where $\phi \in S^{\prime}\left(\mathbb{R}^{3}\right)$ sampled according to the law $\mu_{C_{-\infty}}$.

Given a choice of parameters $\left(g_{r}, \mu_{r}\right)_{r \in \mathbb{Z}}$, one has well-defined probability measures $d \nu_{r, s}(\phi)$ whose Radon-Nikodym derivatives with respect to $d \mu_{C_{r}}(\phi)$ is

$$
\sim \exp \left(-\int_{\mathbb{R}^{3}} \rho_{\mathrm{IR}, s}(x)\left\{g_{r}: \phi^{4}:(x)+\mu_{r}: \phi^{2}:(x)\right\} d^{3} x\right)
$$

with Hermite-Wick order with respect to $\mu_{C_{r}}$.

For $r \in \mathbb{Z}$ (UV cut-off $r \rightarrow-\infty)$, let
$\rho_{\mathrm{UV}, r}(x)=L^{-3 r} \rho_{\mathrm{UV}}\left(L^{-r} x\right)$.
For $s \in \mathbb{Z}$ (IR cut-off $s \rightarrow \infty)$, let $\rho_{\mathrm{IR}, s}(x)=\rho_{\mathrm{IR}}\left(L^{-s} x\right)$.
Let $\mu_{C_{r}}$ be the law of $\phi * \rho_{\mathrm{UV}, r}$ where $\phi \in S^{\prime}\left(\mathbb{R}^{3}\right)$ sampled according to the law $\mu_{C_{-\infty}}$.

Given a choice of parameters $\left(g_{r}, \mu_{r}\right)_{r \in \mathbb{Z}}$, one has well-defined probability measures $d \nu_{r, s}(\phi)$ whose Radon-Nikodym derivatives with respect to $d \mu_{C_{r}}(\phi)$ is

$$
\sim \exp \left(-\int_{\mathbb{R}^{3}} \rho_{\mathrm{IR}, s}(x)\left\{g_{r}: \phi^{4}:(x)+\mu_{r}: \phi^{2}:(x)\right\} d^{3} x\right)
$$

with Hermite-Wick order with respect to $\mu_{C_{r}}$.
The scale invariant measure for (fractional) ϕ^{4} model should be the weak limit $\nu_{\phi}=\lim _{r \rightarrow-\infty} \lim _{s \rightarrow \infty} \nu_{r, s}$ for a choice $\left(g_{r}, \mu_{r}\right)_{r \in \mathbb{Z}}$ that emulates the scaling limit of a fixed critical lattice random field (like for 2D Ising).

Conjecture 1:

Let $[\phi]=\frac{3-\epsilon}{4}$ with $0<\epsilon \ll 1$.
There exists a nonempty open interval $I \subset(0, \infty)$ and a function $\mu_{\mathrm{c}}: l \rightarrow \mathbb{R}$ such that for all $g \in I$, if one lets $g_{r}=L^{-r(3-4[\phi])} g$ and $\mu_{r}=L^{-r(3-2[\phi])} \mu_{\mathrm{c}}(g)$, then the weak limit ν_{ϕ} exists, is non-Gaussian, stationary, $O(3)$-invariant, and scale invariant with exponent [ϕ], i.e., $\lambda^{[d]} \phi(\lambda \cdot) \stackrel{d d}{=} \phi(\cdot)$ for all $\lambda>0$.
Moreover, this limit is independent of L and $g \in I$ and of the choice of $\rho_{\mathrm{UV}}, \rho_{\mathrm{IR}}$.

Conjecture 1:

Let $[\phi]=\frac{3-\epsilon}{4}$ with $0<\epsilon \ll 1$.
There exists a nonempty open interval $I \subset(0, \infty)$ and a function $\mu_{\mathrm{c}}: l \rightarrow \mathbb{R}$ such that for all $g \in I$, if one lets $g_{r}=L^{-r(3-4[\phi])} g$ and $\mu_{r}=L^{-r(3-2[\phi])} \mu_{\mathrm{c}}(g)$, then the weak limit ν_{ϕ} exists, is non-Gaussian, stationary, $O(3)$-invariant, and scale invariant with exponent [ϕ], i.e., $\lambda^{[\phi]} \phi(\lambda \cdot) \stackrel{d d}{=} \phi(\cdot)$ for all $\lambda>0$.
Moreover, this limit is independent of L and $g \in I$ and of the choice of $\rho_{\mathrm{UV}}, \rho_{\mathrm{IR}}$.

Measure constructed on \mathbb{T}^{3} torus by Mitter (\sim 2004) using RG fixed point obtained by Brydges-Mitter-Scoppola CMP 2003.
3) Some definitions:
3) Some definitions:

A probability measure μ on $S^{\prime}\left(\mathbb{R}^{3}\right)$ has moments of all orders (MAO property) if for all $f \in S\left(\mathbb{R}^{3}\right)$ and all $p \in[1, \infty)$, the function $\phi \mapsto \phi(f)$ is in $L^{p}\left(S^{\prime}\left(\mathbb{R}^{3}\right), \mu\right)$.

3) Some definitions:

A probability measure μ on $S^{\prime}\left(\mathbb{R}^{3}\right)$ has moments of all orders (MAO property) if for all $f \in S\left(\mathbb{R}^{3}\right)$ and all $p \in[1, \infty)$, the function $\phi \mapsto \phi(f)$ is in $L^{p}\left(S^{\prime}\left(\mathbb{R}^{3}\right), \mu\right)$.
The n-linear forms given by the moments

$$
S_{n}\left(f_{1}, \ldots, f_{n}\right)=\left\langle\phi\left(f_{1}\right) \cdots \phi\left(f_{n}\right)\right\rangle=\int_{S^{\prime}\left(\mathbb{R}^{3}\right)} \phi\left(f_{1}\right) \cdots \phi\left(f_{n}\right) d \mu(\phi)
$$

are automatically continuous (Fernique 1967).

3) Some definitions:

A probability measure μ on $S^{\prime}\left(\mathbb{R}^{3}\right)$ has moments of all orders (MAO property) if for all $f \in S\left(\mathbb{R}^{3}\right)$ and all $p \in[1, \infty)$, the function $\phi \mapsto \phi(f)$ is in $L^{p}\left(S^{\prime}\left(\mathbb{R}^{3}\right), \mu\right)$.
The n-linear forms given by the moments

$$
S_{n}\left(f_{1}, \ldots, f_{n}\right)=\left\langle\phi\left(f_{1}\right) \cdots \phi\left(f_{n}\right)\right\rangle=\int_{S^{\prime}\left(\mathbb{R}^{3}\right)} \phi\left(f_{1}\right) \cdots \phi\left(f_{n}\right) d \mu(\phi)
$$

are automatically continuous (Fernique 1967).
A probability measure μ is determined by correlations (DC) if it is MAO and the only MAO measure with the same sequence of moments S_{n} is μ itself.

3) Some definitions:

A probability measure μ on $S^{\prime}\left(\mathbb{R}^{3}\right)$ has moments of all orders (MAO property) if for all $f \in S\left(\mathbb{R}^{3}\right)$ and all $p \in[1, \infty)$, the function $\phi \mapsto \phi(f)$ is in $L^{p}\left(S^{\prime}\left(\mathbb{R}^{3}\right), \mu\right)$.
The n-linear forms given by the moments

$$
S_{n}\left(f_{1}, \ldots, f_{n}\right)=\left\langle\phi\left(f_{1}\right) \cdots \phi\left(f_{n}\right)\right\rangle=\int_{S^{\prime}\left(\mathbb{R}^{3}\right)} \phi\left(f_{1}\right) \cdots \phi\left(f_{n}\right) d \mu(\phi)
$$

are automatically continuous (Fernique 1967).
A probability measure μ is determined by correlations (DC) if it is MAO and the only MAO measure with the same sequence of moments S_{n} is μ itself.
By the Schwartz Kernel Theorem S_{n} can be seen as an element of $S^{\prime}\left(\mathbb{R}^{3 n}\right)$.

A DC measure μ is determined by pointwise correlations (DPC) if

A DC measure μ is determined by pointwise correlations
(DPC) if
(1) $\forall n, S_{n} \in S^{\prime}\left(\mathbb{R}^{3 n}\right)$ has singular support inside the big diagonal $\operatorname{Diag}_{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{3 n} \mid \exists i \neq j, x_{i}=x_{j}\right\}$. This defines the pointwise correlations $S_{n}\left(x_{1}, \ldots, x_{n}\right)=\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right\rangle$ as C^{∞} functions on $\mathbb{R}^{3 n} \backslash \operatorname{Diag}_{n}$.

A DC measure μ is determined by pointwise correlations (DPC) if
(1) $\forall n, S_{n} \in S^{\prime}\left(\mathbb{R}^{3 n}\right)$ has singular support inside the big diagonal $\operatorname{Diag}_{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{3 n} \mid \exists i \neq j, x_{i}=x_{j}\right\}$. This defines the pointwise correlations $S_{n}\left(x_{1}, \ldots, x_{n}\right)=\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right\rangle$ as C^{∞} functions on $\mathbb{R}^{3 n} \backslash \operatorname{Diag}_{n}$.
(2) The pointwise correlations are $L^{1, \text { loc }}$ on the big diagonal.

A DC measure μ is determined by pointwise correlations (DPC) if
(1) $\forall n, S_{n} \in S^{\prime}\left(\mathbb{R}^{3 n}\right)$ has singular support inside the big diagonal $\operatorname{Diag}_{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{3 n} \mid \exists i \neq j, x_{i}=x_{j}\right\}$. This defines the pointwise correlations $S_{n}\left(x_{1}, \ldots, x_{n}\right)=\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right\rangle$ as C^{∞} functions on $\mathbb{R}^{3 n} \backslash \operatorname{Diag}_{n}$.
(2) The pointwise correlations are $L^{1, l o c}$ on the big diagonal.
(3) For all n and all test functions $f_{1}, \ldots, f_{n} \in S\left(\mathbb{R}^{3}\right)$,

$$
\begin{aligned}
& \left\langle\phi\left(f_{1}\right) \cdots \phi\left(f_{n}\right)\right\rangle= \\
& \quad \int_{\mathbb{R}^{3 n} \backslash \operatorname{Diag}_{n}}\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right\rangle f\left(x_{1}\right) \cdots f\left(x_{n}\right) d^{3} x_{1} \cdots d^{3} x_{n} .
\end{aligned}
$$

A DC measure μ is determined by pointwise correlations (DPC) if
(1) $\forall n, S_{n} \in S^{\prime}\left(\mathbb{R}^{3 n}\right)$ has singular support inside the big diagonal $\operatorname{Diag}_{n}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{3 n} \mid \exists i \neq j, x_{i}=x_{j}\right\}$. This defines the pointwise correlations $S_{n}\left(x_{1}, \ldots, x_{n}\right)=\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right\rangle$ as C^{∞} functions on $\mathbb{R}^{3 n} \backslash \operatorname{Diag}_{n}$.
(2) The pointwise correlations are $L^{1, \text { loc }}$ on the big diagonal.
(3) For all n and all test functions $f_{1}, \ldots, f_{n} \in S\left(\mathbb{R}^{3}\right)$,

$$
\begin{aligned}
& \left\langle\phi\left(f_{1}\right) \cdots \phi\left(f_{n}\right)\right\rangle= \\
& \quad \int_{\mathbb{R}^{3 n} \backslash \operatorname{Diag}_{n}}\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right\rangle f\left(x_{1}\right) \cdots f\left(x_{n}\right) d^{3} x_{1} \cdots d^{3} x_{n} .
\end{aligned}
$$

Conjecture 2: ν_{ϕ} is DPC.
4) Conformal invariance:

4) Conformal invariance:

Conjecture 3:

The pointwise correlations of ν_{ϕ} satisfy

$$
\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right\rangle=\left(\prod_{i=1}^{n}\left|J_{f}\left(x_{i}\right)\right|^{\frac{\mid(6)}{3}}\right) \times\left\langle\phi\left(f\left(x_{1}\right)\right) \cdots \phi\left(f\left(x_{n}\right)\right)\right\rangle
$$

for all $f \in \mathcal{M}\left(\mathbb{R}^{3}\right)$ and all collection of distinct points in $\mathbb{R}^{3} \backslash\left\{f^{-1}(\infty)\right\}$.

