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1. INTRODUCTION

These notes aim to provide a fast introduction to p-adic analysis assuming basic knowledge
in algebra and analysis. We cannot provide detailed proofs, for an in-depth discussion, the
reader may consult [1], [23], [24], see also [12], [14], [21], [22]. We focus on basic aspects of
analysis involving complex-valued functions.

In the last thirty years p-adic analysis have received great attention due to its connections
with physics, biology, cryptography, and several mathematical theories, see e.g. [1], [2], [17],
[18], [15], [16], [24], [25], and the references therein. As a consequence of all this, nowadays, p-
adic analysis is having a tremendous expansion. Let us mention a couple examples. First, the
developing of the theory of p-adic pseudodifferential equations, which is a theory connected
with several fields, see e.g. [1], [18], [15], [16], [24], [25] and the reference therein. Second,
the deep connection local zeta functions and string amplitudes, see e.g. [5], [6], and the
references therein.

The L. Santalé Research School 2019 aims to provide an introduction to the area of local
zeta functions. In the Archimedean case, K = R or C, the study of local zeta functions was
initiated by Gel’fand and Shilov [11]. The meromorphic continuation of the local zeta func-
tions was established, independently, by Atiyah [3] and Bernstein [4], see also [10, Theorem
5.5.1 and Corollary 5.5.1]. The main motivation was that the meromorphic continuation of
Archimedean local zeta functions implies the existence of fundamental solutions (i.e. Green
functions) for differential operators with constant coefficients. It is important to mention
here, that in the p-adic framework, the existence of fundamental solutions for pseudodiffer-
ential operators is also a consequence of the fact that the Igusa local zeta functions admit
a meromorphic continuation, see [18, Chapter 10] and [25, Chapter 5]. In the 70s, Igusa
developed a uniform theory for local zeta functions over local fields of characteristic zero
[10]. For an elementary introduction to the basic aspects of local zeta functions the reader
may consult [20].

2. p-ADIC NUMBERS: ESSENTIAL FACTS

2.1. Basic facts. In this section we summarize the basic aspects of the field of p-adic num-
bers, for an in-depth discussion the reader may consult [1, 12, 13, 14, 21, 22, 23] and [24].

Definition 1. Let F' be a field. A norm (or an absolute value) on F' is a real-valued function,
| - |, satisfying
(i) |z| =0« 2 =0;
(i) |2yl = [[[yl;
(ili) |z +y| < |z| + |y| (triangle inequality), for any x,y € F.
Definition 2. A norm |- | is called non-Archimedean (or ultrametric), if it satisfies

(2.1) |+ y| < max{lal, [y]}.

Notice that (2.1) implies the triangle inequality.



AN INTRODUCTION TO p-ADIC ANALYSIS 3

Example 1. The trivial norm is defined as

1 ifx#0,
|x|t7'im'al - .
0 ifx=0.

From now on we will work only with non-trivial norms.

Definition 3. Let p be a fized prime number, and let x be a monzero rational number. Then,
T = pk%, with p 1 ab, and k € Z. The p-adic absolute value (or p-adic norm) of x is defined
as
ptifr #0,
||, = .
0 if v = 0.

Exercise 1. The function |- |, is a non-Archimedean norm on Q. In addition, show that
|z + ylp = max {[z|,, [y[p} when ||, # [yl,-

We set R, :={x € R: x> 0}. We denote by N the set of non-negative integers.

Definition 4. Let X be a non-empty set. A distance, or metric, on X is a function d :
X x X — Ry satisfying the following properties:
(i) d(z,y) =0 if and only if x = y;
(i) d(z,y) = d(y,x);
(iii) d(z,y) < d(z,z) + d(z,y) for any x, y, z in X.
The pair (X, d) is called a metric space.

Example 2. Let F' be a field endowed with a norm | -|. The distance d(z,y) := |z —y|, for
x, y in F, is called the induced distance by |- |. The pair (F,d) is a metric space.

Definition 5. Let (X, d) be a metric space. The metric d is called non-Archimedean if
d(z,y) < max{d(z,z),d(z,y)} for anyz,y, z € X.

Example 3. Take X = Q, and d the distance induce by the p-adic norm |-|p, for a fixed
prime p. Then d is a non-Archimedean.

Definition 6. Let (X,d) be a metric space. A sequence {a;},.y i X is called a Cauchy
sequence, if for any € > 0 there exists N such that d(an,a,) < € whenever both m > N,
n>N.

Definition 7. Two metrics dy and ds on a set X are called equivalent if a sequence is Cauchy
with respect to dy if and only if it is Cauchy with respect to dy. We say that two norms are
equivalent if they induce equivalent metrics.

a

o, where

Exercise 2. Let o be a fized positive real number. For x € Q, we define ||z|| = |z|
| - |oo denotes the standard absolute value. Show that ||-|| is a norm if and only if « < 1, and

that in that case it is equivalent to the norm |- | -
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Theorem 2.1 (Ostrowski, [14]). Any non trivial absolute value on Q is equivalent to | - |,
or to the standard absolute value | - | .

Remark 1. (i) Let F be a field endowed with a norm |-|. We introduce a topology on F by
giving a basis of open sets consisting of the open balls B,.(a) with center a and radius r > 0:

By(a)={z € F:|z—a| <r}.

(ii) A sequence of points {z;}ien C F is called Cauchy if

| T — zp] — 0, m,n — oo.

(iii) A field F' with a non trivial absolute value | - | is said to be complete if any Cauchy
sequence {x;}ien has a limit point x* € F, i.e. if |z, —x*| — 0, n — oo. This is equivalent
to the fact that (F,d), with d(xz,y) = |z — y|, is a complete metric space.

(iv) Let (X, d), (Y,D) be two metric spaces. A bijection p: X — Y satisfying

D(p(x), p()) = d(z,2"),

1s called an isometry.
The following fact is well-known, see e.g. [19].

