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1. Introduction

Let IK be a complete ultrametric algebraically
closed field of characteristic 0 whose ultrametric ab-
solute value is denoted by | . | (we denote by | . |∞ the
Archimedean absolute value of IR). The Nevanlinna
theory, well known for complex meromorphic func-
tions [18], was examined over IK by Ha Huy Khoai
and was finally constructed by A. Boutabaa. Next,
a similar theory was made for unbounded meromor-
phic functions in an “open” disk of IK, taking into ac-
count Lazard’s problem. In 2007, M. O. Hanyak and
A. A. Kondratyuk constructed a Nevanlinna theory
for meromorphic functions in a punctured complex
plane, i.e., in the set lC \ {a1, ..., am}, where we un-
derstand that the meromorphic functions can admit
essential singularities at a1, ..., am.
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Here we recall the Nevanlinna theory for mero-
morphic functions in the complement of an open disk
by using specific properties of the Analytic Elements
on infraconnected subsets of IK and particularly the
Motzkin Factorization. We can also obtain a Nevan-
linna theory on three small functions, as it was done
in the classical context. Once the Nevanlinna Theory
is established for such functions, we can apply it to
obtain results on uniqueness and branched values as
it was done in similar problems. Next we describe
new results on meromorphic functions sharing two
sets and particular properties of meromorphic func-
tions of the form fn(x)fm(ax + b) with regards to
branched values and Picard’s values.

Notation: Given r > 0, a ∈ IK we denote by d(a, r)
the disk {x ∈ IK | |x− a| ≤ r}, by d(a, r−) the disk
{x ∈ IK | |x − a| < r}, and by C(a, r) the circle
{x ∈ IK | |x − a| = r}. Given r′′ > r′, we put
∆(0, r′, r′′) = d(0, r′′) \ d(0, r′−).

Henceforth, we fix R > 0, we denote by S the
disk d(0, R−) and put D = IK \ S.

Given a bounded function f in D, we put ‖f‖ =
supD |f(x)|. Given a subset E of IK having infinitely
many points, we denote by R(E) the IK-algebra of
rational functions h ∈ IK(x) having no pole in E.
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We then denote by H(E) the IK-vector space
of analytic elements on E, i.e., the completion of
R(E) with respect to the topology of uniform con-
vergence on E. By classical properties of analytic
elements, we know that given a circle C(a, r) and
an element f of H(C(a, r)), i.e., a Laurent series

f(x) =
+∞∑
−∞

cn(x− a)n converging whenever |x| = r,

then |f(x)| is equal to sup
n∈ZZ

|cn|rn in all classes of the

circle C(a, r) except maybe in finitely many. When
a = 0, we put |f |(r) = sup

n∈ZZ
|cn|rn. Then |f |(r) is a

multiplicative norm on H(C(0, r)).
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We denote by A(IK) the IK-algebra of entire
functions in IK, byA(d(a,R−) the IK-algebra of power

series
∞∑
n=0

cn(x− a)n converging in all d(a,R−) and

byA(D) the IK-algebra of Laurent series
∞∑
−∞

cn(x− a)n

converging in D. Similarly, we will denote byM(IK)
the field of meromorphic functions in IK, i.e. the
field of fractions of A(IK), by M(d(a,R−)) the field
of meromorphic functions in d(a,R−) i.e. the field of
fractions of A(d(a,R−)), and by M(D) the field of
meromorphic functions in D i.e. the field of fractions
of A(D).

Next, we will denote by Ab(d(a,R−)), the set of
f ∈ A(d(a,R−)) that are bounded in d(a,R−) and
we put Au(d(a,R−)) = A(d(a,R−)) \ Ab(d(a,R−)).
We will denote byMb(d(a,R−)) the field of fractions
ofAb(d(a,R−)) and putMu(d(a,R−)) =M(d(a,R−))\
Mb(d(a,R−)).
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We will denote by Aw(D) the set of f ∈ A(D)
admitting finitely many zeros inD and we putA∗(D) =
A(D) \ Aw(D) and similarly, we denote by Mw(D)
the field of fraction of Aw(D) and we putMw(D) =
M(D) \M∗(D). So, M∗(D) is the set of meromor-
phic functions in D having at least infinitely many
zeros or infinitely many poles in D.

2. Meromorphic functions

In this paragraph, we will recall basic properties
of meromorphic functions.

Let f ∈M(d(0, R−)) (resp. f ∈M(D)). Given
r < R (resp. r > R), we know that |f(x)| admits
a limit denoted by |f |(r) when |x| tends to r while
remaining different from r.

Let f ∈ A(d(0, R−)) (resp. f ∈ A(D)) and let
α ∈ d(a,R−), resp. α ∈ D). If f admits a zero of
order q at α we set ωα(f) = q and if f(α) 6= 0, we
set ωα(f) = 0.
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Let f =
h

l
∈ M(d(a,R−)), (resp. f ∈ M(D)).

For each α ∈ IK (resp. α ∈ d(a,R−), resp. α ∈ D)
the number ωα(h) − ωα(l) does not depend on the

functions h, l choosed to make f =
h

l
. Thus, we can

generalize the notation by setting ωα(f) = ωα(h) −
ωα(l).