4) Conformal invariance:

Conjecture 3:

The pointwise correlations of ν_{ϕ} satisfy

$$
\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right\rangle=\left(\prod_{i=1}^{n}\left|J_{f}\left(x_{i}\right)\right|^{\left\lvert\, \frac{|0|}{3}\right.}\right) \times\left\langle\phi\left(f\left(x_{1}\right)\right) \cdots \phi\left(f\left(x_{n}\right)\right)\right\rangle
$$

for all $f \in \mathcal{M}\left(\mathbb{R}^{3}\right)$ and all collection of distinct points in $\mathbb{R}^{3} \backslash\left\{f^{-1}(\infty)\right\}$.

Here, $\mathcal{M}\left(\mathbb{R}^{3}\right)$ is the Möbius Group of global conformal maps and $J_{f}(x)$ is the Jacobian of f at x.

4) Conformal invariance:

Conjecture 3:

The pointwise correlations of ν_{ϕ} satisfy

$$
\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right)\right\rangle=\left(\prod_{i=1}^{n}\left|J_{f}\left(x_{i}\right)\right|^{\left[\frac{[0]}{3}\right.}\right) \times\left\langle\phi\left(f\left(x_{1}\right)\right) \cdots \phi\left(f\left(x_{n}\right)\right)\right\rangle
$$

for all $f \in \mathcal{M}\left(\mathbb{R}^{3}\right)$ and all collection of distinct points in $\mathbb{R}^{3} \backslash\left\{f^{-1}(\infty)\right\}$.

Here, $\mathcal{M}\left(\mathbb{R}^{3}\right)$ is the Möbius Group of global conformal maps and $J_{f}(x)$ is the Jacobian of f at x.
Conj. 3 is a precise formulation of predictions made in "Conformal invariance in the long-range Ising model" by Paulos, Rychkov, van Rees and Zan, Nucl. Phys. B 2016 - > Higher dimensional conformal bootstrap program.
5) The Möbius group from an AdS/CFT point of view:
5) The Möbius group from an AdS/CFT point of view:

Let $\widehat{\mathbb{R}^{3}}=\mathbb{R}^{3} \cup\{\infty\} \simeq \mathbb{S}^{3}$.
5) The Möbius group from an AdS/CFT point of view: Let $\widehat{\mathbb{R}^{3}}=\mathbb{R}^{3} \cup\{\infty\} \simeq \mathbb{S}^{3} . \mathcal{M}\left(\mathbb{R}^{3}\right)$ is the group of bijective transformations of $\widehat{\mathbb{R}^{3}}$ generated by isometries, dilations and the unit sphere inversion $J(x)=|x|^{-2} x$.

5) The Möbius group from an AdS/CFT point of view:

Let $\widehat{\mathbb{R}^{3}}=\mathbb{R}^{3} \cup\{\infty\} \simeq \mathbb{S}^{3}$. $\mathcal{M}\left(\mathbb{R}^{3}\right)$ is the group of bijective transformations of $\widehat{\mathbb{R}^{3}}$ generated by isometries, dilations and the unit sphere inversion $J(x)=|x|^{-2} x$. This is also the invariance group of the absolute cross-ratio

$$
C R\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\frac{\left|x_{1}-x_{3}\right|\left|x_{2}-x_{4}\right|}{\left|x_{1}-x_{4}\right|\left|x_{2}-x_{3}\right|} .
$$

5) The Möbius group from an AdS/CFT point of view:

Let $\widehat{\mathbb{R}^{3}}=\mathbb{R}^{3} \cup\{\infty\} \simeq \mathbb{S}^{3}$. $\mathcal{M}\left(\mathbb{R}^{3}\right)$ is the group of bijective transformations of $\widehat{\mathbb{R}^{3}}$ generated by isometries, dilations and the unit sphere inversion $J(x)=|x|^{-2} x$. This is also the invariance group of the absolute cross-ratio

$$
C R\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\frac{\left|x_{1}-x_{3}\right|\left|x_{2}-x_{4}\right|}{\left|x_{1}-x_{4}\right|\left|x_{2}-x_{3}\right|} .
$$

Conformal ball model: $\widehat{\mathbb{R}^{3}} \simeq \mathbb{S}^{3}$ seen as boundary of \mathbb{B}^{4} with metric $d s=\frac{2|d x|}{1-|x|^{2}}$.

5) The Möbius group from an AdS/CFT point of view:

Let $\widehat{\mathbb{R}^{3}}=\mathbb{R}^{3} \cup\{\infty\} \simeq \mathbb{S}^{3}$. $\mathcal{M}\left(\mathbb{R}^{3}\right)$ is the group of bijective transformations of \mathbb{R}^{3} generated by isometries, dilations and the unit sphere inversion $J(x)=|x|^{-2} x$. This is also the invariance group of the absolute cross-ratio

$$
C R\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\frac{\left|x_{1}-x_{3}\right|\left|x_{2}-x_{4}\right|}{\left|x_{1}-x_{4}\right|\left|x_{2}-x_{3}\right|} .
$$

Conformal ball model: $\widehat{\mathbb{R}^{3}} \simeq \mathbb{S}^{3}$ seen as boundary of \mathbb{B}^{4} with metric $d s=\frac{2|d x|}{1-|x|^{2}}$.
Half-space model: \mathbb{R}^{3} seen as boundary of $\mathbb{H}^{4}=\mathbb{R}^{3} \times(0, \infty)$ with metric $d s=\frac{|d x|}{x_{4}}$.

5) The Möbius group from an AdS/CFT point of view:

Let $\widehat{\mathbb{R}^{3}}=\mathbb{R}^{3} \cup\{\infty\} \simeq \mathbb{S}^{3}$. $\mathcal{M}\left(\mathbb{R}^{3}\right)$ is the group of bijective transformations of \mathbb{R}^{3} generated by isometries, dilations and the unit sphere inversion $J(x)=|x|^{-2} x$. This is also the invariance group of the absolute cross-ratio

$$
C R\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\frac{\left|x_{1}-x_{3}\right|\left|x_{2}-x_{4}\right|}{\left|x_{1}-x_{4}\right|\left|x_{2}-x_{3}\right|} .
$$

Conformal ball model: $\widehat{\mathbb{R}^{3}} \simeq \mathbb{S}^{3}$ seen as boundary of \mathbb{B}^{4} with metric $d s=\frac{2|d x|}{1-|x|^{2}}$.
Half-space model: \mathbb{R}^{3} seen as boundary of $\mathbb{H}^{4}=\mathbb{R}^{3} \times(0, \infty)$ with metric $d s=\frac{|d x|}{x_{4}}$.
Correpondence: $f \in \mathcal{M}\left(\mathbb{R}^{3}\right) \leftrightarrow$ hyperbolic isometry of the interior \mathbb{B}^{4} or \mathbb{H}^{4}.
(1) Introduction
(2) The Euclidean CFT model: conjectures
(3) The p-adic model: some theorems
(4) New method: space-dependent Wilsonian renormalization group

1) The hierarchical continuum:
2) The hierarchical continuum:

Let p be a prime number.

1) The hierarchical continuum:

Let p be a prime number.
Let $\mathbb{L}_{k}, k \in \mathbb{Z}$, be the set of cubes $\prod_{i=1}^{d}\left[a_{i} p^{k},\left(a_{i}+1\right) p^{k}\right)$ with $a_{1}, \ldots, a_{d} \in \mathbb{N}_{0}$. The cubes of \mathbb{L}_{k} form a partition of the octant $[0, \infty)^{d}$.

1) The hierarchical continuum:

Let p be a prime number.
Let $\mathbb{L}_{k}, k \in \mathbb{Z}$, be the set of cubes $\prod_{i=1}^{d}\left[a_{i} p^{k},\left(a_{i}+1\right) p^{k}\right)$ with $a_{1}, \ldots, a_{d} \in \mathbb{N}_{0}$. The cubes of \mathbb{L}_{k} form a partition of the octant $[0, \infty)^{d}$.

Hence $\mathbb{T}=\cup_{k \in \mathbb{Z}} \mathbb{L}_{k}$ naturally has the structure of a doubly infinite tree which is organized into layers or generations \mathbb{L}_{k} :

Picture for $d=1, p=2$

Forget $[0, \infty)^{d}$ and \mathbb{R}^{d} and just keep the tree.
\mathbb{Q}_{p}^{d} naturally identified with hierarchical continuum $=$ leafs at infinity " $\mathbb{L}_{-\infty}$ ".

Forget $[0, \infty)^{d}$ and \mathbb{R}^{d} and just keep the tree.
\mathbb{Q}_{p}^{d} naturally identified with hierarchical continuum $=$ leafs at infinity " $\mathbb{L}_{-\infty}$ ".
More precisely, these are the infinite bottom-up paths in the tree.

A path representing an element $x \in \mathbb{Q}_{p}^{d}$

A point $x \in \mathbb{Q}_{p}^{d}$ is encoded by a sequence $\left(a_{n}\right)_{n \in \mathbb{Z}}$,
$a_{n} \in\{0,1, \ldots, p-1\}^{d}$.
Let $0 \in \mathbb{Q}_{p}^{d}$ be the sequence with all digits equal to zero.

A point $x \in \mathbb{Q}_{p}^{d}$ is encoded by a sequence $\left(a_{n}\right)_{n \in \mathbb{Z}}$, $a_{n} \in\{0,1, \ldots, p-1\}^{d}$.
Let $0 \in \mathbb{Q}_{p}^{d}$ be the sequence with all digits equal to zero.
Caution! dangerous notation
a_{n} represents the local coordinates for a cube of \mathbb{L}_{-n-1} inside a cube of \mathbb{L}_{-n}.

A point $x \in \mathbb{Q}_{p}^{d}$ is encoded by a sequence $\left(a_{n}\right)_{n \in \mathbb{Z}}$,
$a_{n} \in\{0,1, \ldots, p-1\}^{d}$.
Let $0 \in \mathbb{Q}_{p}^{d}$ be the sequence with all digits equal to zero.
Caution! dangerous notation
a_{n} represents the local coordinates for a cube of \mathbb{L}_{-n-1} inside a cube of \mathbb{L}_{-n}.