Theorem 2.2. Let (M,d) be a metric space. There exists a complete metric space (]Tj c?)
such that M 1is isometric to a dense subset of M. This space M is unique up to 1sometries,

that is, if MO 15 a complete metric space having M as a dense subspace, then MO 18 isometric
to M.

Exercise 3. Let (F,|-|) be a valued field, where | - | is a non-Archimedean absolute value.
Assume that F' is complete with respect to | - |. Then, the series Zkzo ag, ar € ' converges
if an only if limy_ |ax| = 0.

2.2. The field of p-adic numbers.

Lemma 2.1. Consider the set
Q, = {x:pVinpi: vyEZ, x; €{0,1,...,p—1}, 1‘07&0} U {0}
i=0

endowed with the p-adic norm | -|,. Then, the following assertions hold.

(i) (Qp, |- 1p) is a complete metric space;

(ii) Q is dense in Q,;
(ili) Q, is a field of characteristic zero;
v)

(iv) the completion of (Q,|-1|,) is (Qp, |- [p)-

Proof. (i) We first note that series © = p7 > ° x;p' converges in the p-adic norm. Let
{x(m)}m oy e a Cauchy series, with
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Then, given p—* there exists M € N such that
) » <pltform>n>M<e orda™ —2™) > Lform>n>M,

which implies the existence of v € Z, x; € {0,1,...,p— 1} fori = 1,..., L such that
L
2 = p7 inpz for m > M.
i=0
Since L can be taken arbitrarily large, there exists x = p7 Y 2 z;p" € Q, such that
|x — x(m)}p <pLform>M.

Which implies that z(™ — z.
(i) We set

Ly = {a: €Q,: :U:p”*z:cip";”y eN, zo# 0} )
i=0
Then any x € Q, \ {0} can be written as z = p'z, with ¥ € Z, and |%|p = 1. Given p~ %,
with L € N, we have to show the existence of 3 € Q such that ‘x — %‘p < p~t. We take
b~! = p" and a € Z satisfying |a — T|, < p~ "7,
(iii) We first show that Z,, is a ring. Take

x:paZmipi with a € N, xq # 0, y:pﬂzyipi with g € N, yq # 0.

i=0 i=0
And set v = min {«, 5} and

o0
z:pVZzipi with € N, 2y # 0.

i=0
We now define the digits z;s by the following formulae:

L-1 L-1 L-1
(2.2) p7 Z Zp' = p° Z zip' + pP Z y;p" mod p* for L € N\ {0} .

i=0 i=0 i=0
Here A = B mod p* means p* divides A — B. Now, we define z + y = z. Notice that (2.2)
determines uniquely all the digits z;’s. For the product xy, we set

w = p**? Z w;p’ with wg # 0.
i=0
Then the digits w;s are uniquely determined by the following formulae:

L-1 L-1 L—1
(2.3) ptP Z wipt = (po‘ Z :L’Z-pi> <p6 Z yipi) mod p” for L € N~ {0}.
=0 =0 =0

Now we define zy = w. It is not difficult to verify that (Z,,+,-) is a commutative ring.
Furthermore, by using (2.3) one verifies that zy = 0 implies that £ = 0 or y = 0. This means
that Z, is a domain. Finally, we notice that the field of fractions of Z, is precisely Q,. In
order to verify this assertion it is necessary to use Exercise 4.
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(iv) It follows from (i)-(iii) by using Theorem 2.2. O]

The field of p-adic numbers Q, is defined as the completion of Q@ with respect to the
distance induced by |-|,. By Lemma 2.1, any p-adic number = # 0 has a unique representation
of the form

[ee]

7

x=7p’ § Tip',
=0

where v = y(x) € Z, x; € {0,1,...,p— 1}, o # 0. The integer v is called the p-adic order
of x, and it will be denoted as ord(z). By definition ord(0) = +oo.

Example 4. The formula ﬁ = 2o p" holds true in Q,, i.e.

“l=@-D+@-Dp+—1p"+-

Indeed, set
2= (=D +(p-Upt+-+(p—1p"
n+1
p —1 n+1
— - =1
(r—1) PR
Then hmn—>oo Z(n) = 11mn—>oo anrl —1=0-1= —]-; since |pn+1|p = pinil.

Remark 2. The unit ball

Zy={rcQ,:la|, <1} ={reQ:z=> xpiy>0},

i=ig
is a domain of principal ideals. Any ideal of Z, has the form
P2y ={r €L, x= Z:cipi}, m € N.
>m

Indeed, let I C Z, be an ideal. Set mo = minge;ord(x) € N, and let xg € I such that
ord(xzg) = mg. Then I = xZ,.

From a geometric point of view, the ideals of the form p™Z,, m € Z, constitute a funda-
mental system of neighborhoods around the origin in Q,.

The residue field of Q, is Z,/pZ, = F, (the finite field with p elements). The group of
units of Zj is
7y ={x € Ly |z|, = 1}.

Exercise 4. © = xg+x1p+- -+ € Z,, is a unit if and only if vo # 0. Moreover if x € Q,\{0},
then v =p™u, m € Z, u € Z,;.
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2.3. Topology of QQ,. Define

By(a)={z€Q,: |z —a|l, <p"}, r€Z,
as the ball with center a and radius p", and

Sr(a) ={x€Q,:|lv—al,=p"}, r€Z

as the sphere with center a and radius p".

The topology of Q, is quite different from the usual topology of R. First of all, since
|- 1p : Qp — {p™ : m € Z} U {0}, the radii are always integer powers of p, for the sake of
brevity we just use the power in the notation B,(a) and S,(a). On the other hand, since the
powers of p and zero form a discrete set in R, in the definition of B,(a) and S,(a) we can
always use ‘<’. Indeed,

[reQ:lo—al <y} ={z€Qy:|z—aly <P} = B, 1(a) € Bula).
Remark 3. Notice that B.(a) = a+p~"Z, and S,(a) = a+p~"Z).

We declare that the B, (a), r € Z, a € Q,, are open subsets. These sets form a basis for
the topology of Q,,.

