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Zeta function: infinite sum and product

Riemann ζ-function has been an intriguing and fascinating object
even since Riemann’s famous conjecture.

The infinite sum

ζ(s) =
∞∑

n=1

1
ns

I was introduced by Euler for positive integer s > 1.

He also wrote the sum as an infinite product

ζ(s) =
∏

p∈primes

1
(1− p−s)

over the prime numbers.

I extended to real s > 1 by Chebyshev.
I analytically continued to the complex s-plane as a

meromorphic function by Riemann.
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Dr. Riemann’s Zeroes

The analytically continued ζ-function satisfies the reflection
identity:

ζ(s) = 2sπs−1 sin
(πs
2

)
Γ(1− s)ζ(1− s)

I ζ(s) has a simple pole at s=1,
I vanishes for negative even integers s ∈ 2Z : trivial zeroes
I has non-trivial zeroes all of which lie on the critical line

Re (s) = 1
2 , or s = 1

2 + itm ≡ γm, tm ∈ R: Riemann
hypothesis

The symmetric function ξ(s) = 1
2π
−s/2s(s − 1)Γ

( s
2

)
ζ(s) is an

entire function that satisfies ξ(s) = ξ(1− s). Its zeroes are at the
non-trivial zeroes of ζ, at s = γm = 1

2 + itm.
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Zeroes as the spectrum

The distribution of the zeroes, i.e., the locations of the tm’s, are
not known. But it is related to the distribution of the primes.

Starting with Pólya (and Hilbert) there is an expectation that γm
can be realized as the eigenvalues of an (unbounded) self-adjoint
operator.
Montgomery computed the two-point correlation function of the
Riemann zeroes. Dyson pointed out that this shows the same
behaviour as the two-point correlator of the eigenvalues of a
hermitian matrix model. Odlyzko confirmed this behaviour from his
numerical computation of Riemann zeroes.
Rudnick-Sarnak extended it to higher correlators, also to zeroes of

Dirichlet L-functions: L(s, χ) =
∞∑

n=1

χ(n)

ns =
∏

p∈primes

χ(p)

(1− p−s)
.
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Search for the Hamiltonian

Berry-Keating proposed the quantization of the classical xp
Hamiltonian : HBK = (xp + px) = −2i h̄

(
x d

dx + 1
2

)
.

They were motivated by the similarity of the fluctuating part of the
prime distribution function and the Gutzwiller trace formula relating
the fluctuating part of the energy eignevalues and the periods of a
chaotic dynamical system.

Riemann zeroes Energy eigenvalues
l ∼ l

Primes Periods
(of primitive periodic orbits)
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Some issues

I What is the Hilbert space?

I The system is not classically chaotic
I The spectrum is continuous

Restrict the values of x and p.
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Conformal map

The eigenvalues of large N × N unitary matrices gives a density
ρ(θ) =

∑
δ(θ − θi ) (distribution function) on the unit circle.

Given
a distribution on the line Re s = s0, one can find a Gaussian
Unitary Ensemble (GUE) such that its eigenvalue distribution is
related to it.

bs

s0

bz =
s − s0 − 1
s − s0 + 1−1 +1

s − s0 =
1 + z
1− z

=
1 + e iθ

1− e iθ = i cot
θ

2
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One-plaquette UMM

The partition function of the one-plaquette model is defined by:

Z=

∫
DU exp

[
−N

∞∑
n=0

βn

n

(
Tr Un + Tr U†n

)]
=

∫ N∏
i=1

dθi
2π

e−N2Seff(θi )

where, Seff(θi ) =
∞∑

n=1

N∑
i=1

2βn

n
cos(nθi ) +

1
2

∑
i 6=j

ln
(
4 sin2

θi − θj
2

)

In the large N limit, x =
i
N
∈ [0, 1] and θi → θ(x)

S [θ] =
∞∑

n=1

∫ 1

0
dx

2βn

n
cos nθ(x) +

1
2

∫ 1

0
dx −
∫ 1

0
dy ln

(
4 sin2

θ(x)− θ(y)

2

)
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Saddle point

The saddle point of the action, determined by

−
∫

dθ′

2π
ρ(θ′) cos

(
θ − θ′

2

)
=
∞∑

n=1

2βn sin nθ
(

=
dV (θ)

dθ

)
where, 2πdx = ρ(θ)dθ is the density of eigenvalues.