If ωα(f) is an integer q > 0, α is called a zero of f
of order q.
If ωα(f) is an integer q < 0, α is called a pole of f
of order −q.
If ωα(f) ≥ 0, f will be said to be holomorphic at α.

Definition and notation: Let f ∈ M(IK) (resp.
f ∈ M(d(0, R−)) have a pole α of order q and let

f(x) =
−1∑
k=−q

ak(x− α)k+h(x) with a−q 6= 0 and h ∈

M(IK) (resp. f ∈ M(d(0, R−)) and h holomorphic
at α.

Accordingly to usual notations the coefficient
a−1 is called residue of f at α and denoted by res(f, α).

It seems obvious that the condition for a mero-
morphic function to admit primitives is that all residues
are null. Actually, the proof is not this immediate.
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Theorem 2.2: Let f ∈M(IK) (resp. f ∈M(d(a,R−),
resp. f ∈ M(D)). Then f admits primives if and
only if all residues of f are null.

Definitions: Let f ∈M(IK) (resp. f ∈Mu(d(a,R−)),
resp. f ∈M(D)) and let b ∈ IK. Then b will be said
to be an exceptional value for f if f − b has no zero
in IK (resp. in d(a,R−), resp. in D)). Moreover, if
f ∈M(IK) \ IK(x) (resp. if f ∈Mu(d(a,R−)), resp.
f ∈M(D))), b will be said to be a quasi-exceptional
value for f if f − b has finitely many zeros.

Theorem 2.3: Let f ∈ M(IK) \ IK, (resp. f ∈
Mu(d(a,R−)), resp. f ∈ M∗(D))). Then f admits
at most one quasi-exceptional value. Moreover, if
f has finitely many poles in IK (resp. in d(a,R−),
resp. in D), then f has no quasi-exceptional value.

The following theorem 2.4 was proven by Jean-
Paul Bézivin in a joint work with Kamal Boussaf and
the first author:

Theorem 2.4 (J.P. Bézivin): Let f ∈ M(IK)
and for each r > 0, let γ(f, r) be the number of mul-
tiple poles of f in d(0, r). If there exists c > 0 and
s ∈ IN such that γ(r, f) ≤ crs ∀r > 1, then f ′ admits
no quasi-exceptional value.
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Theorem 2.4 suggests the following conjecture
that is alreadly proven in a wide domain:

Conjecture : Given f ∈ M(IK), then f ′ admits
no quasi-exceptional value.

3. Nevanlinna Theory in the classical p-adic
context

The Nevanlinna Theory was made by Rolf Nevan-
linna on complex functions in the 1920th. It con-
sists of defining counting functions of zeros and poles
of a meromorphic function f and giving an upper
bound for multiple zeros and poles of various func-
tions f − b, b ∈ lC.

A similar theory for functions in a p-adic field
was constructed by A. Boutabaa, after some previ-
ous works by Ha Huy Khoai. The p-adic Nevanlinna
Theory was first stated and correctly proved by Abe-
delbaki Boutabaa inM(IK) in 1988. The theory was
extended to functions inM(d(0, R−)) by taking into
account Lazard’s problem in 1999.

Throughout the next paragraphs, we denote by
I the interval [t,+∞[, by J an interval of the form
[t, R[ with t > 0 and by L the interval [R,+∞[.

We denote by f a function that belongs either
to M(IK) or to M(S).

8



We have to introduce the counting function of
zeros and poles of f , counting or not multiplicity.
Here we will choose a presentation that avoids as-
suming that all functions we consider admit no zero
and no pole at the origin.

Definitions: We denote by Z(r, f) the counting
function of zeros of f in d(0, r) in the following way.

Let (an), 1 ≤ n ≤ σ(r) be the finite sequence of
zeros of f such that 0 < |an| ≤ r, of respective order
sn. We set

Z(r, f) = max(ω0(f), 0) log r+
σ(r)∑
n=1

sn(log r − log |an|)

and so, Z(r, f) is called the counting function of zeros
of f in d(0, r), counting multiplicity.

In order to define the counting function of ze-
ros of f without multiplicity, we put ω0(f) = 0 if
ω0(f) ≤ 0 and ω0(f) = 1 if ω0(f) ≥ 1.
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Now, we denote by Z(r, f) the counting function
of zeros of f without multiplicity:

Z(r, f) = ω0(f) log r +
σ(r)∑
n=1

(log r − log |an|) and so,

Z(r, f) is called the counting function of zeros of f
in d(0, r) ignoring multiplicity.

In the same way, considering the finite sequence
(bn), 1 ≤ n ≤ τ(r) of poles of f such that 0 < |bn| ≤
r, with respective multiplicity order tn, we put

N(r, f) = max(−ω0(f), 0) log r+
τ(r)∑
n=1

tn(log r − log |bn|)

and then N(r, f) is called the counting function of
the poles of f , counting multiplicity.