Proposition 2.1. S,(a), B,(a) are open and closed sets in the topology of Q,.
Proof. We first show that S,(a) is open. Notice that

Sia)= || a+pTitpZ,= || Bu-nla+p i),
i€{l,..,p—1} i€{l,..p—1}
and consequently S, (a) is an open set.
In order to show that S.(a) is closed, we take a sequence {x,}nen of points of S,.(a)
converging to 7o € Q,. We must show that 7y € S,(a). Note that z,, = a + p~"up, u, € ZJ.
Since {x,, }nen is a Cauchy sequence, we have

|20 — Tmlp = P un — umlp, — 0, n, m — oo,

thus {u, }nen is also Cauchy, and since Q, is complete u,, — uy. Then x, — a + p~"ug, so
in order to conclude our proof we must verify that ug € Z,'. Because u,, is arbitrarily close
to o, their p-adic expansions must agree up to a big power of p, hence uy € Z,; .

A similar argument shows that B,.(a) is closed. O

Lemma 2.2. Ifb € B,(a) then B,(b) = B,(a), i.e. any point of the ball B,.(a) is its center.
Proof. Let « € B,(b), then
[z —al, =|zr —b+b—al, < max{|z — by, [b—al,} <p",

i.e. B,(b) C B,(a). Since a € B,(b) (i.e. |b—al, =|a—b|, < p"), we can repeat the previous
argument to show that B,(a) C B, (b). O

Exercise 5. Show that any to balls in Q, are either disjoint or one is contained in another.
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Exercise 6. Show that the boundary of any ball is the empty set.

Theorem 2.3. [1, Sec. 1.8] A set K C Q, is compact if and only if it is closed and bounded

in Q.

2.4. The n—dimensional p-adic space. We extend the p-adic norm to Q) by taking
|||, == 1IISli§)§1|xi’p, for v = (v1,...,2,) € Q).

We define ord(z) = min; <<, {ord(z;)}, then ||z, = p~o4=)

. The metric space (Q2, || - [|,) is
a separable complete ultrametric space (here, separable means that Q) contains a countable
dense subset, which is Q" ).

For r € Z, denote by B'(a) = {x € Q) : ||z —al|, < p"} the ball of radius p" with center
at a = (a1,...,a,) € Qp, and take B}'(0) := B'. Note that B}'(a) = B,(a1) X - -+ X B,(ax),
where B,(a;) == {z; € Q, : |x; —ay, < p"} is the one-dimensional ball of radius p”
with center at a; € Q,. The ball B equals the product of n copies of By = Z,. We also
denote by Si*(a) = {z € Q) : ||z —al|, = p"} the sphere of radius p" with center at
a = (a,...,a,) € Q}, and take S'(0) := S7'. We notice that Sj = Z (the group of units
of Zy), but ()" C Sp.

As a topological space (@Z, || - ||) is totally disconnected, i.e. the only connected subsets
of Q} are the empty set and the points. Two balls in Q) are either disjoint or one is contained
in the other. As in the one dimensional case, a subset of Q) is compact if and only if it is
closed and bounded in Q. Since the balls and spheres are both open and closed subsets in

», one has that (@37 |- |[») is a locally compact topological space.

3. INTEGRATION ON QF

3.1. Measure theory: a basic dictionary. The notion of measure of a set is a mathe-
matical abstraction of the naive notions of length of a segment, the area of a plane figure,
and the volume of a body.

Let X be a non-empty set. We want to introduce a notion of measure for a class of subsets
of X. A suitable class is a o-algebra of subsets of X. Denote by P(X) the power set of X,
then a subset ¥ C P(X) is called a o-algebra, if it satisfies the following properties:

(i) X € %;
(ii) X is closed under complementation: if A € ¥ then A°:= X N A € 3;
(iii) X is closed under countable unions: if A; € X for i € N, then U;enyA; € 2.

Notice that if follows from the above definition that @ € 3, and that X is closed under
countable intersections. The elements of ¥ are called measurable sets, which means that we
can assign a measure to these sets. The pair (X,X) is called a measurable space. Assume
that (Y, A) is another measurable space and that f : (X,¥) — (Y, A) is a function between
measurable spaces. The function f is called a measurable function if the preimage of every
measurable set is measurable.

Example 5. Let X be a non-empty set. the following are some simple examples of o-
algebras.
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(i) ¥ ={X,d}, this is the trivial o-algebra;
(ii) ¥ = P(X), this is the discrete o-algebra;
(iii) ¥ = {X, D, A, A°} is the o-algebra generated by the subset A.

Example 6. Let F' be a family of subsets of X. Then there exists a unique smallest o-algebra
o (F') which contains any set in F. The o-algebra o (F) is called the o-algebra generated by
F, it agrees with intersection of all the o-algebras containing F'. If (X, d) is a metric space,
the o-algebra generated by the open balls is called the Borel o-algebra of X.

Definition 8. Let (X,X) be a measurable space. A function p : ¥ — [0,+00] is called a
measure if it satisfies the following properties:

(1) 1 (@) = 0;

(ii) for any countable collection A;, i € N, of pairwise disjoint sets in 3,
H <|_| Ai) = ZN(Ai)'
teN ieN
Let u be a measure on (X, Y). The following are some basic properties of pu:

(i) monotonicity: if A; and Ay are measurable sets with A; C Ay, then pu(A;) < p(Az);
(ii) subadditivity: for any countable collection A;, i € N, of measurable sets in X,

u (Ux‘h) <> p(A);

€N €N
(iii) continuity from below: if A;, i € N, are measurable sets in 3 such that A; C A;; for
all 7, then the union of the sets A; is measurable, and

d (U Az) = nld);
ieN

(iv) continuity from above: if A;, i € N, are measurable sets in ¥ such that A;;; C A; for all
1, then the intersection of the sets A; is measurable. In addition, if Ay has finite measure,

then
. (m AZ-) i g (A).

ieN
3.2. The Haar measure.

Theorem 3.1. [9, Thm B. Sec. 58] Let (G,-) be a locally compact topological, Abelian
group. There exists a reqular Borel measure iy,,, (called a Haar measure of G), unique up
to multiplication by a positive constant, such that piy,,, (U) > 0 for every non empty Borel
open set U; and HHaar (.I' ’ E) = HHaar (E)7 fOT every Borel set L.