Moreover, rescaling is defined as follows.
If $x=\left(a_{n}\right)_{n \in \mathbb{Z}}$ then $p x:=\left(a_{n-1}\right)_{n \in \mathbb{Z}}$, i.e., upward shift.

Moreover, rescaling is defined as follows.
If $x=\left(a_{n}\right)_{n \in \mathbb{Z}}$ then $p x:=\left(a_{n-1}\right)_{n \in \mathbb{Z}}$, i.e., upward shift.

Likewise $p^{-1} x$ is downward shift, and so on for the definition of $p^{k} x, k \in \mathbb{Z}$.
2) Distance:

2) Distance:

If $x, y \in \mathbb{Q}_{p}^{d}$, define their distance as $|x-y|:=p^{k}$ where k is the depth where the two paths merge.

2) Distance:

If $x, y \in \mathbb{Q}_{p}^{d}$, define their distance as $|x-y|:=p^{k}$ where k is the depth where the two paths merge.

2) Distance:

If $x, y \in \mathbb{Q}_{p}^{d}$, define their distance as $|x-y|:=p^{k}$ where k is the depth where the two paths merge.

Also let $|x|:=|x-0|$.

2) Distance:

If $x, y \in \mathbb{Q}_{p}^{d}$, define their distance as $|x-y|:=p^{k}$ where k is the depth where the two paths merge.

Also let $|x|:=|x-0|$. Because of the dangerous notation

$$
|p x|=p^{-1}|x|
$$

Closed balls Δ of radius p^{k} correspond to the nodes $\mathbf{x} \in \mathbb{L}_{k}$

Closed balls Δ of radius p^{k} correspond to the nodes $\mathbf{x} \in \mathbb{L}_{k}$

3) Lebesgue measure:
3) Lebesgue measure:

Metric space $\mathbb{Q}_{p}^{d} \rightarrow$ Borel σ-algebra \rightarrow Lebesgue measure $d^{d} x$ which gives a volume $p^{d k}$ to closed balls of radius p^{k}.
3) Lebesgue measure:

Metric space $\mathbb{Q}_{p}^{d} \rightarrow$ Borel σ-algebra \rightarrow Lebesgue measure $d^{d} x$ which gives a volume $p^{d k}$ to closed balls of radius p^{k}.

Construction: take product of uniform probability measures on $\left(\{0,1, \ldots, p-1\}^{d}\right)^{\mathbb{N}_{0}}$ for $\bar{B}(0,1)$. Do the same for the other closed unit balls, and collate.
4) The massless Gaussian measure:
4) The massless Gaussian measure:

To every litter G of Mama Cat $\mathbf{z} \in \mathbb{L}_{k+1}$ associate a centered Gaussian random vector $\left(\zeta_{\mathbf{x}}\right)_{\mathbf{x} \in G}$ with $p^{d} \times p^{d}$ covariance matrix made of $1-p^{-d}$'s on the diagonal and $-p^{-d}$'s everywhere else. We impose that Gaussian vectors corresponding to different layers or different litters are independent.
4) The massless Gaussian measure:

To every litter G of Mama Cat $\mathbf{z} \in \mathbb{L}_{k+1}$ associate a centered Gaussian random vector $\left(\zeta_{\mathbf{x}}\right)_{\mathbf{x} \in G}$ with $p^{d} \times p^{d}$ covariance matrix made of $1-p^{-d}$'s on the diagonal and $-p^{-d}$'s everywhere else. We impose that Gaussian vectors corresponding to different layers or different litters are independent. We have $\sum_{x \in G} \zeta_{x}=0$ a.s.

The ancestor function: for $k<k^{\prime}, \mathbf{x} \in \mathbb{L}_{k}$, let $\operatorname{anc}_{k^{\prime}}(\mathbf{x})$ denote the ancestor in $\mathbb{L}_{k^{\prime}}$.

The ancestor function: for $k<k^{\prime}, \mathbf{x} \in \mathbb{L}_{k}$, let anc $k_{k^{\prime}}(\mathbf{x})$ denote the ancestor in $\mathbb{L}_{k^{\prime}}$.
Ditto for $\operatorname{anc}_{k^{\prime}}(x)$ when $x \in \mathbb{Q}_{p}^{d}$.

The ancestor function: for $k<k^{\prime}, \mathbf{x} \in \mathbb{L}_{k}$, let anc ${ }_{k^{\prime}}(\mathbf{x})$ denote the ancestor in $\mathbb{L}_{k^{\prime}}$.
Ditto for $\operatorname{anc}_{k^{\prime}}(x)$ when $x \in \mathbb{Q}_{p}^{d}$.
The massless Gaussian field $\phi(x), x \in \mathbb{Q}_{p}^{d}$ of scaling dimention $[\phi]$ is given by

$$
\begin{aligned}
& \phi(x)=\sum_{k \in \mathbb{Z}} p^{-k[\phi]} \zeta_{\text {anc }_{k}(x)} \\
& \langle\phi(x) \phi(y)\rangle=\frac{c}{|x-y|^{2[\phi]}}
\end{aligned}
$$

The ancestor function: for $k<k^{\prime}, \mathbf{x} \in \mathbb{L}_{k}$, let anc $k_{k^{\prime}}(\mathbf{x})$ denote the ancestor in $\mathbb{L}_{k^{\prime}}$.
Ditto for $\operatorname{anc}_{k^{\prime}}(x)$ when $x \in \mathbb{Q}_{p}^{d}$.
The massless Gaussian field $\phi(x), x \in \mathbb{Q}_{p}^{d}$ of scaling dimention [ϕ] is given by

$$
\begin{aligned}
& \phi(x)=\sum_{k \in \mathbb{Z}} p^{-k[\phi]} \zeta_{\text {anc }_{k}(x)} \\
& \langle\phi(x) \phi(y)\rangle=\frac{c}{|x-y|^{2[\phi]}}
\end{aligned}
$$

This is heuristic since ϕ is not well-defined in a pointwise manner. We need random Schwartz(-Bruhat) distributions.
5) Test functions:

5) Test functions:

$f: \mathbb{Q}_{p}^{d} \rightarrow \mathbb{R}$ is smooth if it is locally constant.

5) Test functions:

$f: \mathbb{Q}_{p}^{d} \rightarrow \mathbb{R}$ is smooth if it is locally constant. Define $S\left(\mathbb{Q}_{p}^{d}\right)$ as the space of compactly supported smooth functions.

5) Test functions:

$f: \mathbb{Q}_{p}^{d} \rightarrow \mathbb{R}$ is smooth if it is locally constant.
Define $S\left(\mathbb{Q}_{p}^{d}\right)$ as the space of compactly supported smooth functions.

We have

$$
S\left(\mathbb{Q}_{p}^{d}\right)=\cup_{n \in \mathbb{N}} S_{-n, n}\left(\mathbb{Q}_{p}^{d}\right)
$$

where for all $t_{-} \leq t_{+}, S_{t_{-}, t_{+}}\left(\mathbb{Q}_{p}^{d}\right)$ denotes the space of functions which are constant in each of the closed balls of radius $p^{t_{-}}$and with support inside $\bar{B}\left(0, p^{t_{+}}\right)$.

5) Test functions:

$f: \mathbb{Q}_{p}^{d} \rightarrow \mathbb{R}$ is smooth if it is locally constant.
Define $S\left(\mathbb{Q}_{p}^{d}\right)$ as the space of compactly supported smooth functions.

We have

$$
S\left(\mathbb{Q}_{p}^{d}\right)=\cup_{n \in \mathbb{N}} S_{-n, n}\left(\mathbb{Q}_{p}^{d}\right)
$$

where for all $t_{-} \leq t_{+}, S_{t_{-}, t_{+}}\left(\mathbb{Q}_{p}^{d}\right)$ denotes the space of functions which are constant in each of the closed balls of radius $p^{t_{-}}$and with support inside $\bar{B}\left(0, p^{t_{+}}\right)$.

Topology generated by the set of all possible semi-norms.
6) Distributions:

6) Distributions:

$S^{\prime}\left(\mathbb{Q}_{p}^{d}\right)$ is the dual space with strong topology (happens to be same as weak-*).

6) Distributions:

$S^{\prime}\left(\mathbb{Q}_{p}^{d}\right)$ is the dual space with strong topology (happens to be same as weak-*).

$$
S\left(\mathbb{Q}_{p}^{d}\right) \simeq \oplus_{\mathbb{N}} \mathbb{R}
$$

6) Distributions:

$S^{\prime}\left(\mathbb{Q}_{p}^{d}\right)$ is the dual space with strong topology (happens to be same as weak-*).

$$
S\left(\mathbb{Q}_{p}^{d}\right) \simeq \oplus_{\mathbb{N}} \mathbb{R}
$$

Thus

$$
S^{\prime}\left(\mathbb{Q}_{p}^{d}\right) \simeq \mathbb{R}^{\mathbb{N}}
$$

with product topology

6) Distributions:

$S^{\prime}\left(\mathbb{Q}_{p}^{d}\right)$ is the dual space with strong topology (happens to be same as weak-*).

$$
S\left(\mathbb{Q}_{p}^{d}\right) \simeq \oplus_{\mathbb{N}} \mathbb{R}
$$

Thus

$$
S^{\prime}\left(\mathbb{Q}_{p}^{d}\right) \simeq \mathbb{R}^{\mathbb{N}}
$$

with product topology \rightarrow Polish space.