Next, in order to define the counting function of
poles of f without multiplicity, we put ω0(f) = 0 if
ω0(f) ≥ 0 and ω0(f) = 1 if ω0(f) ≤ −1 and we set

N(r, f) = ω0(f) log r+
τ(r)∑
n=1

(log r − log |bn|) and then

N(r, f) is called the counting function of the poles of
f , ignoring multiplicity.
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Now, we can define the Nevanlinna function T (r, f)
in I or J as T (r, f) = max(Z(r, f), N(r, f)) and the
function T (r, f) is called characteristic function of f
or Nevanlinna function of f .

Finally, if Y is a subset of IK we will denote
by ZY (r, f ′) the counting function of zeros of f ′,
excluding those which are zeros of f − a for any a ∈
Y .

Remark: If we change the origin, the functions
Z, N, T are not changed, up to an additive constant.

Theorem 3.1: Let f ∈M(IK) (resp. f ∈M(d(0, R−)))
have no zero and no pole at 0. Then

log(|f |(r)) = log(|f(0)|) + Z(r, f)−N(r, f).
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Theorem 3.2 (First Main Theorem) : Let f, g ∈
M(IK) (resp. f, g ∈M(S)). Then

Z(r, fg) ≤ Z(r, f)+Z(r, g), N(r, fg) ≤ N(r, f)+N(r, g),

Then T (r, f+b) = T (r, f)+O(1), T (r, fg) ≤ T (r, f)+
T (r, g), T (r, f+g) ≤ T (r, f)+T (r, g)+O(1), T (r, cf) =

T (r, f) ∀c ∈ IK∗, T (r,
1
f

) = T (r, f)),

T (r,
f

g
) ≤ T (r, f)) + T (r, g).

Let P (X) ∈ IK[X]. Then T (r, P (f)) = deg(P )T (r, f)+
O(1) and T (r, f ′P (f) ≥ T (r, P (f)).

Suppose now f, g ∈ A(IK) (resp. f, g ∈ A(S)).
Then Z(r, fg) = Z(r, f)+Z(r, g), T (r, f) = Z(r, f))
T (r, fg) = T (r, f) + T (r, g) +O(1) and
T (r, f + g) ≤ max(T (r, f), T (r, g)).

Moreover, if lim
r→+∞

T (r, f)− T (r, g) = +∞ then

T (r, f + g) = T (r, f) when r is big enough.

Theorem 3.3: Let f ∈M(IK). Then f belongs to
IK(x) if and only if T (r, f) = O(log r).
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Corollary 3.3.a: Let f ∈M∗(IK). Then f is tran-
scendental over IK(x).

Theorem 3.4: Let f ∈M(S). Then f belongs to
Mb(S) if and only if T (r, f) is bounded in [0, R[.

Corollary 3.4.a: Let f ∈Mu(S). Then f is tran-
scendental over Mb(S).

Theorem 3.5: Let f ∈M(IK) (resp. f ∈M(S)).
Then for all k ∈ IN∗, we have N(r, f (k)) = N(r, f)+
kN(r, f) and Z(r, f (k)) ≤ Z(r, f) +kN(r, f) +O(1).

Theorem 3.6: Let f ∈M(IK) (resp. f ∈M(S))
and let a1, ..., aq ∈ IK be distinct. Then

(q−1)T (r, f) ≤ max
1≤k≤q

( q∑
j=1,j 6=k

Z(r, f−aj)
)

+O(1).

Remark: The last Theorem does not hold in com-
plex analysis. Indeed, let f be a meromorphic func-
tion in lC omitting two values a and b, such as f(x) =
ex

ex − 1
. Then Z(r, f − a) + Z(r, f − b) = 0.
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We can now state the Second Main Theorem.

Theorem 3.7: (Second Main Theorem) Let
α1, ..., αq ∈ IK, with q ≥ 2, let Y = {α1, ..., αq} and
let f ∈M(IK) (resp. f ∈Mu(S)). Then

(q−1)T (r, f) ≤
q∑
j=1

Z(r, f−αj)+N(r, f)−ZY0 (r, f ′)−

log r +O(1) ∀r ∈ I (resp. ∀r ∈ J).
Moreover, if f belongs to f ∈ A(IK) (resp. f ∈

A(S)), then

(q−1)T (r, f) ≤
q∑
j=1

Z(r, f−αj)−ZY0 (r, f ′)+O(1) ∀r ∈

I (resp. ∀r ∈ J).

4. Nevanlinna Theory out of hole

Henceforth, we denote by L the interval [R,+∞[.
According to classical properties of analytic elements
on infraconnected sets, is easy to have the following
properties:
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Lemma 4.1: Let f ∈ H(D) have no zero in D.

Then f(x) is of the form
q∑
−∞

anx
n with |aq|Rq >

|an|Rn for all n < q.

Definition: Let f ∈ H(D) have no zero in D,

f(x) =
q∑
−∞

anx
n with |aq|Rq > |an|Rn for all n < q

and aq = 1. Then f will be called a Motzkin factor
associated to S and the integer q will be called the
Motzkin index of f and will be denoted by m(f, S).

Theorem 4.2: Let f ∈ M(D). We can write f

in a unique way in the form fSf0 with fS ∈ H(D)
a Motzkin factor associated to S and f0 ∈ M(IK),
having no zero and no pole in S.

A Nevanlinna Theory was made M. O. Hanyak
and A. A. Kondratyuk in 2007 for functions mero-
morphic in the complex plane except at finitely many
points where they can have an essential singularity.

