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Elementary motivations

1 Riemann, (1854) found that geometry and Physics are
interconnected at a fundamental level and describes
Riemannian geometry as model for space.

2 Riemann commented that this kind of hypothesis should
be, or have to be, consistent with Physics.

3 In very small distances, time-space might not be a
manifold. In the last decades of the last century many
other models emegered to explain what happen at very
small distance.
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1 In 80’s, I. Volovich, began to use p-adic numbers instead of
the real numbers to explore models of space-time at the
Plank scales. Space-time is now considered
non–Archimedean.

2 In 1989, Yu. I Manin propose to use or incorporate all
p-adic fields and the real line to construct a model of
space-time.



Elementary motivations

1 In 80’s, I. Volovich, began to use p-adic numbers instead of
the real numbers to explore models of space-time at the
Plank scales. Space-time is now considered
non–Archimedean.

2 In 1989, Yu. I Manin propose to use or incorporate all
p-adic fields and the real line to construct a model of
space-time.



Elementary motivations

1 In 80’s, I. Volovich, began to use p-adic numbers instead of
the real numbers to explore models of space-time at the
Plank scales. Space-time is now considered
non–Archimedean.

2 In 1989, Yu. I Manin propose to use or incorporate all
p-adic fields and the real line to construct a model of
space-time.



The finite adèle ring of Q
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The finite adèle ring of Q

Let N = {1, 2, 3, . . .} be the set of natural numbers and let P be
the set of prime numbers. For any p ∈ P, the p-completion of
the integers, Z, is given by

Zp ∼=

{
∞∑

i=0

xip
i

}
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Another equivalent way to define the p-adic completion of the
integers is given as follows:

Zp ∼= lim
←−
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The finite adèle ring of Q

1 The p–adic order on Zp extends to an order on Qp and this
produces a non–Archimedean valuation on Qp which makes
it a second countable and totally disconnected locally
compact topological field.

2 The unit ball on Qp corresponds to the maximal compact
and open subring Zp. The Haar measure dxp on the
additive group Qp is normalized to be a probability
measure on Zp.
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The finite adèle ring of Q

The finite adèle ring Af of the rational numbers Q is the
restricted direct product of the fields Qp with respect to the
subrings Zp, viz.,

Af =



 (xp)p∈P ∈

∏
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Qp | xp ∈ Zp for almost any p ∈ P
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
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The restricted direct product topology on the ring Af is the
topology of the inductive limit

Af = lim
−→
S⊂P

|S|<∞

AS ,



The finite adèle ring of Q

Af , is a second countable and totally disconnected locally
compact topological ring and contains Q as a dense subset. The
profinite completion of the integers

Ẑ =
∏

p∈P

Zp

is the maximal, compact and open subring of Af . The Haar
measure dµ =

∏
p∈P dxp on Af is a probability measure on∏
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The Archimedean property

Given two real numbers x, y, with x > 0, there exists a natural
number n, such that nx > y.

The Archimedean property appears to be an “axiom” in the
construction of the real numbers, only after a complete system
of axioms is given or considered.



Ultrametrics on Af

The Archimedean property

Given two real numbers x, y, with x > 0, there exists a natural
number n, such that nx > y.

The Archimedean property appears to be an “axiom” in the
construction of the real numbers, only after a complete system
of axioms is given or considered.



Ultrametrics on Af

Let us begin again with the rational numbers, Q, and the
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(iv) The distance function d(x, y) = |x− y| is invariant under
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The ring of finite adelic numbers

Let ψ(n) denote the second Chebyshev function defined by the
relation

eψ(n) = lcm(1, 2, . . . , n) (n ∈ N).

Denote by Λ(n) the von Mangoldt function given by

Λ(n) =

{
log p if n = pk for some p ∈ P and integer k ≥ 1,

0 otherwise.
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For any integer number n, define the second symmetric
Chebyshev function by

ψ(n) =

{
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|n|ψ(|n|) if n 6= 0,

0 if n = 0,

and the symmetric von Mangoldt function by (extending) the
relation

eΛ(n) =
eψ(n)

eψ(n−1)
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For each integer number n, denote by eψ(n)Z ⊂ Q the family of
additive subgroups of Q. If n is positive, eψ(n)Z is an ideal of Z
and, if n is negative, eψ(n)Z is a fractional ideal of Q.
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The collection {eψ(n)Z}n∈Z is a neighbourhood base of zero for
an additive invariant topology on Q. This topology is called
here the finite adelic topology of Q.
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The ring of finite adelic numbers