Notation 1. We will denote the Haar measure by dz, then fig,,. (U) = [, dx.

Exercise 7. Prove that (Q,,+), respectively ( o
Since Q,, respectively Q) = Q,\{0}, are metric spaces, the continuity of the sum, respectively

-), are locally compact topological groups.
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of the product, means that if x, — x, and vy, — y, then x, + vy, — x + y, respectively

InlYn — TY.

Since (Q,, +) is a locally compact topological group, by Theorem 3.1 there exists a measure
dx, which is invariant under translations, i.e. d(x 4+ a) = dz. If we normalize this measure
by the condition fzp dx = 1, then dz is unique.

In the n-dimensional case, (QF,+) is also locally compact topological group. We denote

by d"x the Haar measure normglized by the condition on d"x = 1. This measure agrees
with the product measure dx; - - - dz,,, and it also satisfies tlirlat d"(x+a) =d"z, for a € Qy-

The open compact balls of Qp, e.g. a + p™Z,, generate the Borel o-algebra of Q). The
measure d"z assigns to each open compact subset U a nonnegative real number fU d"x,

which satisfies

(3.1) / e —
UrZ Uk

for all compact open subsets Uy in Q), which are pairwise disjoint, and verify UpZ, U, is still

/ d”x:/dnx.
a+U U

Remark 4. Let B(Qy) be the Borel o-algebra on Qy. Let d"x be the normalized Haar
measure on (Q2,B(Q)). The Haar measure of a Borel set A is denoted as ) (A). The

o0

Z/dex,

k=1

compact. In addition,

Haar
fact that d"x is a regular measure means that for any measurable subset A of Qp is holds

that
,uggar(A): sup {u%@m (F): F CA, F compact and measumble}

= inf {u(n) (G): G D A, G open and measumble} :

Haar

3.3. Integration of locally constant functions. A function ¢ : Q) — C is said to be
locally constant if for every x € Qp there exists an open compact subset U, containing z,
and such that f(x) = f(u) for all u € U.

Exercise 8. Fvery locally constant function is continuous.

Any locally constant function ¢ : Q) — C can be expressed as a linear combination of
characteristic functions of the form

(3-2) p(2)=) aly (2),

where ¢;, € C,
1 if zeU,

]‘Uk (l’) =
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and U}, C Q) is an open compact for every k. Indeed, there exists a covering {U;},.\ of Q)

such that each Uj; is open compact and ¢ |y, is a constant function. Since (@Z, -l p> is a
separable metric space any open cover has a countable subcover, consequently we may take
N =N.

Let ¢ : Q) — C be a locally constant function as in (3.2). Assume that A = |_|f:1 Ui, the
symbol | | means disjoint union, i.e. the sets U; are pairwise disjoint, with U; open compact.
Then, we define

(3.3) /go(x)d”x:cl/d"£+~~~+cn/d”x.

A Uy Uk

We recall that given a function ¢ : Q) — C the support of ¢ is the set
Supp(p) = {z € Qp : ¢(z) # 0}.

A locally constant function with compact support is called a test function or a Bruhat-

Schwartz function. These functions form a C-vector space denoted as D := D (QZ). From
(3.1) and (3.3) one has that the mapping

D — C

3.4 "
( ) o > nggpd x,

is a well-defined linear functional.

3.4. Integration of continuous functions with compact support. We now extend the
integration to a larger class of functions. Let U be a open compact subset of Qp. We
denote by C(U, C) the space of all the complex-valued continuous functions supported on U,
endowed with the supremum norm, i.e. for ¢ € C(U,C), we set

]l = sup |¢ (2)].
xelU

We denote by Cy(Qy, C) the space of all the complex-valued continuous functions vanishing
at infinity, endowed also with the supremum norm. The function ¢ vanishes at infinity, if
given £ > 0, there exists a compact subset K such that |p(z)| <e¢, if x ¢ K.

It is known that D is dense in Cy(Qj,C), see e.g. [23, Prop. 1.3]. We identify C'(U,C)
with a subspace of Cy(Q}, C), therefore D is dense in C(U,C).

We fix an open compact subset U and consider the functional (3.4), since

/gpd”x
U

then functional (3.4) has a unique extension to C'(U, C).

< sup |p(z)| [ d"z,
zelU U
)
This means that if f € C(U,C) and { f,, }men is any sequence in D approaching f in the
supremum norm, then
(3.5) f(xz) d"z = lim fm (x) d"z.

More generally, if f,, — f, with f, f,, € C(U,C) for m € N, then (3.5) holds.
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3.4.1. Some remarks on uniform convergence. We recall the notion of uniform convergence.
Let £ be a non-empty set. Let f,, : E — C, n € N be a sequence of complex-valued functions.
We say that the sequence {f,} ,en is uniformly convergent on E with limit f: F —C, if
for every € > 0, there exists a natural number N such that for all n > N and any = € F,
|fu(z) — f(z)] < €, which is equivalent to say for every € > 0, there exists a natural number
N such that for all n > N, sup,.p |fu(z) — f(2)] <e.

The Weierstrass M-test is a very useful criterion for determining the uniform convergence
of sequences. Let {f,} .en be a sequence of functions f,, : E — C and let M, be a sequence
of positive real numbers such that |f,(z)| < M, for all x € E and n € N. If ) M,
converges, then ) f, converges uniformly on E.

3.4.2. Some remarks on convergent power series. Let us denote by C|[z1,...,2,]], the ring
of formal power series with coefficients in C. An element of this ring has the form

Yozt = > Ciy.in?1 - .- 2", where ¢ = (iy,...,4,) € N", and the ¢;; ;s are in C.
i (i1,0.yin ) ENT
i

A formal series ) .¢;2" is said to be convergent if there exists a positive real number R

such that Y, c;a’ converges for any a = (ay,...,a,) € C" satisfying max; |a;| < R. The
convergent series form a subring of C [[x1, . . ., z,]], which will be denoted as C ((x1, ..., z,)).
If for Y, ;2" there exists >, cgo)xi € R{(z1,...,x,)) (areal convergent series) such that

¢l < 9 for all i € N”, we say that O i is a dominant series for c;x' and write
K3 y 71 1
Yot << S cgo)xi.
Exercise 9. A formal power series is convergent if and only if it has a dominant series.