In this part, we will give some relations between
the characteristic function and Motzkin factors.
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Given f ∈ M(D), for r > R. If α1, ..., αm are
the distinct zeros of f in ∆(0, R, r), with respective
multiplicity uj , 1 ≤ j ≤ m, then the counting func-
tion of zeros ZR(r, f) of f between R and r will de-
note by

ZR(r, f) =
m∑
j=1

uj(log(r)− log(|αj |)).

Similarly, if β1, ..., βn are the distinct poles of f in
∆(0, R, r), with respective multiplicity vj , 1 ≤ j ≤
m, then the counting function of poles NR(r, f) of f
between R and r is denoted by

NR(r, f) =
n∑
j=1

vj(log(r)− log(|βj |)).

We put

TR(r, f) = max
(
ZR(r, f), NR(r, f)

)
.
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The counting function of zeros without counting
multiplicity ZR(r, f) is defined as:

ZR(r, f) =
m∑
j=1

log(r)− log(|αj |),

where α1, ..., αm are the distinct zeros of f in ∆(0, R, r).
Similarly, the counting function of poles without count-
ing multiplicity NR(r, f) is defined as:

NR(r, f) =
n∑
j=1

log(r)− log(|βj |),

where β1, ..., βn are the distinct poles of f in ∆(0, R, r).
Finally, putting Y = {a1, ..., aq}, we denote by

ZYR (r, f ′) the counting function of zeros of f ′ on
points x where f(x) /∈ Y .

Theorem 4.3: Let f ∈M(D). Then, for all r ∈ L,
log(|f |(r))− log(|f |(R))

= ZR(r, f)−NR(r, f) +m(f, S)(log r − logR).

17



Corollary 4.3.a Let f ∈ M(D). Then TR(r, f) is
identically zero if and only if f is a Motzkin factor.

Let f, g ∈ A(D) satisfy log(|f |(r)) ≤ log(|g|(r))
for all r ∈ L. Then

ZR(r, f) ≤ ZR(r, g)+(m(g, S)−m(f, S))(log(r)−log(R)).

Theorem 4.4: Let f ∈ A(D). Then, for r ∈ L,

ZR(r, f ′) ≤ ZR(r, f)− log(r) +O(1).

We can now characterize the set M∗(D):

Theorem 4.5: Let f ∈M(D). The three following
statements are equivalent:

i) lim
r→+∞

TR(r, f)
log(r)

= +∞ for r ∈ L,

ii)
TR(r, f)
log(r)

is unbounded,

iii) f belongs to M∗(D).

Operations onM(D) work almost like for mero-
morphic functions in the whole field.
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Theorem 4.6: If f, g ∈ M(D). Then for every
b ∈ IK and r ∈ L, we have TR(r, fn) = nTR(r, f),

TR(r, f.g) ≤ TR(r, f) + TR(r, g) +O(log(r)),

TR(r,
1
f

) = TR(r, f)),

TR(r, f + g) ≤ TR(r, f) + TR(r, g) +O(log(r)),
TR(r, f + b) = TR(r, f) +O(log(r)),
TR(r, h ◦ f) = TR(r, f) + O(log(r)), where h is

a Moebius function.
Moreover, if both f and g belong to A(D), then
TR(r, f+g) ≤ max(TR(r, f), TR(r, g))+O(log(r)),
TR(r, fg) = TR(r, f) + TR(r, g).
Particularly, if f ∈ A∗(D), then
TR(r, f + b) = TR(r, f) +O(1).
Given a polynomial P (X) ∈ IK[X], then TR(r, P◦

f) = qTR(r, f) +O(log(r)).

Theorem 4.7: Every f ∈M∗(D) is transcendental
over Mw(D).

Theorem 4.8: Let f ∈M(D). Then, for r ∈ L,
NR(r, f (k)) = NR(r, f) + kNR(r, f) and
ZR(r, f (k)) ≤ ZR(r, f) + kNR(r, f) +O(log(r)).
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Like in the whole field, the Nevanlinna second
Main Theorem is based on the following theorem:

Theorem 4.9: Let f ∈ M(D) and let a1, ..., aq ∈
IK be distinct. Then

(q−1)TR(r, f) ≤ max
1≤k≤q

( q∑
j=1,j 6=k

ZR(r, f−aj)
)

+O(log(r)).

We can now state and prove the Second Main
Theorem for M(D).

Theorem 4.10: (Second Main Theorem) Let
f ∈ M(D), let α1, ..., αq ∈ IK, with q ≥ 2 and let
Y = {α1, ..., αq}. Then, for r ∈ L, (q − 1)TR(r, f)

≤
q∑
j=1

ZR(r, f−αj)+NR(r, f)−ZYR (r, f ′)+O(log(r)).

Particularly, if f ∈ A(D), then

(q−1)TR(r, f) ≤
q∑
j=1

ZR(r, f−αj)−ZYR (r, f ′)+O(log(r)).
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5. Immediate applications

We have the following immediate applications:

Theorem 5.1: Let a1, a2 ∈ IK (with a1 6= a2 )
and let f, g ∈ A∗(IK) satisfy f−1({ai}) = g−1({ai})
(i = 1, 2). Then f = g.