6) Distributions:

$S^{\prime}\left(\mathbb{Q}_{p}^{d}\right)$ is the dual space with strong topology (happens to be same as weak-*).

$$
S\left(\mathbb{Q}_{p}^{d}\right) \simeq \oplus_{\mathbb{N}} \mathbb{R}
$$

Thus

$$
S^{\prime}\left(\mathbb{Q}_{p}^{d}\right) \simeq \mathbb{R}^{\mathbb{N}}
$$

with product topology \rightarrow Polish space.

$$
\text { Probability Theory on } S^{\prime}\left(\mathbb{Q}_{p}^{d}\right) \text { is super! }
$$

(1) Prokhorov's Theorem
(1) Prokhorov's Theorem
(2) Bochner's Theorem
(1) Prokhorov's Theorem
(2) Bochner's Theorem
(3) Lévy's Continuity Theorem
(1) Prokhorov's Theorem
(2) Bochner's Theorem
(3) Lévy's Continuity Theorem
(4) Uniform convergence of characteristic functions in a complex neighborhood of the origin implies weak convergence of probability measures (use moments or the Vitali-Porter Theorem).
(1) Prokhorov's Theorem
(2) Bochner's Theorem
(3) Lévy's Continuity Theorem
(4) Uniform convergence of characteristic functions in a complex neighborhood of the origin implies weak convergence of probability measures (use moments or the Vitali-Porter Theorem).
(5) The renormalization group (RG) techniques introduced by A.A.-Chandra-Guadagni (arXiv 2013) especially suitable for such convergence criterion.
(1) Prokhorov's Theorem
(2) Bochner's Theorem
(3) Lévy's Continuity Theorem
(4) Uniform convergence of characteristic functions in a complex neighborhood of the origin implies weak convergence of probability measures (use moments or the Vitali-Porter Theorem).
(5) The renormalization group (RG) techniques introduced by A.A.-Chandra-Guadagni (arXiv 2013) especially suitable for such convergence criterion.
(6) $S^{\prime}\left(\mathbb{Q}_{p}^{d}\right) \times S^{\prime}\left(\mathbb{Q}_{p}^{d}\right) \simeq S^{\prime}\left(\mathbb{Q}_{p}^{d}\right)$ the machinery also works for join laws of pairs of random distributions, e.g., $\left(\phi, N\left[\phi^{2}\right]\right)$ in following slides.
7) The p-adic CFT toy model:
7) The p-adic CFT toy model:

$$
d=3,[\phi]=\frac{3-\epsilon}{4},
$$

7) The p-adic CFT toy model:

$d=3,[\phi]=\frac{3-\epsilon}{4}, L=p^{\ell}$ zooming-out factor
7) The p-adic CFT toy model:
$d=3,[\phi]=\frac{3-\epsilon}{4}, L=p^{\ell}$ zooming-out factor
$r \in \mathbb{Z}$ UV cut-off, $r \rightarrow-\infty$
7) The p-adic CFT toy model:
$d=3,[\phi]=\frac{3-\epsilon}{4}, L=p^{\ell}$ zooming-out factor
$r \in \mathbb{Z}$ UV cut-off, $r \rightarrow-\infty$
$s \in \mathbb{Z}$ IR cut-off, $s \rightarrow \infty$

7) The p-adic CFT toy model:

$d=3,[\phi]=\frac{3-\epsilon}{4}, L=p^{\ell}$ zooming-out factor
$r \in \mathbb{Z}$ UV cut-off, $r \rightarrow-\infty$
$s \in \mathbb{Z} \operatorname{IR}$ cut-off, $s \rightarrow \infty$
The regularized Gaussian measure μC_{r} is the law of

$$
\phi_{r}(x)=\sum_{k=\ell r}^{\infty} p^{-k[\phi]} \zeta_{\operatorname{anc}_{k}(x)}
$$

7) The p-adic CFT toy model:

$d=3,[\phi]=\frac{3-\epsilon}{4}, L=p^{\ell}$ zooming-out factor
$r \in \mathbb{Z}$ UV cut-off, $r \rightarrow-\infty$
$s \in \mathbb{Z}$ IR cut-off, $s \rightarrow \infty$
The regularized Gaussian measure $\mu_{c_{r}}$ is the law of

$$
\phi_{r}(x)=\sum_{k=\ell r}^{\infty} p^{-k[\phi]} \zeta_{\operatorname{anc}_{k}(x)}
$$

Sample fields are true fonctions that are locally constant on scale L^{r}.
These measures are scaled copies of each other.

7) The p-adic CFT toy model:

$d=3,[\phi]=\frac{3-\epsilon}{4}, L=p^{\ell}$ zooming-out factor
$r \in \mathbb{Z}$ UV cut-off, $r \rightarrow-\infty$
$s \in \mathbb{Z} \operatorname{IR}$ cut-off, $s \rightarrow \infty$
The regularized Gaussian measure $\mu_{c_{r}}$ is the law of

$$
\phi_{r}(x)=\sum_{k=\ell r}^{\infty} p^{-k[\phi]} \zeta_{\operatorname{anc}_{k}(x)}
$$

Sample fields are true fonctions that are locally constant on scale L^{r}.
These measures are scaled copies of each other. If the law of $\phi(\cdot)$ is $\mu_{c_{0}}$, then that of $L^{-r[\phi]} \phi\left(L^{r} \cdot\right)$ is $\mu_{c_{r}}$.

Fix the parameters g, μ and let $g_{r}=L^{-(3-4[\phi]) r} g$ and $\mu_{r}=L^{-(3-2[\phi]) r} \mu$.

Fix the parameters g, μ and let $g_{r}=L^{-(3-4[\phi]) r} g$ and $\mu_{r}=L^{-(3-2[\phi]) r} \mu$.

Let $\Lambda_{s}=\bar{B}\left(0, L^{s}\right)$, IR (or volume) cut-off.

Fix the parameters g, μ and let $g_{r}=L^{-(3-4[\phi]) r} g$ and $\mu_{r}=L^{-(3-2[\phi]) r} \mu$.

Let $\Lambda_{s}=\bar{B}\left(0, L^{s}\right)$, IR (or volume) cut-off.
Let

$$
V_{r, s}(\phi)=\int_{\Lambda_{s}}\left\{g_{r}: \phi^{4}: c_{r}(x)+\mu_{r}: \phi^{2}: c_{r}(x)\right\} d^{3} x
$$

and define the probability measure

$$
d \nu_{r, s}(\phi)=\frac{1}{\mathcal{Z}_{r, s}} e^{-V_{r, s}(\phi)} d \mu_{c_{r}}(\phi)
$$

Let $\phi_{r, s}$ be the random distribution in $S^{\prime}\left(\mathbb{Q}_{p}^{3}\right)$ sampled according to $\nu_{r, s}$ and define the squared field $N_{r}\left[\phi_{r, s}^{2}\right]$ which is a deterministic function(al) of $\phi_{r, s}$, with values in $S^{\prime}\left(\mathbb{Q}_{p}^{3}\right)$, given by

$$
N_{r}\left[\phi_{r, s}^{2}\right](j)=Z_{2}^{r} \int_{\mathbb{Q}_{p}^{3}}\left\{Y_{2}: \phi_{r, s}^{2}: c_{r}(x)-Y_{0} L^{-2 r[\phi]}\right\} j(x) d^{3} x
$$

for suitable parameters Z_{2}, Y_{0}, Y_{2}.

Let $\phi_{r, s}$ be the random distribution in $S^{\prime}\left(\mathbb{Q}_{p}^{3}\right)$ sampled according to $\nu_{r, s}$ and define the squared field $N_{r}\left[\phi_{r, s}^{2}\right]$ which is a deterministic function(al) of $\phi_{r, s}$, with values in $S^{\prime}\left(\mathbb{Q}_{p}^{3}\right)$, given by

$$
N_{r}\left[\phi_{r, s}^{2}\right](j)=Z_{2}^{r} \int_{\mathbb{Q}_{r}^{3}}\left\{Y_{2}: \phi_{r, s}^{2}: c_{r}(x)-Y_{0} L^{-2 r[\phi]}\right\} j(x) d^{3} x
$$

for suitable parameters Z_{2}, Y_{0}, Y_{2}.
The main result concerns the limit law of the pair $\left(\phi_{r, s}, N_{r}\left[\phi_{r, s}^{2}\right]\right)$ in $S^{\prime}\left(\mathbb{Q}_{p}^{3}\right) \times S^{\prime}\left(\mathbb{Q}_{p}^{3}\right)$ when $r \rightarrow-\infty, s \rightarrow \infty$ (in any order).
For the precise statement we need the approximate fixed point value

$$
\bar{g}_{*}=\frac{p^{\epsilon}-1}{36 L^{\epsilon}\left(1-p^{-3}\right)}
$$

8) Theorems:

8) Theorems:

Theorem 1: A.A.-Chandra-Guadagni 2013
$\exists \rho>0, \exists L_{0}, \forall L \geq L_{0}, \exists \epsilon_{0}>0, \forall \epsilon \in\left(0, \epsilon_{0}\right], \exists\left[\phi^{2}\right]>2[\phi]$, \exists fonctions $\mu(g), Y_{0}(g), Y_{2}(g)$ on ($\bar{g}_{*}-\rho \epsilon^{\frac{3}{2}}, \bar{g}_{*}+\rho \epsilon^{\frac{3}{2}}$) such that if one lets $\mu=\mu(g), Y_{0}=Y_{0}(g), Y_{2}=Y_{2}(g)$ and $Z_{2}=L^{-\left(\left[\phi^{2}\right]-2[\phi]\right)}$ then the joint law of ($\left.\phi_{r, s}, N_{r}\left[\phi_{r, s}^{2}\right]\right)$ converge weakly and in the sense of moments to that of a pair $\left(\phi, N\left[\phi^{2}\right]\right)$ such that:

8) Theorems:

Theorem 1: A.A.-Chandra-Guadagni 2013
$\exists \rho>0, \exists L_{0}, \forall L \geq L_{0}, \exists \epsilon_{0}>0, \forall \epsilon \in\left(0, \epsilon_{0}\right], \exists\left[\phi^{2}\right]>2[\phi]$, \exists fonctions $\mu(g), Y_{0}(g), Y_{2}(g)$ on ($\bar{g}_{*}-\rho \epsilon^{\frac{3}{2}}, \bar{g}_{*}+\rho \epsilon^{\frac{3}{2}}$) such that if one lets $\mu=\mu(g), Y_{0}=Y_{0}(g), Y_{2}=Y_{2}(g)$ and $Z_{2}=L^{-\left(\left[\phi^{2}\right]-2[\phi]\right)}$ then the joint law of $\left(\phi_{r, s}, N_{r}\left[\phi_{r, s}^{2}\right]\right)$ converge weakly and in the sense of moments to that of a pair $\left(\phi, N\left[\phi^{2}\right]\right)$ such that:
(1) $\forall k \in \mathbb{Z},\left(L^{-k[\phi]} \phi\left(L^{k} \cdot\right), L^{-k\left[\phi^{2}\right]} N\left[\phi^{2}\right]\left(L^{k} \cdot\right)\right) \stackrel{d}{=}\left(\phi, N\left[\phi^{2}\right]\right)$.

8) Theorems:

Theorem 1: A.A.-Chandra-Guadagni 2013
$\exists \rho>0, \exists L_{0}, \forall L \geq L_{0}, \exists \epsilon_{0}>0, \forall \epsilon \in\left(0, \epsilon_{0}\right], \exists\left[\phi^{2}\right]>2[\phi]$, \exists fonctions $\mu(g), Y_{0}(g), Y_{2}(g)$ on ($\bar{g}_{*}-\rho \epsilon^{\frac{3}{2}}, \bar{g}_{*}+\rho \epsilon^{\frac{3}{2}}$) such that if one lets $\mu=\mu(g), Y_{0}=Y_{0}(g), Y_{2}=Y_{2}(g)$ and $Z_{2}=L^{-\left(\left[\phi^{2}\right]-2[\phi]\right)}$ then the joint law of ($\left.\phi_{r, s}, N_{r}\left[\phi_{r, s}^{2}\right]\right)$ converge weakly and in the sense of moments to that of a pair $\left(\phi, N\left[\phi^{2}\right]\right)$ such that:
(1) $\forall k \in \mathbb{Z},\left(L^{-k[\phi]} \phi\left(L^{k} \cdot\right), L^{-k\left[\phi^{2}\right]} N\left[\phi^{2}\right]\left(L^{k} \cdot\right)\right) \stackrel{d}{=}\left(\phi, N\left[\phi^{2}\right]\right)$.
(2) $\left\langle\phi\left(\mathbf{1}_{\mathbb{Z}_{\beta}^{3}}\right), \phi\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right), \phi\left(\mathbf{1}_{\mathbb{Z}_{\beta}^{3}}\right), \phi\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right)\right\rangle^{\mathrm{T}}<0$ i.e., ϕ is non-Gaussian. Here, $\mathbf{1}_{\mathbb{Z}_{p}^{3}}$ denotes the indicator function of $\bar{B}(0,1)$.