Example 7. We set k = (k1,...,k,) € N" and |k| := k1 + ...+ k,. Let f(z) = >, cx2"
be a complex convergent power series on max;|z;| < R. This series has a dominant series,
and by the Weierstrass M-test, the sequence ZIMSM cp2® converges uniformly to f(z) on
max; |z;| < R.

We construct a ‘radial function’ on ‘:L‘Z"p <plt<Rfori=1,...,n, i.e. on the ball B},
by taking

k ki
f(|'r1‘p )t |In|p) = Z Ck |x|p = Z c(k17---7kTL) H |$2|p ’
k (k1,0 kin) i=1
for x = (x1,...,x,) € B}. Notice that

n

ki
Sup f(|x1|p7"'7|$n|p) - Z C(kl ----- kn)H‘x7J|p

n
r€BY Ik|<M i—1

< sup  |f(z1,..0,20) — Z Ckr oo o) H 2kl

max;|z;|<R k|<M im1
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n
and consequently D s iy, en) 1] |2 l;i converges uniformly to f(|z1l,,...,|x.l,) on Bf.
= i=1

Then

[ ol deadds = tim 3 corny [T
B7 -

(3.6) = lim Y cgen [] / |
- L

3.5. The change of variables formula in dimension one. Let us start by establishing
the formula:

(3.7) d(az) = |al,dz, a € Qy,
which means the following:
/dx: |a|p/dac,
aU U

for every Borel set U C Q,, for instance an open compact subset. Indeed, consider

To: @ — @

r — ar,

with a € Q. T, is a topological and algebraic isomorphism. Then U Ik v a7 is a Haar
measure for (Q,, +), and by the uniqueness of such measure, there exists a positive constant
C(a) such that [ dx = C(a) [, dx. To compute C(a) we can pick any open compact set,
for instance U = Z,, and then we must show

faz;p dr = C(a) = |a,.

Let us consider first the case a € Z,, i.e. a = plu, | € N, u € Zy. Fix a system of
representatives {b} of Z,/p'Z, in Z,, then

Z,= || b+1'7,

bEZy [P\ Ly
and
l=[de= [ dz= [ dx
Zp bELy /P! Zy  b+p'Zy beZp/p'lp p'Zyp
= #(Z,/v'2,) [ dx,
plZp
i.e.

pt=la,= [ dz= /d:n.
PZZP
aly

The case a ¢ Z, is treated in a similar way.
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Now, if we take f : U — C, where U is a Borel set, then
gf(x)dx:\a]p J flay+b) dy, for any a € Q;,b € Q,.

a"U—-a"1b
The formula follows by changing variables as * = ay + b. Then we get dx = d(ay +b) =

d(ay) = |al, dy, because the Haar measure is invariant under translations and formula (3.7).

Example 8. For any r € Z,

Jde= [ de=p" [dy=p".
Ly

B p—er

Example 9. For any r € Z,
fdx: fdm— f dx:pr—pr_lzpr(l—p_l).

Sr B, Br—1

Example 10. Take U = Z, ~ {0}. We show that

[dx = [dz=1.
U Zp
Notice that U is not compact, since the sequence {p"}, .y € U converges to 0 ¢ U. Now, by
using
Z,~ {0} = || {CL’GZP:|:E|p:p_j},
§=0
we have
[ de=> [ dx (by changing variables as x = p'y, dv = p'dy)
Zp~{0} J=0 " pizx
00 iy 1— p*l
=0 X -Pp

This calculation shows that Z, ~ {0} has Haar measure 1 and that {0} has Haar measure 0.

Example 11. Set

Z(s):= [ l|zf) dx, s € C with Re(s) > —1.
Zp~{0}
We prove that Z(s) has a meromorphic continuation to the whole complex plane as a rational
function of p—*°.
Indeed,

Z(s)= [ |z} de=73 [zl doe = Zo p [ dax
J:

Zp~{0} 7=0"|a|,=p~ ||,=p~7
p P

=(1-p )X p Y (here we need the hypothesis Re(s) > —1)
j=0
1 — -1
= %, fOT RG(S) > —1.
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We now note that the right hand-side is defined for any complex number Re(s) # —1, there-
fore, it gives a meromorphic continuation of Z(s) to the half-plane Re(s) < —1. Thus, we
have shown that Z(s) has a meromorphic continuation to the whole C with a simple pole at

Re(s) = —1.
Example 12. We compute

Z(s,a* 1) = [ |a® - 1|; dr, for Re(s) > —1,p#2.
ZP

Let us take {0,1,...,p—1} C Z C Z, as a system of representatives of ¥, ~ 7Z,/pZ,.
Then
p=1
Zp = |_| (.] +pr)a
j=0
and
p—1
Z(s, 22 =1) =Y [ [(z = 1) (z + 1), dx

J=0 j+pZ,
=p 'y [1G=14+py) G+ 1+py)ldy, (x=j+py)
i=0 7,

X
o

Let us consider first the integrals in which j F1+py € Z*, i.e. the reduction mod p of j F1

is a nonzero element of IF,,, in this case

J1G=14py) G+ 1+py)ldy =1,
Zyp

and since p # 2 there are exactly p — 2 of those j’s, then

Z(s,2 =1)=(p=2)p " +p" [Ipy @+ py)lsdy+p~" [ 1(=2+ py) pyl; dy
Zp Zyp

=(p-2)p +2p7 7 [lylydy=(p—2)p~ +2p7 "7
Zp

Exercise 10. Take q(x) = [[ (x — )” € Z,[z], o € Zyp, e; € N {0}. Assume that
i=1
a; Z a; mod p. By using the methods presented in examples 11 and 12 compute the integral

Z(s,q(x)) :;|Q(I)|g da.