Theorem 5.2: Let a1, a2, a3 ∈ IK (with ai 6=
aj ∀i 6= j) and let f, g ∈ Au(d(0, R−)) (resp. f, g ∈
A∗(D)) satisfy f−1({ai}) = g−1({ai}) (i = 1, 2, 3).
Then f = g.

Theorem 5.3: Let a1, a2, a3, a4 ∈ IK (with ai 6=
aj ∀i 6= j) and let f, g ∈M∗(IK) satisfy f−1({ai}) =
g−1({ai}) (i = 1, 2, 3, 4). Then f = g.

Theorem 5.4: Let a1, a2, a3, a4, a5 ∈ IK (with
ai 6= aj ∀i 6= j) and let f, g ∈ Mu(d(0, R−)) (resp.
f, g ∈ M∗(D)) satisfy f−1({ai}) = g−1({ai}) (i =
1, 2, 3, 4, 5). Then f = g.
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Theorem 5.5:: Let Λ be a non-degenerate elliptic
curve of equation
y2 = (x− a1)(x− a2)(x− a3).

There do not exist g, f ∈ M(IK) such that
g(t) = y, f(t) = x, t ∈ IK.

There do not exist g, f ∈ Au(d(0, R−)) such
that g(t) = y, f(t) = x, t ∈ d(0, R−).

There do not exist g, f ∈ A∗(D) such that
g(t) = y, f(t) = x, t ∈ D.

Theorem 5.6: Let Λ be a curve of equation yq =
P (x), q ≥ 2, with P ∈ IK[x] admitting n distinct
zeros of order 1 with n ≥ 4. There do not exist
g, f ∈M(IK) such that g(t) = y, f(t) = x, t ∈ IK.

Theorem 5.7: Let Λ be a curve of equation yq =
P (x), q ≥ 2, with P ∈ IK[x] admitting n distinct
zeros of order 1 with n ≥ 5. There do not exist
g, f ∈ Mu(d(0, R−)) (resp. g, f ∈ M∗(D)) such
that g(t) = y, f(t) = x, t ∈ d(0, R−) (resp. t ∈ D).

Another application concerns analytic functions:

Theorem 5.8: Let f, g ∈M(K) satisfy gm+fn =
1, with min(m,n) ≥ 2 and max(m,n) ≥ 3. Then f
and g are constant.
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Theorem 5.9: Let f, g ∈M(d(0, R−)) (resp. f, g ∈
M(D)) satisfy gm + fn = 1,with min(m,n) ≥ 3 and
max(m,n) ≥ 4). Then f and g belong toMb(d(0, R−))
(resp. to Mw(D)). Moreover, if f, g ∈ A(d(0, R−)
(resp. if f, g ∈ A(D)) satisfy gm + fn = 1, with
min(m,n) ≥ 2 and (m,n) 6= (2, 2), then f and g

belong to Ab(d(0, R−), (resp to Aw(D)).

6. Hayman’s Conjecture:

Let us recall the famous Hayman conjecture on
complex meromorphic functions:
Let f be a meromorphic transcendental function in

lC. Then, for every n ∈ IN∗, fnf ′ takes every value
b ∈ lC infinitely many times.

That conjecture was easily proven by W. Hay-
man himself for every n ≥ 3, then by E. Mues for
n = 2 and at last by W. Bergweiler for n = 1.

The same problem appeared inM∗(IK), inMu(S)
and in M∗((D).The Nevanlinna theory lets us ob-
tain a solution in each cases whenever n ≥ 3. The
solution was given by Jacqueline Ojeda.
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Theorem 6.1: Let f ∈M∗(IK), (resp. f ∈Mu(S),
resp. f ∈M∗(D)),.Then for every n ≥ 3, fnf ′ takes
every value b ∈ IK infinitely many times.

The big difficulties begin with n = 2 and n = 1.
Theorem 6.2 was proven in 2013 by J. Ojeda and the
first author:

Teorem 6.2: Let f ∈ M∗(IK). Then f2f ′ takes
every value b ∈ IK infinitely many times.

Concerning the case n = 1, by Bézivin’s Theo-
rem (Theorem 2.4), we have this.

Theorem 6.3: Let f ∈M(IK), r > 0 and let ξ(f, r)
be the number of poles of f in d(0, r). If in [1,+∞[,
ξ(f, r) admits an upper bound of the form ξ(f, r) ≤
rq, (q > 0) then f ′f takes every value b ∈ IK in-
finitely many times.
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7. Small functions

Definitions: For each f ∈ M(IK), (resp. f ∈
M(S), resp. f ∈M(D)), we will denote byMf (IK)
(resp. Mf (S), Mf (D)) the set of functions h ∈
M(IK) (resp. h ∈ M(S), h ∈ M(D)) such that
TR(r, h) = o(TR(r, f)), r ∈ I, (resp. r ∈ J , resp.
r ∈ L). Similarly, if f ∈ A(IK) (resp. f ∈ A(S),
resp. f ∈ A(D)) we will denote by Af (IK) (resp.
Af (S), resp. Af (D)) the setMf (IK)∩A(IK),( resp.
Mf (S) ∩ A(S), resp.Mf (D) ∩ A(D)).