8) Theorems:

Theorem 1: A.A.-Chandra-Guadagni 2013
$\exists \rho>0, \exists L_{0}, \forall L \geq L_{0}, \exists \epsilon_{0}>0, \forall \epsilon \in\left(0, \epsilon_{0}\right], \exists\left[\phi^{2}\right]>2[\phi]$, \exists fonctions $\mu(g), Y_{0}(g), Y_{2}(g)$ on ($\bar{g}_{*}-\rho \epsilon^{\frac{3}{2}}, \bar{g}_{*}+\rho \epsilon^{\frac{3}{2}}$) such that if one lets $\mu=\mu(g), Y_{0}=Y_{0}(g), Y_{2}=Y_{2}(g)$ and $Z_{2}=L^{-\left(\left[\phi^{2}\right]-2[\phi]\right)}$ then the joint law of ($\left.\phi_{r, s}, N_{r}\left[\phi_{r, s}^{2}\right]\right)$ converge weakly and in the sense of moments to that of a pair $\left(\phi, N\left[\phi^{2}\right]\right)$ such that:
(1) $\forall k \in \mathbb{Z},\left(L^{-k[\phi]} \phi\left(L^{k} \cdot\right), L^{-k\left[\phi^{2}\right]} N\left[\phi^{2}\right]\left(L^{k} \cdot\right)\right) \stackrel{d}{=}\left(\phi, N\left[\phi^{2}\right]\right)$.
(2) $\left\langle\phi\left(\mathbf{1}_{\mathbb{Z}_{\beta}^{3}}\right), \phi\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right), \phi\left(\mathbf{1}_{\mathbb{Z}_{\beta}^{3}}\right), \phi\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right)\right\rangle^{\mathrm{T}}<0$ i.e., ϕ is non-Gaussian. Here, $\mathbf{1}_{\mathbb{Z}_{p}^{3}}$ denotes the indicator function of $\bar{B}(0,1)$.
(3) $\left\langle N\left[\phi^{2}\right]\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right), N\left[\phi^{2}\right]\left(\mathbf{1}_{\mathbb{Z}_{p}^{3}}\right)\right\rangle^{\mathrm{T}}=1$.

The mixed correlation functions satisfy, in the sense of distributions,

$$
\begin{aligned}
& \left\langle\phi\left(L^{-k} x_{1}\right) \cdots \phi\left(L^{-k} x_{n}\right) N\left[\phi^{2}\right]\left(L^{-k} y_{1}\right) \cdots N\left[\phi^{2}\right]\left(L^{-k} y_{m}\right)\right\rangle \\
= & L^{-\left(n[\phi]+m\left[\phi^{2}\right]\right) k}\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right) N\left[\phi^{2}\right]\left(y_{1}\right) \cdots N\left[\phi^{2}\right]\left(y_{m}\right)\right\rangle
\end{aligned}
$$

The mixed correlation functions satisfy, in the sense of distributions,

$$
\begin{aligned}
& \left\langle\phi\left(L^{-k} x_{1}\right) \cdots \phi\left(L^{-k} x_{n}\right) N\left[\phi^{2}\right]\left(L^{-k} y_{1}\right) \cdots N\left[\phi^{2}\right]\left(L^{-k} y_{m}\right)\right\rangle \\
= & L^{-\left(n[\phi]+m\left[\phi^{2}\right]\right) k}\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right) N\left[\phi^{2}\right]\left(y_{1}\right) \cdots N\left[\phi^{2}\right]\left(y_{m}\right)\right\rangle
\end{aligned}
$$

For p-adic toy model of the 3D fractional ϕ^{4} model we also showed $\left[\phi^{2}\right]-2[\phi]=\frac{1}{3} \epsilon+o(\epsilon)$ exactly as expected for the Euclidean model on \mathbb{R}^{3}.

The mixed correlation functions satisfy, in the sense of distributions,

$$
\begin{aligned}
& \left\langle\phi\left(L^{-k} x_{1}\right) \cdots \phi\left(L^{-k} x_{n}\right) N\left[\phi^{2}\right]\left(L^{-k} y_{1}\right) \cdots N\left[\phi^{2}\right]\left(L^{-k} y_{m}\right)\right\rangle \\
= & L^{-\left(n[\phi \phi]+m\left[\phi^{2}\right]\right) k}\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right) N\left[\phi^{2}\right]\left(y_{1}\right) \cdots N\left[\phi^{2}\right]\left(y_{m}\right)\right\rangle
\end{aligned}
$$

For p-adic toy model of the 3D fractional ϕ^{4} model we also showed $\left[\phi^{2}\right]-2[\phi]=\frac{1}{3} \epsilon+o(\epsilon)$ exactly as expected for the Euclidean model on \mathbb{R}^{3}.

Not too far, if one extrapolates to $\epsilon=1$, to the most precise available estimates concerning the classical 3D Ising model (with nearest-neighbor interactions): $\left[\phi^{2}\right]-2[\phi]=0.376327 \ldots$ (JHEP 2016 by Kos, Poland, Simmons-Duffin and Vichi, using conformal bootstrap).

The mixed correlation functions satisfy, in the sense of distributions,

$$
\begin{aligned}
& \left\langle\phi\left(L^{-k} x_{1}\right) \cdots \phi\left(L^{-k} x_{n}\right) N\left[\phi^{2}\right]\left(L^{-k} y_{1}\right) \cdots N\left[\phi^{2}\right]\left(L^{-k} y_{m}\right)\right\rangle \\
= & L^{-\left(n[\phi]+m\left[\phi^{2}\right]\right) k}\left\langle\phi\left(x_{1}\right) \cdots \phi\left(x_{n}\right) N\left[\phi^{2}\right]\left(y_{1}\right) \cdots N\left[\phi^{2}\right]\left(y_{m}\right)\right\rangle
\end{aligned}
$$

For p-adic toy model of the 3D fractional ϕ^{4} model we also showed $\left[\phi^{2}\right]-2[\phi]=\frac{1}{3} \epsilon+o(\epsilon)$ exactly as expected for the Euclidean model on \mathbb{R}^{3}.

Not too far, if one extrapolates to $\epsilon=1$, to the most precise available estimates concerning the classical 3D Ising model (with nearest-neighbor interactions): $\left[\phi^{2}\right]-2[\phi]=0.376327 \ldots$ (JHEP 2016 by Kos, Poland, Simmons-Duffin and Vichi, using conformal bootstrap).
The law $\nu_{\phi \times \phi^{2}}$ of $\left(\phi, N\left[\phi^{2}\right]\right)$ is independent of g : universality.

Theorem 2: A.A.-Chandra-Guadagni 2013
$\nu_{\phi \times \phi^{2}}$ is fully scale invariant, i.e., invariant under the action of the scaling group $p^{\mathbb{Z}}$ instead of the subgroup $L^{\mathbb{Z}}$. Moreover, $\mu(g)$ and $\left[\phi^{2}\right]$ are independent of the arbitrary factor L.

Theorem 2: A.A.-Chandra-Guadagni 2013

$\nu_{\phi \times \phi^{2}}$ is fully scale invariant, i.e., invariant under the action of the scaling group $p^{\mathbb{Z}}$ instead of the subgroup $L^{\mathbb{Z}}$. Moreover, $\mu(g)$ and $\left[\phi^{2}\right]$ are independent of the arbitrary factor L.

The two-point correlations are given in the sense of distributions by

$$
\begin{gathered}
\langle\phi(x) \phi(y)\rangle=\frac{c_{1}}{|x-y|^{2[\phi]}} \\
\left\langle N\left[\phi^{2}\right](x) N\left[\phi^{2}\right](y)\right\rangle=\frac{c_{2}}{|x-y|^{2\left[\phi^{2}\right]}}
\end{gathered}
$$

Theorem 2: A.A.-Chandra-Guadagni 2013

$\nu_{\phi \times \phi^{2}}$ is fully scale invariant, i.e., invariant under the action of the scaling group $p^{\mathbb{Z}}$ instead of the subgroup $L^{\mathbb{Z}}$. Moreover, $\mu(g)$ and $\left[\phi^{2}\right]$ are independent of the arbitrary factor L.

The two-point correlations are given in the sense of distributions by

$$
\begin{gathered}
\langle\phi(x) \phi(y)\rangle=\frac{c_{1}}{|x-y|^{2[\phi]}} \\
\left\langle N\left[\phi^{2}\right](x) N\left[\phi^{2}\right](y)\right\rangle=\frac{c_{2}}{|x-y|^{2\left[\phi^{2}\right]}}
\end{gathered}
$$

Note that $2\left[\phi^{2}\right]=3-\frac{1}{3} \epsilon+o(\epsilon) \rightarrow$ still $L^{1, \text { loc }}$!

Theorem 3: A.A., May 2015

Use ψ_{i} to denote ϕ or $N\left[\phi^{2}\right]$. Then, for all mixed correlation \exists a smooth fonction $\left\langle\psi_{1}\left(z_{1}\right) \cdots \psi_{n}\left(z_{n}\right)\right\rangle$ on $\left(\mathbb{Q}_{p}^{3}\right)^{n} \backslash$ Diag which is locally integrable (on the diagonal Diag and such that

$$
\begin{aligned}
& \left\langle\psi_{1}\left(f_{1}\right) \cdots \psi_{n}\left(f_{n}\right)\right\rangle= \\
& \quad \int_{\left(\mathbb{Q}_{p}^{3}\right) \backslash \backslash \text { Diag }}\left\langle\psi_{1}\left(z_{1}\right) \cdots \psi_{n}\left(z_{n}\right)\right\rangle f_{1}\left(z_{1}\right) \cdots f_{n}\left(z_{n}\right) d^{3} z_{1} \cdots d^{3} z_{n}
\end{aligned}
$$

for all test functions $f_{1}, \ldots, f_{n} \in S\left(\mathbb{Q}_{p}^{3}\right)$.

Theorem 3: A.A., May 2015

Use ψ_{i} to denote ϕ or $N\left[\phi^{2}\right]$. Then, for all mixed correlation \exists a smooth fonction $\left\langle\psi_{1}\left(z_{1}\right) \cdots \psi_{n}\left(z_{n}\right)\right\rangle$ on $\left(\mathbb{Q}_{p}^{3}\right)^{n} \backslash$ Diag which is locally integrable (on the diagonal Diag and such that

$$
\begin{aligned}
& \left\langle\psi_{1}\left(f_{1}\right) \cdots \psi_{n}\left(f_{n}\right)\right\rangle= \\
& \quad \int_{\left(\mathbb{Q}_{p}^{3}\right)^{n} \backslash \operatorname{Diag}}\left\langle\psi_{1}\left(z_{1}\right) \cdots \psi_{n}\left(z_{n}\right)\right\rangle f_{1}\left(z_{1}\right) \cdots f_{n}\left(z_{n}\right) d^{3} z_{1} \cdots d^{3} z_{n}
\end{aligned}
$$

for all test functions $f_{1}, \ldots, f_{n} \in S\left(\mathbb{Q}_{p}^{3}\right)$.