3.6. Improper Integrals. Our next task is the integration of functions that do not have
compact support. A function f: Q) — C is said to be locally integrable, f € Li ., if

loc>
Z f(z)d"x

exists for every compact subset K.
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Definition 9 (Improper Integral). A function f € L} is said to be integrable in Qy, if

loc

exists. If the limit exists, it is denoted as [ on f () d"z, and we say that the improper integral
P
exists.

Note that in this case,
[rmas=Y [se)
g j=—o00 Sn

Example 13. The function |x| p s locally integrable but not integrable.

Example 14. Let f : Q, — C be a radial function i.e. f(z) = f(|x|,). If JFXO:O fp)py <

j=—o0

+o00. Then

I fleh)de = S5 [ fQal,) do=(1-p) S F)p

j==00 |a|,=pi Jj=—00

+oo
Exercise 11. By using > rp~" = ﬁ, show that
r=0

Inp

fln(|x|p) dr = —— T
Zyp

p

3.7. Further remarks on integrals of continuous functions with compact support.

Example 15 (Continuation of Example 7). With the notation given in Example 7 and using
formula (3.6) and Example 11, we have

/f|:L‘1|p,.. |nl,)d" e = hm Z Clhor o Jom /H|:E,

|]€‘§M Bn =1

. ki . L+Lk
= lim g c | | z; | dr; = lim g
M—o0 (klv"-vkn) | tip 3 Moo (klv ) n |y2

|k|<M ilerLL |k|<M

“dx;

n(L+Lki)

n 1
= lim Z ko, Jon) HquLLki(l—p) _ (1 B p71>n Z p n C(k1,-..,kn)'
=1

= — =1k
M °°|k|§M I—-p & H (1 _p—l—ki>
i=1
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Example 16. Let f(z) = e 1?hQ (|m|p>, where ) (|m|p) denotes the characteristic function
of Z,. We compute first [ f(x)dx by using Example 14:

[ () ar - /Z

p

oo

e~ lelp
Z /p]ZX dx

7=0

= e P / dr = pd (1 - p_l) e P
= pIZy j= 0
We now compute the integral by using Example 15:

gy = 13 5~ (L b= (1—p )3 D
_ vdy = lim 3 S el v=(1-p )Zm-

k=0 ’ P k=0

Consequently,
S ) e = ()Y
(1 — p—1-k)
= KU1 —p=t7F)
We invite the reader to verify this identity directly .

4. CHANGE OF VARIABLES FORMULA

A function i : U — Q, is said to be analytic on an open subset U C Qj, if for every
b = (b1,...,b,) € U there exists an open subset U c U, with b € U, and a convergent
power series Y, @i (z — b)' for = (21,...,1,) € U, such that h (z) = S ienn @i (x —b)'
for x € U, with i = (4,...,i,) and (x—b) [T (z; . —b;)%. In this case, Bar O h(x) =
Y ienn aia%, (z —b)" is a convergent power series.

Let U, V open subsets in Q. A mapping H:U — V, H = (Hy,...,H,) is called analytic
if each H; is analytic. The mapping H is said to be bi-analytic if H and H~! are analytic.

Theorem 4.1. Let Ko, K1 C Q) be open compact subsets, and let H = (Hy, ..., H,) : K1 —
Ky be a bi-analytic map such that

O0H,

a0, (z)] #0, for any z € K.

If f is a continuous function on Ky, then
0H;
[ 7() s = ] § ols) |det | 50
Ko Yj

For the proof of this theorem the reader may consult [10, Prop. 7.4.1] or [8, Section 10.1.2].

det [

d"y,  (x=H(y))

p

Example 17. Set U := Q, \ {’—Cd} and V = Q, \ {%}, where a, b, ¢, d € Q,, with c # 0.
Consider the function

Uu — %4
__ az+b
r = Y= cx+d’
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dy—b
—cy+a’
that ad — be # 0, and take ¢ : Q, — C a Bruhat-Schwartz function with support contained

m V', then
ar + b\ |ad — bc|
dy = P dx
[eman= [+(55) e+ df
v U

Example 18. Compute [, d"z, where B} = {w €Qy: =, < pr}. We first recall that

this is an analytic function in U, with inverse x = which is analytic in V. Assume

D "Ly X ... XD "Ly,
n — copies '

g

Bl =p L =

T

>

By changing variables as x; = p~"y; fori=1,...,n, we have d"x = p™d"y, and

/ dnx:pnr/ dnx:pnr'
By A

T

Exercise 12. Show that

/ d'z=p" (1-p7").
sp

Exercise 13. To generalize Example 11 to Q7

s B.e. to show that the integral

Z(s) :/ ||, d"z, for Re(s) >0,
zp~{0}

admits an analytic continuation to the whole complex plane as a rational function of p—°.

Exercise 14. Let o be a real number. To show that

1
I(a):/ 7d"r < o0 if a < m.
ety T

Exercise 15. Let 3 be a real number. To show that

1
J(ﬁ)—/ zd"z < oo if B> n.
op~zz ||z,

Example 19. Take N > 4 and complex variables s1; and s(n_1); for 2 < j < N —2 and s;;
for2 <i<j<N-—2. Puts:=(sy) e C? where d = w denotes the total number of
indices 1j. The Koba-Nielsen local zeta functions is defined as follows:

N—-2 N-2
29 = [ [Llsfn-afe [ ool [
1=2

Ny =2 2<i<j<N—2
Qp

N-2 , , _
where [ [, dx; is the normalized Haar measure on Qév 3. If N = 4, we have

(4.1) Z® (s) :/|:L‘|;12|1—x|;32 dz.
Qp
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Notice that in integral (4.1) does not contain a test function, and consequently its convergence
1s not direct. In order to regularize it, we proceed as follows:

7(4) (S12,832) = /\:L’];m]l—x];” di + / \:U]Z”[l—x];” "
ZP

Qp\Zyp

= Zé4) (512, S32) + Z£4) (512, S32) -

To study integral Zé4) (S12, 832), we use that Z, = ?;éj + pZ,, to get

Z(4) _ = 1211 _ 2[%82 Jp —- = Z(4)
o (s12,832) = > 22 1 — x| do=: Y Zy; (12, 832) -
=0 =0

J+pZp
Now, forj#0,1,
Zéflj) (s12,532) =p "

In the case j = 0,

) 512 —1-s12 1—p!
Zyg (812, 832) = |:E]p dx =1p S R

1 _ pflfslz
PLp
In the case j =1,
Z(4) — 1— 832 dr = —1—s32 532 d
01 (812, 832) | $|p L =P |?J|p Y
1+pZy Zp

_ —1-s32 1 - pil
= P 1 — p—1—832 '
Consequently,

_ s 1—pt . 1—p!
Z§ (s12,83) = (p—2)p~ +p 717 (—) +p! 32(1—— .

1 _ p*lfsgg p*lfsgg

Notice that Z(()4) (812, $32) is holomorphic, and consequently the underlying integrals converge,
m

(4.2) Re (s12) > —1 and Re(sszy) > —1.

To study Z§4) (s12, S32), we first notice that

20 (s = [ el = [l dn

Qp~\Zyp Qp~Zp

Now, we use the change of variables:

v
yl,
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then
(4) _ s12+832 _ —2—812—832
Zy7 (512, 832) = |z, dv = [ |y, dy
Qp~Zyp PZyp
1_ -1
— p—1+2+812+532 ’y‘*2*512*532 dy — p—1+2+512+832 p
p 1 — p812+832+1 ’
Zp

Thus Z£4) (812, $32) s holomorphic in
(43) Re(su) + Re (Sgg) +1<0.

Finally, it is not difficult to see that conditions (4.2)-(4.3) define an open set in C.

The calculation presented in this example still requires some additional work, since it
1nvolves non compact subsets. The ‘missing’ part can be obtained easily by applying the
dominated convergence theorem.

5. ADDITIVE CHARACTERS
Given a nonzero p-adic number
T=T g " Tpp T A zp P ao+apt ... with z_, # 0 and m > 0,
we define its fractional part as
{z}, =2 mp™™ + Tomip " +rpteq.
If v € Zy, we set {x}, := 0. Now the function
X, (z) == exp2mi{z},
is called the standard additive character of Q, (more precisely of (Q,,+)). Notice that
Yot (@) = (5.

is a continuous homomorphism from (Q,,+) into the unit complex circle considered as a
multiplicative group, i.e. x,, satisfies the following:

(i) ‘Xp (m)‘ =1 for x € Qp;

(ii) x, (7 +y) = X, (%) X, (y) for z, y € Qp;

(iii) x,, (7) = ¢ 1@) = X, (—z) for x € Q,, where the bar means complex conjugate;
P

(iv) x, (z) Z 1 for x € Q, \ Zy,.
Example 20. Let r be an integer. To show that

prodf €, <p

/ Xp (§7) do =
b 0 if |¢],>p

If €], < p7", then |x|, < 1 which means that {x € Z, and thus x, (§x) =1,

/Txp(&v)dx:/Td:v:pT.
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If l¢l, > p~ "L, there exists xy € S,, i.e. |zol, = p", such that |xo§|, > p, i.e. o€ € Qp \Z,
and thus we may assumee that x, (v0§) # 1. We now change variables as v = y + xo, notice
that y runs through p~"7Z,, to get

W [ nend= [ i

lyl,<p" ||, <p"
which tmplies the announced formula.

Exercise 16. Let r be an integer. For x = (v1,...,2,), § = (§1,...,&,) € Qp, we set
x-& =Y x:&. To show that

proaf €, <

/ Xp (- &) d"r =

0 i llgll, =p7

Hint: remenber that v = p° @)%, with 1Z], = 1 and § = PO with

fl =1, Thus
p

T - 5 — pord(x)+ord(§)5 . E

Exercise 17. Let r be an integer. To show that

(P (A=p7") if ], <

/S vy (En)dr={ —p= if |g =pH

[ 0 if 1€, >p
Hint: use Fxample 20 and

/Sr Xp (§2) do = / X, (€x) dx — /BT1 X, (€x) do

Exercise 18. Ezxtend the formula given in Example 14 to n-dimensional case, i.e. for radial

functions f: Qp — Ci.e. f(z)= f(|[z],).

Exercise 19. Let f : R — C be a function such that Z |f(p™")|p~" < 4o00. Then

1
/f 21,) X, (60 dwr = L) o Zf(m) ~ (m)forf#O

in the sense of improper integrals.
By using this exercise with f = 1, we get that
oo if £€=0
/Xp (éx)dx = =6 (&), the Dirac distribution.
Qp 0 if £#0
Which is the Fourier transform of the constant function 1 is the Dirac distribution (or Dirac
delta function).
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6. FOURIER ANALYSIS ON Qg

6.1. Some function spaces. For 1 < p < oo, we denote by L* := LP( g,d”:v), the
C-vector space of all the complex-valued and Borel measurable functions f satisfying

P

1£1, = / F@Pdsd < oo
Qp

For p =00, f € L*® := L ( Z,d"a:), if
(6.1) [f]loe := ess sup,eqn [f (2)] < oo

The condition appearing on the right-hand side in (6.1) means that function f is bounded
almost everywhere, i.e. this condition may be false in a set of measure zero. L” is a Banach
space if we identify functions f and g satisfying f(z) = g(x) almost everywhere. This means
that [|-[|, is norm, that that L” is a complete metric space for the distance induced by ||-| .

We denote by Cy := Cp(Qy,C) the C-vector space of continuous functions on Q) that
vanish at infinity endowed with the L*>*-norm. The condition ‘vanish at infinity’ means that
for any € > 0 there exists a compact subset K C Q) such that

|f (z)] <eforzeQ)\ K.