Given βn one can determine ρ(θ), or vice versa. Easier to work with

the resolvant R(z) =
1
N

〈
Tr
(

1
1− zU

)〉
and find βn from the

Taylor expansion of the resolvant.

ρ(θ) = 2Re [R(e iθ)]− 1 =
1
2π

lim
ε→0

[
R
(

(1 + ε)e iθ
)
− R

(
(1− ε)e iθ

)]
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UMM in terms of Irreps (Schematic)

The PF of a UMM can be expanded in terms of the irreducible
representions (irreps) of U(N)

Z ∼
∑

R∈irreps

∑
~k,~̀

α(~β,~k)α(~β, ~̀)χR(C (~k))χR(C (~̀))

(where χR(C (~k)) is the character of the conjugacy class C (~k) of
the permutation group SK=

∑
nkn .).

The following have been used∏
n

(Tr Un)kn =
∑
R

χR(C (~k))TrR(U)∫
DU TrR(U)TrR′(U†) = δRR′
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Young diagrams and momenta

Irreps can be labelled by the number of boxes in Young diagrams.
In the large N limit

Z =

∫
Dh(x)

∫
d~k d ~̀ exp

(
−N2Seff[h(x), ~k , ~̀]

)
where u(h)dh ∼ dx is another density function.

The variable h are the conjugate momenta of the eigenvalues θ.
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Partition function in the phase space

There are δ-function constraints in the expression of the partition
function as a sum over irreps.

Introducing auxiliary variables for these constraints, the partition
function is expressed as integrals over momenta and Lagrange
multipliers. The auxiliary variables turn out to be the coordinates/
eigenvalues!
There is a density Ω(θ, h) in the phase space, such that∫

dh Ω(θ, h) = ρ(θ) and
∫

dθΩ(θ, h) = u(h)

Phase space description can lead to a Hamiltonian.
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One plaqutte UMM and the Li numbers

Parikshit Dutta and Suvankar Dutta constructed a UMM starting
with the symmetric zeta function ξ(s).

I Map zeroes γi = 1
2 + ti to θi on the unit circle

I Compare the density ρ(θ) =
∑
δ(θ − θi ) to the resolvant

I This determines the parameters of the one plaquette model:

βn = − 1
2n ln 2

λn =
1

2 ln 2

∮
C1

ds
2πi

sn−1

(s − 1)n + 1
ln ξ(s)

in terms of the Li numbers

λn =
1

(n − 1)!

dn

dsn sn−1 ln ξ(s)
∣∣∣
s=1

=
∑

i

[
1−

(
1− 1

γi

)n]
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Phase space density of the UMM of ξ(s)

The density in the phase space is

Ω(θ, h) =

{
1 in the shaded region
0 otherwise

The prime power counting
function J(x) jumps by 1/n at
every pn:

J(x) =
∑
p,n

Θ (x − pn)

= 〈J〉(x) + J̃(x)

It turns out that
h(x) ∼ J̃(x), the fluctuating
part of the counting function.
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Local zeta and the resolvent

The local zeta function at the prime p, ζp(s) = (1− p−s)
−1 does

not have any zero, but has equally spaced simple poles at s =
2πi
ln p

n

(n ∈ Z) on the vertical line Re(s) = 0.

These poles can be brought on the unit circle on z =
s − 1
s + 1

plane.

R<(z) = 1 +
z

(1− z)2
p−s(z)

1− p−s(z) , R>(z) = − z
(1− z)2

ps(z)

1− ps(z)

The resolvent above satisfies all the properties (R<(0) = 1,
R>(z →∞) = 0 and R<(z) + R>(1/z) = 1). (Caveat)
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A well-known measure

As everyone knows∫
Z×p
|h|s−1p dh =

(1− p−1)p−s

(1− p−s)
, Z×p =

{
h ∈ Qp : |h|p < 1

}

So 2R<(z)− 1 = p
∫
Z×p

dh
(
1 +

2z
(p − 1)(1− z)2

|h|
1+z
1−z−1
p

)
This is suggestive of a phase space density

Ωp(θ, h) = p − p
2(p−1) sin2( θ

2 )
|h|−i cot( θ

2 )−1
p ∼ p − p−in cot( θ

2 )

2(p−1) sin2( θ
2 )
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Vladimirov derivative and Kozyrev wavelets

p−nα is the eigenvalue of the generalized Vladimirov derivative Dα
(p)

for any complex number α:

Dα
(p) |ψn〉 = p−nα |ψn〉, α ∈ C

The eigenfunctions |ψn〉 are p-adic wavelets of Kozyrev.
(Caveat: The eigenspace is degenerate.)