The elements of Mf (IK) (resp. Mf (S), resp.
Mf (D)) are called small meromorphic functions with
respect to f , small functions in brief. Similarly, if
f ∈ A(IK) (resp. f ∈ A(S), resp. f ∈ A(D)) these
functions are called small analytic functions with re-
spect to f , small functions in brief.

A small function w with respect to a function
f ∈ M(IK) (resp. f ∈ M(S), f ∈ M(D)) will
be called a quasi-exceptional small function for f if
f − w has finitely many zeros in D.
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Theorem 7.1: Let f ∈M∗(IK) (resp. f ∈Mu(S),
resp. f ∈ M∗(D)). Then f admits at most one
quasi-exceptional small function. Moreover, if f has
finitely many poles, then f admits no quasi-exceptional
small function.

Corollary 7.1.a: Let f ∈ A∗(IK) (resp. f ∈
Au(S), resp. f ∈ A∗(D)). Then f has no quasi-
exceptional small function.

By applying the Second Main Theorem for mero-
morphic functions outside a hole and following step
by step the classical previous p-adic works, we are
able to obtain uniqueness theorems, which will not
be listed in this paper.

First, we will show a Second Main Theorem for
Three Small Functions for meromorphic functions
outside a hole. It holds as well as in complex analy-
sis, where it was showed first. Notice that this the-
orem was generalized to any finite set of small func-
tions by K. Yamanoi in complex analysis, through
methods that have no equivalent on a p-adic field.
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Theorem 7.2: Let f ∈M∗(IK), (resp. f ∈Mu(S),
resp. f ∈ M∗(D) and let w1, w2, w3 ∈ Mf (IK)
(resp. ∈ Mf (d(0, R−)), resp. ∈ Mf (D)) be pair-
wise distinct. Then:

T (r, f) ≤
∑3
j=1 Z(r, f − wj) + o(T (r, f))

(resp. T (r, f) ≤
∑3
j=1 Z(r, f −wj) +o(T (r, f)),

resp. TR(r, f) ≤
∑3
j=1 ZR(r, f−wj)+o(TR(r, f))).

Corollary 7.2.a: Let f ∈M∗(IK) (resp. f ∈Mu(S)
resp. f ∈ M∗(D)) and let w1, w2 ∈ Af (IK) (resp.
w1, w2 ∈ Af (S) resp. w1, w2 ∈ Af (D) ) be distinct.
Then

T (r, f) ≤ Z(r, f−w1)+Z(r, f−w2)+N(r, f)+o(T (r, f)).

(resp.

T (r, f) ≤ Z(r, f−w1)+Z(r, f−w2)+N(r, f)+o(TR(r, f)).

resp. TR(r, f)

≤ ZR(r, f−w1)+ZR(r, f−w2)+NR(r, f)+o(TR(r, f))).
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Corollary 7.2.b: Let f ∈ A∗(D) and let w1, w2 ∈
Af (D) be distinct. Then

TR(r, f) ≤ ZR(r, f−w1)+ZR(r, f−w2)+o(TR(r, f)).

The other problem that we can solve with the
help of Theorem 7.1 concerns branched functions.

Definitions: Let f ∈M∗(IK) (resp. f ∈Mu(d(0, R−)),
resp. f ∈ M∗(D)) and let w ∈ Mf (IK) (resp.
w ∈ Mf (d(0, R−)), resp. w ∈ Mf (D)). Then w

is called a perfectly branched function with respect
to f if all zeros of f − w are multiple except maybe
finitely many and w is called a totally branched func-
tion with respect to f if all zeros of f − w are mul-
tiple, without exception. Particularly, the definition
applies to constants.

Theorem 7.3: Let f ∈M∗(IK) (resp. f ∈Mu(d(0, R−)),
resp. f ∈M∗(D)). Then f admits at most four per-
fectly branched values.

Theorem 7.4: Let f ∈M∗(IK) (resp. f ∈M∗(D))
having finitely many poles. Then f admits at most
one perfectly branched rational function.
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Corollary 7.4.a: Let f ∈ A∗(IK) (resp. f ∈
A∗(D)). Then f admits at most one perfectly branched
rational function.

Theorem 7.5: Let f ∈ Mu(d(0, R−)), having
finitely many poles. Then f admits at most two per-
fectly branched rational functions.

Corollary 7.5.a: Let f ∈ Au(d(0, R−)). Then f
admits at most two perfectly branched rational func-
tions.

8. New applications of the Nevanlinna Theory

Definitions: Recall that two functions f and g
meromorphic in a set B are said to share a set X ⊂
IK, counting multiplicity, or C.M. in brief, if for each
b ∈ X, when f(x)−b has a zero of order q at a point
a ∈ B, then there exists c ∈ X such that g(x) − c
also has a zero of order q at a. And the functions
f and g are said to share X ignoring multiplicity or
I.M. in brief, if f−1(X) = g−1(X).
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By Theorem 5.3, two meromorphic functions in
IK sharing 4 points I.M. are identical , by Theorem
5.4 two meromorphic functions in S or in D sharing 5
points I.M. are identical, by Theorem 5.1, two entire
functions sharing 2 points I.M. are identical and by
Theorem 5.2 two meromorphic functions in S or in
D sharing 3 points I.M. are identical. Here we will
first examine two meromorphic functions sharing a
few points C.M.