For any element x ∈ Q define the order of x as:

ord(x) :=

{
max{n : x ∈ eψ(n)Z} if n 6= 0,

∞ if n = 0.
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The ring of finite adelic numbers

With this order, define a nonnegative function

d : Q×Q −→ R+ ∪ {0}

given by
d(x, y) = eψ(−ord(x−y)).
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The ring of finite adelic numbers

The completion of Q, denoted by Q, is the quotient ring formed
by Cauchy sequences modulo trivial Cauchy sequences. Any
element of Q finite can be written uniquely as

x =

∞∑

n=ord(x)

x(n) · eψ(n),

where x(n) = 0, 1, . . . , eΛ(n+1) − 1.
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The ring of finite adelic numbers

There is an isomorphism of topological rings

Af ∼= N−1Ẑ ∼= Q,

which preserves the inclusion of Q on both rings.
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The ring of finite adelic numbers

Figure: The decomposition of Af
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The ring of finite adelic numbers

Theorem

If d is any regular non–Archimedean metric on Af , then d is

determined by an ordered pair (α(n), β(n)) of sequences of

natural numbers totally ordered by divisibility and cofinal with

N.

[CE2016] Cruz–López, Manuel, Estala–Arias, Samuel. Additive

invariant ultrametrics on the finite adèle group of Q. P–Adic
Numbers Ultrametric Analysis and Applications 04/2016;
8(2):89–114.
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The ring of finite adelic numbers

The ultrametric constructed using the second Chebyshev
function gives some interesting integrals. For σ = ℜ(s) > 0,

∫

Ẑ

‖x‖s−1 dµ(x) =
∞∑

n=1

e−(s−1)ψ(n)e−ψ(n)(1− e−Λ(n+1))

=

∞∑

n=1

1− e−Λ(n+1)

esψ(n)
<

∫ 1

0
xσ−1dx.
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Ẑ

‖x‖s−1 dµ(x) =
∞∑

n=1

e−(s−1)ψ(n)e−ψ(n)(1− e−Λ(n+1))

=

∞∑

n=1

1− e−Λ(n+1)

esψ(n)
<

∫ 1

0
xσ−1dx.



A heat equation on L2(Af )

Outline

1 Elementary motivations

2 The finite adèle ring of Q
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A heat equation on L2(Af )

For any α, consider the operator

Dα : Dom(A) ⊂ L2(Af )→ L2(Af )

defined by the following diagram :

L2(Af )
F

−−−−→ L2(Af )

Dα
y

yf 7→‖·‖αf

L2(Af )
F

−−−−→ L2(Af )

. (1)
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A heat equation on L2(Af )

A pseudodifferential equation of the form

{
∂u(x,t)
∂t +Dαu(x, t) = 0, x ∈ Af , t > 0

limt→0 u(x, t) = f(x)
(2)

for some appropriate function f ∈ L2(Af ), is a finite adelic
counterpart of the Archimedean homogeneous heat equation.



A heat equation on L2(Af )

The Hille-Yosida theorem implies a diagram:

L2(Af )
F

−−−−→ L2(Af )

S(t)

y
yf 7→f exp(−t‖·‖α)

L2(Af )
F

−−−−→ L2(Af )



A heat equation on L2(Af )

In order to find an explicit expression for S(t) it is necessary to
introduce the heat kernel:

Z(x, t) =

∫

Af

χ(−xξ) exp(−t ‖ξ‖α)dξ.



A heat equation on L2(Af )

Z(x, t) =
∑

n∈Z
eψ(n)≤‖x‖−1

eψ(n)
{
exp(−teαψ(n))− exp(−teαψ(n+1))

}
.



A heat equation on L2(Af )

Theorem

Let α > 0 and let S(t) be the C0–semigroup generated by the

operator −Dα. The solution of the abstract Cauchy problem is

given by u(x, t) = Z(x, t) ∗ f(x), for t ≥ 0 and f ∈ Dom(Dα).
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A heat equation on L2(A)

Let A = Af × R be the complete ring of Adèles.



A heat equation on L2(A)

Being a finite pruduct of locally compact topological rings, we
have

1 S(A) = S(Af )⊗ S(R)

2 L2(A) = L2(Af )⊗ L
2(R)

3 FA = FAf ⊗FR

4 Dα,β = Dα ⊗Dβ

5 SA(t) = SAf (t)⊗ SR(t)
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