(2R<(z)− 1) dθ ∼ dθ + d
(
cot

θ

2

)
Tr D

−i cot θ
2

(p)︸ ︷︷ ︸
fluctuating part

Fluctuating part ∼
∫ ∞
0

dξ ξ−i cot θ
2
dJp(ξ)

dξ
.
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Towards a Hamiltonian

Energy eigenvalues of the Hamiltonian are E (p)
n =

(
cot θ2

)
(n ln p).

Reminiscent of Berry-Keating’s classical Hamiltonian H(p)
BK = XP .

However, n takes only positive values. So
momentum ∼ scaling on the half-line.

X and P is not a usual canonically conjugate pair.

The Hilbert space H(p) of the quantum Hamiltonian is expected to
be spanned by the Kozyrev wavelets, which are eigenfunctions of
the Vladimirov derivative.
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Parameters of the UMMp

Recall that the parameters βm =

∮
dz

zm+1R<(z).

For the UMM of a local ζ-function at p, the diagonal form of a
term in the action of the UMMp is

∞∑
m=1

1
m
βmzm

i =
1

2 ln p
ln

1− p−
1+zi
1−zi

1− p−1


Let us try to combine the results for all primes. First redefine
β
(p)
m → ln p β(p)m . This amounts to∫ ∞

0
dξ ξ−i cot θ

2
dJp

dξ
→
∫ ∞
0

dξ ξ−i cot θ
2 ln p

dJp

dξ
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Parameters of the UMM

Combining all p

βm =
∑
p

ln p β(p)m ∼
∫

d
(
cot

θ

2

)
e−imθ

∞∑
n=1

〈
Ψn|D−i cot θ

2 |Ψn

〉

The wavefunction Ψn =
⊗

p ψ
(p)
n ∈

⊗
pH(p) and D =

∑
p

Dp acts

as D(p) at the p-th place.

∑
p

ln p
dJp(ξ)

dξ
=

dψ(ξ)

dξ
= 1−

∑
i

ξγi−1

︸ ︷︷ ︸
non-trivial zeroes

−
∑
n

ξ2n−1
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Divergence

Keeping only the non-trivial zeroes γi

βm ∼
∫

dξ ξ−i cot θ
2+γi−1 =

∫
d(ln ξ) eRe(γi ) ln ξ+i(Im(γi )−cot θ

2 ) ln ξ

The integral diverges since Re(γi ) > 0. To get a convergent
integral, we may instead work with∫

d(ln ξ) e(Re(γi )−µ) ln ξ+i(Im(γi )−cot θ
2 ) ln ξ

which converges for µ > Re(γi ).
Clearly µ has to be independent of i . The reflection symmetry of
ζ-function implies that µ > 1 and if Riemann hypothesis is true
µ > 1

2 .
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Renormalization

The redefinition of the integral amounts to a renormalization

I either of the wavefunction ψ(p)
n → p−µ/2ψ(p)

n

I or of the Hamiltonian operator

This is possible thanks to the special form of the Vladimirov
operator and its eigenvalues.

Leads to a one-parameter family of Hamiltonians

Hµ ∼ H − µP
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Open issues

. . . are many!

I What exactly is the form of the Hamiltonian?
I Is there way to fix µ?
I What is the nature of the phase space? Ultrametric?
I Issues at s = ±i∞ (equivalently z = 1 or θ = 0)
I Need to include the effect of the Γ-function, the real place

etc. etc. etc. · · ·
Similar approach to the Dirichlet L-functions, and indeed other
more general L-functions, may be worth the effort.
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In summary, we attempt to get to the elusive Hamiltonian for the
zeta-function by starting at the local zeta-function at the p-th
place. This suggests a phase space picture with the hint of a
Hamiltonian. We attempt to combine this for all primes.

¡Gracias! Thank you!
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