Theorem 8.1: Let f, g ∈Mu(S) (resp. let f, g ∈
M∗(D)) share C.M. 4 points aj ∈ IK ∪ {∞}, j =
1, 2, 3, 4. Then f ≡ g.

Theorem 8.2: Let f, g ∈Mu(S) (resp. let f, g ∈
M∗(D)) have finitely many poles and share C.M. 3
points aj ∈ IK ∪ {∞}, j = 1, 2, 3. Then f ≡ g.

Corollary 8.2.a: Let f, g ∈ Au(S) (resp. f, g ∈
A∗(D)) share C.M. 3 points aj ∈ IK, j = 1, 2, 3.
Then f ≡ g.
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Theorem 8.3 is not immediate and has a similar
version in complex analysis for meromorphic func-
tions provided with a finite growth order that is not
integral. Here, we don’t need any hypothesis on the
growth order.

Theorem 8.3: Let f, g ∈ M∗(IK) share C.M. 3
points aj ∈ IK ∪ {∞}, j = 1, 2, 3. Then f ≡ g.

In the particular case of functions f, g ∈Mu(S)
or functions f, g ∈ M∗(D)) having finitely many
poles and sharing poles C.M., we can add this theo-
rem:

Theorem 8.4: Let f, g ∈Mu(S), (resp. let f, g ∈
M∗(D)) have finitely many poles in S (resp. in D)
and share C.M. two values a, b and poles. Then
f ≡ g.

Our main theorems are Theorems 8.5 and 8.6
that follow the same kind of reasoning as in the
classical case. We denote by Y1 = {α1, ..., αk} and
Y2 = {β1, β2} the two sets satisfying

(H)
( k∏
j=1

(β1 − αj)
)2

6=
( k∏
j=1

(β2 − αj)
)2

.
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Theorem 8.5: Let f, g ∈ M∗(IK) (resp. let
f, g ∈Mu(S), resp. let f, g ∈M∗(D)) have finitely
many poles in IK (resp. in S, resp. in D) and share
Y1 C.M. and Y2 I.M. Then f ≡ g.

Corollary 8.5.a: Let f, g ∈ M∗(IK) (resp. let
f, g ∈Mu(S), resp. let f, g ∈M∗(D)) have finitely
many poles in IK (resp. in S, resp in D) and share
a value α C.M. and Y2 I.M. If (α−β1)2 6= (α−β2)2,
then f ≡ g.

Corollary 8.5.b: Let f, g ∈ A∗(IK) (resp. let
f, g ∈ Au(S), resp. let f, g ∈ A∗(D)) and share Y1

C.M. and Y2 I.M. Then f ≡ g.

Corollary 8.5.c: Let f, g ∈ A∗(IK) (resp. let
f, g ∈ Au(S), resp. let f, g ∈ A∗(D)) and share a
value α C.M. and Y2 I.M. If (α− β1)2 6= (α− β2)2,
then f ≡ g.

Theorem 8.6: Let f, g ∈ M∗(IK) (resp. let
f, g ∈Mu(S), resp. let f, g ∈M∗(D)) have finitely
many poles in IK (resp. in S, resp. in D) and share
Y1 I.M. and Y2 C.M. Then f ≡ g.
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Corollary 8.6.a: Let f, g ∈ M∗(IK) (resp. let
f, g ∈Mu(S), resp. let f, g ∈M∗(D)) have finitely
many poles in IK (resp. in S, resp. in D) and share
a value α I.M. and Y2 C.M. If (α−β1)2 6= (α−β2)2,
then f ≡ g.

Corollary 8.6.b: Let f, g ∈ A∗(IK) (resp. let
f, g ∈ Au(S), resp. let f, g ∈ A∗(D)) and share Y1

I.M. and Y2 C.M. Then f ≡ g.

Corollary 8.6.c: Let f, g ∈ A∗(IK) (resp. let
f, g ∈ Au(S), resp. let f, g ∈ A∗(D)) and share a
value α I.M. and Y2 C.M. If (α− β1)2 6= (α− β2)2,
then f ≡ g.

It is known that if two functions f, g ∈ A(IK)
share separately two values a, b ∈ IK C.M., then
f ≡ g. However, here the hypothesis f, g share
Y1 and share Y2 cannot be compared: for example,
concerning Y2, f and g are not supposed to share
β1 or β2 separately. The same remark applies to
meromorphic functions having finitely many poles.

Results recently presented by J.F. Chen show
the interest of complex functions of the form f(x)f(x+
b). Similar studies were made in a p-adic field by Liu
Gang and Meng Chao.
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Here we will generalize that kind of study on
the field IK. it is proven that if two complex entire
functions f and g are such that f(x)nf(x + c) and
g(x)ng(x + c) share 1 C.M. with n ≥ 6, then either

fg is a constant t1 such that tn+1
1 = 1, or

f

g
is a

constant t2 such that tn+1
2 = 1. Here, on the field

IK, we can obtain better results.
On the other hand, we can find similar results

of uniqueness by Vu Hoai An, Pham Ngoc Hoa and
Ha Hui Khoai, for meromorphic functions on a p-
adic field involving derivatives, sharing 1 C.M. or
I.M., also involving derivatives. Here we will exam-
ine functions of the form f(x)n(f(x+c))m, g(x)n(g(x+
c))m sharing a rational function and we will look for
branched values and quasi-exceptional values of such
functions.