In other words, $\nu_{\phi \times \phi^{2}}$ is DPC (this is the toy model version of Conj. 2).

9) Other work in preparation:

9) Other work in preparation:

Progress towards proof of p-adic analogue of Conj. 3.

9) Other work in preparation:

Progress towards proof of p-adic analogue of Conj. 3.
\exists old work by Lerner and Missarov (early 1990's, i.e., before AdS/CFT !).

9) Other work in preparation:

Progress towards proof of p-adic analogue of Conj. 3.
\exists old work by Lerner and Missarov (early 1990's, i.e., before AdS/CFT !).
p-adic Möbius group : generated by (ultrametric) isometries, dilations $x \mapsto p^{k} x, k \in \mathbb{Z}$ and inversion $J(x)=|x|^{2} x$.

9) Other work in preparation:

Progress towards proof of p-adic analogue of Conj. 3.
\exists old work by Lerner and Missarov (early 1990's, i.e., before AdS/CFT !).
p-adic Möbius group : generated by (ultrametric) isometries, dilations $x \mapsto p^{k} x, k \in \mathbb{Z}$ and inversion $J(x)=|x|^{2} x$.

Can also define the absolute cross-ratio for the ultrametric distance. $\mathcal{M}\left(\mathbb{Q}_{p}^{3}\right)$ is also the group of transformations of $\widehat{\mathbb{Q}_{p}^{3}}=\mathbb{Q}_{p}^{3} \cup\{\infty\}$ which preserve this cross-ratio.

9) Other work in preparation:

Progress towards proof of p-adic analogue of Conj. 3.
\exists old work by Lerner and Missarov (early 1990's, i.e., before AdS/CFT !).
p-adic Möbius group : generated by (ultrametric) isometries, dilations $x \mapsto p^{k} x, k \in \mathbb{Z}$ and inversion $J(x)=|x|^{2} x$.

Can also define the absolute cross-ratio for the ultrametric distance. $\mathcal{M}\left(\mathbb{Q}_{p}^{3}\right)$ is also the group of transformations of $\widehat{\mathbb{Q}_{p}^{3}}=\mathbb{Q}_{p}^{3} \cup\{\infty\}$ which preserve this cross-ratio.

The AdS bulk (interior) is the tree \mathbb{T} with the graph distance. Analogue of hyperbolic metric.

Mumford-Manin-Drinfeld Lemma

$$
C R\left(x_{1}, x_{2}, x_{3}, x_{4}\right):=\frac{\left|x_{1}-x_{3}\right|\left|x_{2}-x_{4}\right|}{\left|x_{1}-x_{4}\right|\left|x_{2}-x_{3}\right|}=p^{-\delta\left(x_{1} \rightarrow x_{2} ; x_{3} \rightarrow x_{4}\right)}
$$

where $\delta\left(x_{1} \rightarrow x_{2} ; x_{3} \rightarrow x_{4}\right)$ is the number of common edges for the two bi-infinite paths $x_{1} \rightarrow x_{2}$ and $x_{3} \rightarrow x_{4}$, counted positively if orientations agree and negatively otherwise.

Mumford-Manin-Drinfeld Lemma

$$
C R\left(x_{1}, x_{2}, x_{3}, x_{4}\right):=\frac{\left|x_{1}-x_{3}\right|\left|x_{2}-x_{4}\right|}{\left|x_{1}-x_{4}\right|\left|x_{2}-x_{3}\right|}=p^{-\delta\left(x_{1} \rightarrow x_{2} ; x_{3} \rightarrow x_{4}\right)}
$$

where $\delta\left(x_{1} \rightarrow x_{2} ; x_{3} \rightarrow x_{4}\right)$ is the number of common edges for the two bi-infinite paths $x_{1} \rightarrow x_{2}$ and $x_{3} \rightarrow x_{4}$, counted positively if orientations agree and negatively otherwise.

From lemma, one can deduce a correpondence: $f \in \mathcal{M}\left(\mathbb{Q}_{p}^{3}\right) \leftrightarrow$ hyperbolic isometry of the interior \mathbb{T}.

Mumford-Manin-Drinfeld Lemma

$$
C R\left(x_{1}, x_{2}, x_{3}, x_{4}\right):=\frac{\left|x_{1}-x_{3}\right|\left|x_{2}-x_{4}\right|}{\left|x_{1}-x_{4}\right|\left|x_{2}-x_{3}\right|}=p^{-\delta\left(x_{1} \rightarrow x_{2} ; x_{3} \rightarrow x_{4}\right)}
$$

where $\delta\left(x_{1} \rightarrow x_{2} ; x_{3} \rightarrow x_{4}\right)$ is the number of common edges for the two bi-infinite paths $x_{1} \rightarrow x_{2}$ and $x_{3} \rightarrow x_{4}$, counted positively if orientations agree and negatively otherwise.

From lemma, one can deduce a correpondence: $f \in \mathcal{M}\left(\mathbb{Q}_{p}^{3}\right) \leftrightarrow$ hyperbolic isometry of the interior \mathbb{T}.

The space-dependent RG of ACG $2013 \rightarrow$ space-dependent UV cut-off \rightarrow Conj. 3 by showing the equivalence between usual flat (in half-space) cut-off hypersurface and the spherical one in conformal ball model.

The tree, once again.
(1) Introduction
(2) The Euclidean CFT model: conjectures
(3) The p-adic model: some theorems
(4) The method: space-dependent Wilsonian renormalization group

The renormalization group idea in a nutshell:

The renormalization group idea in a nutshell:
Want to study feature $\mathcal{Z}(\vec{V})$ of some object $\vec{V} \in \mathcal{E}$ but

The renormalization group idea in a nutshell:
Want to study feature $\mathcal{Z}(\vec{V})$ of some object $\vec{V} \in \mathcal{E}$ but too hard!

The renormalization group idea in a nutshell:

Want to study feature $\mathcal{Z}(\vec{V})$ of some object $\vec{V} \in \mathcal{E}$ but too hard!

Find "simplifying" transformation $R G: \mathcal{E} \rightarrow \mathcal{E}$, such that $\mathcal{Z}(R G(\vec{V}))=\mathcal{Z}(\vec{V})$, and $\lim _{n \rightarrow \infty} R G^{n}(\vec{V})=\vec{V}_{*}$ with $\mathcal{Z}\left(\vec{V}_{*}\right)$ easy.

The renormalization group idea in a nutshell:

Want to study feature $\mathcal{Z}(\vec{V})$ of some object $\vec{V} \in \mathcal{E}$ but too hard!

Find "simplifying" transformation $R G: \mathcal{E} \rightarrow \mathcal{E}$, such that $\mathcal{Z}(R G(\vec{V}))=\mathcal{Z}(\vec{V})$, and $\lim _{n \rightarrow \infty} R G^{n}(\vec{V})=\vec{V}_{*}$ with $\mathcal{Z}\left(\vec{V}_{*}\right)$ easy.

Example (Landen-Gauss): $\vec{V}=(a, b) \in \mathcal{E}=(0, \infty)^{2}$

The renormalization group idea in a nutshell:

Want to study feature $\mathcal{Z}(\vec{V})$ of some object $\vec{V} \in \mathcal{E}$ but too hard!

Find "simplifying" transformation $R G: \mathcal{E} \rightarrow \mathcal{E}$, such that $\mathcal{Z}(R G(\vec{V}))=\mathcal{Z}(\vec{V})$, and $\lim _{n \rightarrow \infty} R G^{n}(\vec{V})=\vec{V}_{*}$ with $\mathcal{Z}\left(\vec{V}_{*}\right)$ easy.

Example (Landen-Gauss): $\vec{V}=(a, b) \in \mathcal{E}=(0, \infty)^{2}$

$$
\mathcal{Z}(\vec{V})=\int_{0}^{\frac{\pi}{2}} \frac{d \theta}{\sqrt{a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta}}
$$

The renormalization group idea in a nutshell:

Want to study feature $\mathcal{Z}(\vec{V})$ of some object $\vec{V} \in \mathcal{E}$ but too hard!

Find "simplifying" transformation $R G: \mathcal{E} \rightarrow \mathcal{E}$, such that $\mathcal{Z}(R G(\vec{V}))=\mathcal{Z}(\vec{V})$, and $\lim _{n \rightarrow \infty} R G^{n}(\vec{V})=\vec{V}_{*}$ with $\mathcal{Z}\left(\vec{V}_{*}\right)$ easy.

Example (Landen-Gauss): $\vec{V}=(a, b) \in \mathcal{E}=(0, \infty)^{2}$

$$
\mathcal{Z}(\vec{V})=\int_{0}^{\frac{\pi}{2}} \frac{d \theta}{\sqrt{a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta}}
$$

Take $R G(a, b)=\left(\frac{a+b}{2}, \sqrt{a b}\right)$.

In usual rigorous RG couplings are constant in space

$$
\int\left\{g: \phi^{4}:(x)+\mu: \phi^{2}:(x)\right\} d^{d} x
$$

In usual rigorous RG couplings are constant in space

$$
\int\left\{g: \phi^{4}:(x)+\mu: \phi^{2}:(x)\right\} d^{d} x
$$

ACG 2013 \rightarrow inhomogeneous RG for space-dependent couplings.

$$
\int\left\{g(x): \phi^{4}:(x)+\mu(x): \phi^{2}:(x)\right\} d^{d} x
$$

e.g., $g(x)=g+\delta g(x)$, with $\delta g(x)$ a local perturbation such as test function.

In usual rigorous RG couplings are constant in space

$$
\int\left\{g: \phi^{4}:(x)+\mu: \phi^{2}:(x)\right\} d^{d} x
$$

ACG $2013 \rightarrow$ inhomogeneous RG for space-dependent couplings.

$$
\int\left\{g(x): \phi^{4}:(x)+\mu(x): \phi^{2}:(x)\right\} d^{d} x
$$

e.g., $g(x)=g+\delta g(x)$, with $\delta g(x)$ a local perturbation such as test function.
Rigorous nonperturbative version of the local RG:
Wilson-Kogut PR 1974, Drummond-Shore PRD 1979, Jack-Osborn NPB 1990,...
used for generalizations of Zamolodchikov's c-"Theorem", study of scale versus conformal invariance, AdS/CFT,...

1st step: switch to unit lattice/cut-off

$$
\mathcal{S}_{r, s}^{\mathrm{T}}(f):=\log \mathbb{E}_{\nu_{r, s}} e^{i \phi(f)}=\log
$$

$$
\frac{\int d \mu_{C_{r}}(\phi) \exp \left(-\int_{\Lambda_{s}}\left\{g_{r}: \phi^{4}:_{r}(x)+\mu_{r}: \phi^{2}:_{r}\right\} d x+\int \phi(x) f(x) d x\right)}{\int d \mu_{C_{r}}(\phi) \exp \left(-\int_{\Lambda_{s}}\left\{g_{r}: \phi^{4}:_{r}(x)+\mu_{r}: \phi^{2}:_{r}\right\} d x\right)}
$$

1st step: switch to unit lattice/cut-off

$$
\mathcal{S}_{r, s}^{\mathrm{T}}(f):=\log \mathbb{E}_{\nu_{r, s}} e^{i \phi(f)}=\log
$$

$$
\frac{\int d \mu_{C_{r}}(\phi) \exp \left(-\int_{\Lambda_{s}}\left\{g_{r}: \phi^{4}:_{r}(x)+\mu_{r}: \phi^{2}:_{r}\right\} d x+\int \phi(x) f(x) d x\right)}{\int d \mu_{C_{r}}(\phi) \exp \left(-\int_{\Lambda_{s}}\left\{g_{r}: \phi^{4}:_{r}(x)+\mu_{r}: \phi^{2}:_{r}\right\} d x\right)}
$$

$$
=\log \frac{\int d \mu_{c_{0}}(\phi) \mathcal{I}^{(r, r)}[f](\phi)}{\int d \mu c_{0}(\phi) \mathcal{I}^{(r, r)}[0](\phi)}
$$

1st step: switch to unit lattice/cut-off

$$
\begin{aligned}
& \mathcal{S}_{r, s}^{\mathrm{T}}(f):=\log \mathbb{E}_{\nu_{r, s}} e^{i \phi(f)}=\log \\
& \frac{\int d \mu_{C_{r}}(\phi)}{} \exp \left(-\int_{\Lambda_{s}}\left\{g_{r}: \phi^{4}:_{r}(x)+\mu_{r}: \phi^{2}: r\right\} d x+\int \phi(x) f(x) d x\right) \\
& \int d \mu_{C_{r}}(\phi) \exp \left(-\int_{\Lambda_{s}}\left\{g_{r}: \phi^{4}:_{r}(x)+\mu_{r}: \phi^{2}:_{r}\right\} d x\right) \\
&=\log \frac{\int d \mu_{c_{0}}(\phi) \mathcal{I}^{(r, r)}[f](\phi)}{\int d \mu_{c_{0}}(\phi) \mathcal{I}^{(r, r)}[0](\phi)}=: \log \frac{\mathcal{Z}\left(\vec{V}^{(r, r)}[f]\right)}{\mathcal{Z}(\vec{V}(r, r)[0])}
\end{aligned}
$$

1st step: switch to unit lattice/cut-off

$$
\begin{aligned}
& \mathcal{S}_{r, s}^{\mathrm{T}}(f):=\log \mathbb{E}_{\nu_{r, s}} e^{i \phi(f)}=\log \\
& \frac{\int d \mu_{C_{r}}(\phi) \exp \left(-\int_{\Lambda_{s}}\left\{g_{r}: \phi^{4}:_{r}(x)+\mu_{r}: \phi^{2}:_{r}\right\} d x+\int \phi(x) f(x) d x\right)}{\int d \mu_{C_{r}}(\phi) \exp \left(-\int_{\Lambda_{s}}\left\{g_{r}: \phi^{4}:_{r}(x)+\mu_{r}: \phi^{2}:_{r}\right\} d x\right)} \\
&=\log \frac{\int d \mu_{c_{0}}(\phi) \mathcal{I}^{(r, r)}[f](\phi)}{\int d \mu_{c_{0}}(\phi) \mathcal{I}^{(r, r)}[0](\phi)}=: \log \frac{\mathcal{Z}\left(\vec{V}^{(r, r)}[f]\right)}{\mathcal{Z}(\vec{V}(r, r)[0])}
\end{aligned}
$$

with

$$
\begin{aligned}
\mathcal{I}^{(r, r)}[f](\phi)= & \exp \left(-\int_{\Lambda_{s-r}}\left\{g: \phi^{4}:_{0}(x)+\mu: \phi^{2}: 0\right\} d^{3} x\right. \\
& \left.+L^{(3-[\phi]) r} \int \phi(x) f\left(L^{-r} x\right) d^{3} x\right)
\end{aligned}
$$

2nd step: define inhomogeneous RG
Fluctuation covariance $\Gamma:=C_{0}-C_{1}$.
Associated Gaussian measure is the law of the fluctuation field

$$
\zeta(x)=\sum_{0 \leq k<\ell} p^{-k[\phi]} \zeta_{\operatorname{anc}_{k}(x)}
$$

L-blocks (closed balls of radius L) are independent. Hence

2nd step: define inhomogeneous RG

Fluctuation covariance $\Gamma:=C_{0}-C_{1}$.
Associated Gaussian measure is the law of the fluctuation field

$$
\zeta(x)=\sum_{0 \leq k<\ell} p^{-k[\phi]} \zeta_{\operatorname{anc}_{k}(x)}
$$

L-blocks (closed balls of radius L) are independent. Hence

$$
\begin{gathered}
\int \mathcal{I}^{(r, r)}[f](\phi) d \mu_{c_{0}}(\phi)=\iint \mathcal{I}^{(r, r)}[f](\zeta+\psi) d \mu_{\Gamma}(\zeta) d \mu_{c_{1}}(\psi) \\
=\int \mathcal{I}^{(r, r+1)}[f](\phi) d \mu_{c_{0}}(\phi)
\end{gathered}
$$

with new integrand

$$
\mathcal{I}^{(r, r+1)}[f](\phi)=\int \mathcal{I}^{(r, r)}[f]\left(\zeta+L^{-[\phi]} \phi(L \cdot)\right) d \mu_{\Gamma}(\zeta)
$$

Need to extract vacuum renormalization \rightarrow better definition is
$\mathcal{I}^{(r, r+1)}[f](\phi)=e^{-\delta b\left(\mathcal{I}^{(r, r)}[f]\right)} \int \mathcal{I}^{(r, r)}[f]\left(\zeta+L^{-[\phi]} \phi(L \cdot)\right) d \mu_{\Gamma}(\zeta)$
so that
$\int \mathcal{I}^{(r, r)}[f](\phi) d \mu_{c_{0}}(\phi)=e^{\delta b\left(\mathcal{I}^{(r, r)}[f]\right)} \int \mathcal{I}^{(r, r+1)}[f](\phi) d \mu_{c_{0}}(\phi)$

Need to extract vacuum renormalization \rightarrow better definition is
$\mathcal{I}^{(r, r+1)}[f](\phi)=e^{-\delta b\left(\mathcal{I}^{(r, r)}[f]\right)} \int \mathcal{I}^{(r, r)}[f]\left(\zeta+L^{-[\phi]} \phi(L \cdot)\right) d \mu_{\Gamma}(\zeta)$
so that
$\int \mathcal{I}^{(r, r)}[f](\phi) d \mu_{c_{0}}(\phi)=e^{\delta b\left(\mathcal{I}^{(r, r)}[f]\right)} \int \mathcal{I}^{(r, r+1)}[f](\phi) d \mu_{c_{0}}(\phi)$
Repeat: $\mathcal{I}^{(r, r)} \rightarrow \mathcal{I}^{(r, r+1)} \rightarrow \mathcal{I}^{(r, r+2)} \rightarrow \cdots \rightarrow \mathcal{I}^{(r, s)}$

Need to extract vacuum renormalization \rightarrow better definition is
$\mathcal{I}^{(r, r+1)}[f](\phi)=e^{-\delta b\left(\mathcal{I}^{(r, r)}[f]\right)} \int \mathcal{I}^{(r, r)}[f]\left(\zeta+L^{-[\phi]} \phi(L \cdot)\right) d \mu_{\Gamma}(\zeta)$
so that
$\int \mathcal{I}^{(r, r)}[f](\phi) d \mu c_{0}(\phi)=e^{\delta b\left(\mathcal{I}^{(r, r)}[f]\right)} \int \mathcal{I}^{(r, r+1)}[f](\phi) d \mu c_{0}(\phi)$
Repeat: $\mathcal{I}^{(r, r)} \rightarrow \mathcal{I}^{(r, r+1)} \rightarrow \mathcal{I}^{(r, r+2)} \rightarrow \cdots \rightarrow \mathcal{I}^{(r, s)}$
One must control

$$
\mathcal{S}^{\mathrm{T}}(f)=\lim _{\substack{r \rightarrow-\infty \\ s \rightarrow \infty}} \sum_{r \leq q<s}\left(\delta b\left(\mathcal{I}^{(r, q)}[f]\right)-\delta b\left(\mathcal{I}^{(r, q)}[0]\right)\right)
$$

limit of logarithms of characteristic functions.

Use a Brydges-Yau lift

Use a Brydges-Yau lift

$$
\begin{aligned}
& R G_{\text {inhom }} \\
& \vec{V}^{(r, q)} \quad \longrightarrow \quad \vec{V}^{(r, q+1)} \\
& \begin{array}{ccc}
\downarrow \\
\mathcal{I}^{(r, q)}
\end{array} \quad \longrightarrow \quad \begin{array}{c}
\downarrow \\
\mathcal{I}^{(r, q+1)}
\end{array} \\
& \mathcal{I}^{(r, q)}(\phi)=\prod_{\substack{\Delta \in \mathbb{L}_{0} \\
\Delta \subset \Lambda_{s-q}}}\left[e^{f_{\Delta} \phi_{\Delta}} \times\right. \\
& \left\{\exp \left(-\beta_{4, \Delta}: \phi_{\Delta}^{4}: c_{0}-\beta_{3, \Delta}: \phi_{\Delta}^{3}: c_{0}-\beta_{2, \Delta}: \phi_{\Delta}^{2}: c_{0}-\beta_{1, \Delta}: \phi_{\Delta}^{1}: c_{0}\right)\right. \\
& \times\left(1+W_{5, \Delta}: \phi_{\Delta}^{5}: c_{0}+W_{6, \Delta}: \phi_{\Delta}^{6}: c_{0}\right) \\
& \left.\left.+R_{\Delta}\left(\phi_{\Delta}\right)\right\}\right]
\end{aligned}
$$

Use a Brydges-Yau lift

$$
\begin{aligned}
& R G_{\text {inhom }} \\
& \vec{V}^{(r, q)} \quad \longrightarrow \quad \vec{V}^{(r, q+1)} \\
& \begin{array}{ccc}
\downarrow \\
\mathcal{I}^{(r, q)}
\end{array} \quad \longrightarrow \quad \begin{array}{c}
\downarrow \\
\mathcal{I}^{(r, q+1)}
\end{array} \\
& \mathcal{I}^{(r, q)}(\phi)=\prod_{\substack{\Delta \in \mathbb{L}_{0} \\
\Delta \subset \Lambda_{s-q}}}\left[e^{f_{\Delta} \phi_{\Delta}} \times\right. \\
& \left\{\exp \left(-\beta_{4, \Delta}: \phi_{\Delta}^{4}: c_{0}-\beta_{3, \Delta}: \phi_{\Delta}^{3}: c_{0}-\beta_{2, \Delta}: \phi_{\Delta}^{2}: c_{0}-\beta_{1, \Delta}: \phi_{\Delta}^{1}: c_{0}\right)\right. \\
& \times\left(1+W_{5, \Delta}: \phi_{\Delta}^{5}: c_{0}+W_{6, \Delta}: \phi_{\Delta}^{6}: c_{0}\right) \\
& \left.\left.+R_{\Delta}\left(\phi_{\Delta}\right)\right\}\right]
\end{aligned}
$$

Dynamical variable is $\vec{V}=\left(V_{\Delta}\right)_{\Delta \in \mathbb{L}_{0}}$ with

$$
V_{\Delta}=\left(\beta_{4, \Delta}, \beta_{3, \Delta}, \beta_{2, \Delta}, \beta_{1, \Delta}, W_{5, \Delta}, W_{6, \Delta}, f_{\Delta}, R_{\Delta}\right)
$$

$R G_{\text {inhom }}$ acts on $\mathcal{E}_{\text {inhom }}$, essentially,

$$
\prod_{\Delta \in \mathbb{L}_{0}}\left\{\mathbb{C}^{7} \times C^{9}(\mathbb{R}, \mathbb{C})\right\}
$$

$R G_{\text {inhom }}$ acts on $\mathcal{E}_{\text {inhom }}$, essentially,

$$
\prod_{\Delta \in \mathbb{L}_{0}}\left\{\mathbb{C}^{7} \times C^{9}(\mathbb{R}, \mathbb{C})\right\}
$$

Stable subspaces

$\mathcal{E}_{\text {hom }} \subset \mathcal{E}_{\text {inhom }}:$ spatially constant data.
$\mathcal{E} \subset \mathcal{E}_{\text {hom }}$: even potential, i.e., g, μ 's only and R even function.
Let $R G$ be induced action of $R G_{\text {inhom }}$ on \mathcal{E}.