Notation: We denote by IN∗ the set of strictly
positive integers. On ZZ, we denote by | . |∞ the
Archimedean absolute value.
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Theorem 8.7: Let a ∈ C(0, 1), let b ∈ IK and let
f, g ∈ M∗(IK) have finitely many poles and take
m, n IN∗ with m 6= n. If fn(x)fm(ax + b) and
gn(x)gm(ax+ b) share C.M. a rational function Q ∈

IK(x), Q 6≡ 0 and if n+m ≥ 5, then
f

g
is a constant

t such that tn+m = 1. Moreover, if f, g ∈ A∗(IK), if
fn(x)fm(ax+ b) and gn(x)gm(ax+ b) share C.M. a

constant l 6= 0 and if n+m ≥ 4, then
f

g
is a constant

t such that tn+m = 1.

Theorem 8.8: Let a ∈ C(0, 1) and let b ∈ S (resp.
let b ∈ IK) and let f, g ∈ Mu(S) (resp. let f, g ∈
M∗(D)) have finitely many poles in S (resp. in D)
and take n, m ∈ IN∗ with n 6= m. If fn(x)fm(ax+
b) and gn(x)gm(ax + b) share C.M. a function τ ∈
M(S) (resp. a function τ ∈ M(D)) having finitely

many zeros and poles in S (resp. in D), then
f

g
is

a constant t such that tn+m = 1.
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Next, in the paper by J.F.Chen, it was shown
that given a complex entire function f and b ∈ lC \
{0}, a function of the form fn(x)f(x + b)− c (with
c 6= 0) has infinitely many zeros in lC provided n ≥ 3.
On the field IK, such a result is trivial since an en-
tire functions and even a meromorphic function with
finitely many poles (which is not a rational func-
tion) takes every value infinitely many times. But
we can ask the question regarding in general func-
tions f ∈M∗(IK), f ∈Mu(S), f ∈M∗(D).

Theorem 8.9: Let f ∈M∗(IK) (resp. f ∈Mu(S),
resp. f ∈ M∗(D)), let a ∈ C(0, 1), let b ∈ IK (resp.
b ∈ S, resp. b ∈ IK) and let w ∈ M(IK) (resp.
w ∈ M(S), resp. w ∈ M(D)) be a non identically
zero small function with respect to f . If n, m ∈ IN
are such that |n−m|∞ ≥ 5, then fn(x)fm(ax+b)−w
has infinitely many zeros in IK (resp. in S, resp. in
D).

Corollary 8.9.a: Let f ∈ M∗(IK) (resp. f ∈
Mu(S), resp. f ∈ M∗(D)), let a ∈ C(0, 1), let
b ∈ IK (resp. b ∈ S, resp. b ∈ IK). If n, m ∈ IN
are such that |n −m|∞ ≥ 5, then fn(x)fm(ax + b)
takes every nonzero value infinitely many times in
IK (resp. in S, resp. in D).
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Remarks: 1) Of course, the hypothesis w 6= 0
must not be excluded. Indeed, let h ∈ A∗(IK) and let

f(x) =
1

h(x)
. Then a function of the form fn(x)f(ax+

b) has no zero in IK.

2) On the other hand, it is known and easily
seen that if a = 1 and b = 0, a function fn − w
has infinitely many zeros for every n ≥ 3 and that
f2 takes every nonzero value c infinitely many times
because given a square root l of c, then f2−c = (f−
l)(f+l) and at least one of the two values l and −l is
taken infinitely many times. We can ask whether a
meromorphic function of the form f2(x)−w always
has infinitely many zeros when w is not a constant.

3) Concerning Theorem 8.9, it is easily proven
that if f is a meromorphic function with finitely
many poles and w a small function, then f − w has
infinitely many zeros. So it is useless here to add a
corollary concerning fn(x)fm(ax + b) − w when f
has finitely many poles.
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Theorem 8.10: Let f ∈M∗(IK) (resp. f ∈Mu(S),
resp. f ∈ M∗(D)), let a ∈ C(0, 1), let b ∈ IK
(resp. b ∈ S, resp. b ∈ IK) and let n, m ∈ IN∗. If
3|n−m|∞ > 2(n+m)+4, then fn(x)fm(ax+b) does
not admit 4 distinct perfectly branched values and if
3|n−m|∞ ≥ 2(n+m+1), then fn(x)fm(ax+b) does
not admit 4 distinct totally branched values. More-
over, if 4|n−m|∞ > 3(n+m)+4, then fn(x)fm(ax+
b) does not admit 3 distinct perfectly branched values
and if 4|n−m|∞ ≥ 3(n+m)+4, then fn(x)fm(ax+b)
does not admit 3 distinct totally branched values.
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