3rd step: stabilize bulk (homogeneous) evolution Show that $\forall q \in \mathbb{Z}, \lim _{r \rightarrow-\infty} \vec{V}^{(r, q)}[0]$ exists, i.e.,

$$
\lim _{r \rightarrow-\infty} R G^{q-r}\left(\vec{V}^{(r, r)}[0]\right)
$$

exists.

3rd step: stabilize bulk (homogeneous) evolution
Show that $\forall q \in \mathbb{Z}, \lim _{r \rightarrow-\infty} \vec{V}^{(r, q)}[0]$ exists, i.e.,

$$
\lim _{r \rightarrow-\infty} R G^{q-r}\left(\vec{V}^{(r, r)}[0]\right)
$$

exists.

$$
R G\left\{\begin{array}{l}
g^{\prime}=L^{\epsilon} g-A_{1} g^{2}+\cdots \\
\mu^{\prime}=L^{\frac{3+\epsilon}{2}} \mu-A_{2} g^{2}-A_{3} g \mu+\cdots \\
R^{\prime}=\mathcal{L}^{(g, \mu)}(R)+\cdots
\end{array}\right.
$$

3rd step: stabilize bulk (homogeneous) evolution

Show that $\forall q \in \mathbb{Z}, \lim _{r \rightarrow-\infty} \vec{V}^{(r, q)}[0]$ exists, i.e.,

$$
\lim _{r \rightarrow-\infty} R G^{q-r}\left(\vec{V}^{(r, r)}[0]\right)
$$

exists.

$$
R G\left\{\begin{array}{l}
g^{\prime}=L^{\epsilon} g-A_{1} g^{2}+\cdots \\
\mu^{\prime}= \\
L^{\frac{3+\epsilon}{2}} \mu
\end{array}=\mathcal{L}_{2} \boldsymbol{L}^{(g, \mu)}(R)+\cdots . A_{3} g \mu+\right.
$$

Tadpole graph with mass insertion

$$
A_{3}=12 L^{3-2[\phi]} \int_{\mathbb{Q}_{p}^{3}} \Gamma(0, x)^{2} d^{3} x
$$

is main culprit for anomalous scaling dimension $\left[\phi^{2}\right]-2[\phi]>0$.

Irwin's proof \rightarrow stable manifold $W^{\text {s }}$

Irwin's proof \rightarrow stable manifold W^{s}
Restriction to $W^{s} \rightarrow$ contraction \rightarrow IR fixed point v_{*}.

Irwin's proof \rightarrow stable manifold W^{s}
Restriction to $W^{s} \rightarrow$ contraction \rightarrow IR fixed point v_{*}.
Construct unstable manifold W^{u}, intersect with $W^{\text {s }}$, transverse at v_{*}.

Irwin's proof \rightarrow stable manifold $W^{\text {s }}$
Restriction to $W^{s} \rightarrow$ contraction \rightarrow IR fixed point v_{*}.
Construct unstable manifold W^{u}, intersect with W^{s}, transverse at v_{*}.
Here, $\vec{V}^{(r, r)}[0]$ is independent of r : strict scaling limit of fixed model on unit lattice.
Must be chosen in $W^{s} \rightarrow \mu(g)$ critical mass.

Irwin's proof \rightarrow stable manifold W^{s}
Restriction to $W^{s} \rightarrow$ contraction $\rightarrow \mathrm{IR}$ fixed point v_{*}.
Construct unstable manifold W^{u}, intersect with W^{s}, transverse at v_{*}.
Here, $\vec{V}^{(r, r)}[0]$ is independent of r : strict scaling limit of fixed model on unit lattice.
Must be chosen in $W^{s} \rightarrow \mu(g)$ critical mass.
Thus

$$
\forall q \in \mathbb{Z}, \quad \lim _{r \rightarrow-\infty} \vec{V}^{(r, q)}[0]=v_{*}
$$

Tangent spaces at fixed point: E^{s} and E^{u}.
$E^{u}=\mathbb{C} e_{u}$, with e_{u} eigenvector of $D_{v_{*}} R G$ for eigenvalue $\alpha_{u}=L^{3-2[\phi]} \times Z_{2}=: L^{3-\left[\phi^{2}\right]}$.

4th step: control inhomogeneous evolution (deviation from bulk) for all effective (logarithmic) scale q, $\vec{V}^{(r, q)}[f]-\vec{V}^{(r, q)}[0]$ uniformly in r.

4th step: control inhomogeneous evolution (deviation from bulk) for all effective (logarithmic) scale q, $\vec{V}^{(r, q)}[f]-\vec{V}^{(r, q)}[0]$ uniformly in r.

1) $\sum_{x \in G} \zeta_{x}=0$ a.s. \rightarrow deviation is 0 for $q<$ local constancy scale of test function f.

4th step: control inhomogeneous evolution (deviation from bulk) for all effective (logarithmic) scale q, $\vec{V}^{(r, q)}[f]-\vec{V}^{(r, q)}[0]$ uniformly in r.

1) $\sum_{x \in G} \zeta_{x}=0$ a.s. \rightarrow deviation is 0 for $q<$ local constancy scale of test function f.
2) Deviation resides in closed unit ball containing origin for $q>$ radius of support of $f \rightarrow$ exponential decay for large q.

4th step: control inhomogeneous evolution (deviation from bulk) for all effective (logarithmic) scale q,
$\vec{V}^{(r, q)}[f]-\vec{V}^{(r, q)}[0]$ uniformly in r.

1) $\sum_{x \in G} \zeta_{x}=0$ a.s. \rightarrow deviation is 0 for $q<$ local constancy scale of test function f.
2) Deviation resides in closed unit ball containing origin for $q>$ radius of support of $f \rightarrow$ exponential decay for large q.
For source term with ϕ^{2} add

$$
Y_{2} Z_{2}^{r} \int: \phi^{2}: c_{r}(x) j(x) d^{3} x
$$

to potential. $\mathcal{S}_{r, s}^{\mathrm{T}}(f, j)$ now involves two test functions. After rescaling to unit lattice/cut-off

$$
Y_{2} \alpha_{u}^{r} \int: \phi^{2}: c_{0}(x) j\left(L^{-r} x\right) d^{3} x
$$

to be combined with μ into $\left(\beta_{2, \Delta}\right)_{\Delta \in \mathbb{L}_{0}}$ space-dependent mass.

5th step: partial linearization

5th step: partial linearization

In order to replay same sequence of moves with j present,

5th step: partial linearization

In order to replay same sequence of moves with j present, construct

$$
\Psi(v, w)=\lim _{n \rightarrow \infty} R G^{n}\left(v+\alpha_{u}^{-n} w\right)
$$

for $v \in W^{s}$ and all direction w (especially $\int: \phi^{2}:$).

5th step: partial linearization

In order to replay same sequence of moves with j present, construct

$$
\Psi(v, w)=\lim _{n \rightarrow \infty} R G^{n}\left(v+\alpha_{u}^{-n} w\right)
$$

for $v \in W^{s}$ and all direction w (especially $\int: \phi^{2}:$).
For v fixed, $\Psi(v, \cdot)$ is parametrization of W^{u} satisfying $\Psi\left(v, \alpha_{\mathrm{u}} w\right)=R G(\Psi(v, w))$.

5th step: partial linearization

In order to replay same sequence of moves with j present, construct

$$
\Psi(v, w)=\lim _{n \rightarrow \infty} R G^{n}\left(v+\alpha_{\mathrm{u}}^{-n} w\right)
$$

for $v \in W^{s}$ and all direction w (especially $\int: \phi^{2}:$).
For v fixed, $\Psi(v, \cdot)$ is parametrization of W^{u} satisfying $\Psi\left(v, \alpha_{\mathrm{u}} w\right)=R G(\Psi(v, w))$.

If there were no W^{s} directions (1D dynamics) then Ψ would be conjugation \rightarrow Poincaré-Kœnigs Theorem.

5th step: partial linearization

In order to replay same sequence of moves with j present, construct

$$
\Psi(v, w)=\lim _{n \rightarrow \infty} R G^{n}\left(v+\alpha_{u}^{-n} w\right)
$$

for $v \in W^{s}$ and all direction w (especially $\int: \phi^{2}:$).
For v fixed, $\Psi(v, \cdot)$ is parametrization of W^{u} satisfying $\Psi\left(v, \alpha_{u} w\right)=R G(\Psi(v, w))$.

If there were no $W^{\text {s }}$ directions (1D dynamics) then Ψ would be conjugation \rightarrow Poincaré-Kœnigs Theorem.
$\Psi(v, w)$ is holomorphic in v and w.
Essential for probabilistic interpretation of ($\phi, N\left[\phi^{2}\right]$) as pair of random variables in $S^{\prime}\left(\mathbb{Q}_{p}^{3}\right)$.

References:

A.A., A. Chandra, G. Guadagni, Rigorous quantum field theory functional integrals over the p-adics I: anomalous dimensions, arXiv 2013.
A.A., QFT, RG, and all that, for mathematicians, in eleven pages, arXiv 2013.
A.A., Towards three-dimensional conformal probability, arXiv 2015.
A.A., A second-quantized Kolmogorov-Chentsov theorem, arXiv 2016.

References:

A.A., A. Chandra, G. Guadagni, Rigorous quantum field theory functional integrals over the p-adics I: anomalous dimensions, arXiv 2013.
A.A., QFT, RG, and all that, for mathematicians, in eleven pages, arXiv 2013.
A.A., Towards three-dimensional conformal probability, arXiv 2015.
A.A., A second-quantized Kolmogorov-Chentsov theorem, arXiv 2016.

Thank you for your attention.