Remark 5. Lebesque’s dominated convergence theorem. Let f,, : Q) — C, m € N, be
a sequence of complex-valued Borel measurable functions. Suppose that the sequence con-
verges pointwise to a function f and that there exists an integrable function g such that
|fm ()] < g() for any x € Q) and all m, then f is integrable and

lim fm (x) d"x = / lim f,(z) d"z= [ f(x)d"x.
Q

m—0o0 m—00
Q@ 4 Q

6.2. The Fourier transform. Given z = (71,...,2,) € Q) and { = (§;,...,¢,) € Q}, we
define

r-E=x18 + .. F 18,

If f € L' its Fourier transform is the function fdeﬁned by

Fo= [ 1@ 9
Qn

We also use the notation F,_.¢ (f), F (f) to denote the Fourier transform of f.

Lemma 6.1. (i) The mapping f — f is a bounded linear mapping from L' to L™ satisfying

17l =< s

o0

(1) If f € L', then f is uniformly continuous.
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O =| [ 1@ (e < [1r@Iaw=Ifl,.
P Qp
(i) Notice that

f(f—l—h /f ) X, (@ {Xp x-h) —1}d”

Proof. (i)

and since ‘f (z) x, (7 - &) {Xp (x-h)— 1}| < 2|f(z)] € L', by using the dominated conver-
gence theorem,

lim | F (¢ +h) - /!f ) lim [x, (- k) — 1] " = 0
Gn
i.e. for any e > 0, there is § > 0, such that for any &', £ € Qp, with [|£" —¢]|, = [|A], < 4, it
holds that ‘f({") - f(é“)‘ <e. O

Remark 6. The translation operator Ty, h € Qp, is defined by (Tp.f) (x) = f(x — h). If f €
L3, then (Tof) (§) = x, (€ 1) F (&), and Foosglx,, (@ h) £ (@) = () (€) = F (€ + ).

We denote by Ay (x) := Q (p_k || z|| p> the characteristic function of the ball By = p~*Z!!
for k € Z. A locally constant function with compact support (a test function) ¢ : Qp — C
is a linear combination of characteristic functions of balls, then

1=1

Notice that Tp, Ay, () is the characteristic function of the ball h; + p~"Z7. We denote by
D(Qy) the C-vector space of test functions (the Bruhat-Schwartz).

We set dy, (1) = p""Q (pk ||a:|]p) for k € Z. Notice that 0y satisfies
/ O (x)d"x =1 for any k € Z,.

Exercise 20. To show that Ay, (€) = 6, (€). Hence if ¢ () = Yo eI Ay, (x) is a test
function, then @ (&) = > 1", cix, (& h) 0k (§). Consequently, o (§) is also a test function.

Remark 7. Notice that limy .., Ay (x) = 1, and that

oo if v=0
* 0 if x#0.
Exercise 21. Set h; (§) := pr X, (€x)e “hdx, fort > 0, a > 0. Show that hy (€) is a
continuous function in x fort > 0 fized.
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Proposition 6.1 ([23, Chap. I, Proposition 1.3]). D(Q}) is dense in Cy as well as in L?,
1< p<oo.

Proposition 6.2 (Riemann-Lebesgue Theorem). If f € L', then j?(é) — 0 as €], — oo.

Proof. For g € D(Q}), g has compact support. Fix € > 0, then there exists g. € D(Q}) such
that || f — ge|l; <€, cf. Proposition 6.1. For £ ¢supp g. we have

GIEGEAGIEY (s

S Hf_geul < €.
e.0)

Definition 10. Given f, g: Q) — C its convolution is the function
hr) = f(z)xg(z)= [ flz—2)g(z)d"z

Qp

= | J(R)g(x = z)d"z,
Q

when the defining integral exists.

Remark 8. Young’s inequality. Assume that f € LP, g € L° and % -I—(l, = %—I— 1 with
1< p,o,y<oo. Then | f=gl, <Ifl,lgl,

The following proposition is left as an exercise to the reader.

Proposition 6.3. If f € L”, 1 < p < o0, and g € L', then f xg € L” and 1f*gll, <
£l gl
Remark 9. Fubini’s theorem. Let f : Q™™ — C be a function such that the repeated

integral
/ ( f(z, y)dmy) d"z
ar \Jap

exists, then f € L (Qﬁ*m, d"t™z), and the following formulae hold:

/ ( f(x,y)dmy> I = / f(z,y)ded™y
Qr Qr potm

P

-/ ( f<:c,y>d":c> amy.
or \Jar

Lemma 6.2. If f, g € L', then f/*\g T

Proof. By Proposition 6.3 f x g € L'. The formula for the Fourier transform follows from
Fubini’s theorem. We invite the redear to verify this calculation. 0

Lemma 6.3. If f, g € L', then

~

fg W) dy= [ f(x)g(z)d"y.
Qp Qr
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Proof. By Fubini’s theorem and the definition of Fourier transform:

[ Fwsway - /@ { /@

/n {/ Xp (- y) g () dny} fx)d's = F(2)7 (2) d"z.

P P Q

X, (@ -y) f(x) d”:r} g(y)d"y

n
P

0

6.3. The Fourier transform on the space of test functions. Let ¢ : Q) — C be a
locally constant function, this means that for each x € QJ, there exists an integer | = [ (x)
such that

(6.2) o(z + ') = p(z) for any 2’ € B]'.
Since B! = {x €Qp:lzfl, < pl} = p~'Z7, condition (6.2) is equivalent to

@ |aspizp= ¢ ().
If ¢ is a test function, then supp ¢ is open compact, and consequently there exist a finite

number of integers /; and a finite number of points z; in Q) such that

r

supp ¢ = || z +p "Zj.
=1

We set

k := max —I;.
1<i<r

Then z; + p “Z} D z + p*Z} (i.e. B, (z) C Bl (%)) and
®» |$+pkng ¢ (x) for any x € supp ¢.

This means that ¢ is constant on the cosets of p"Z? (i.e. on the cosets of QI /p*Z1). We
now use the fact that supp ¢ is compact, which means that it is closed and bounded, then
there exists an integer m such that

supp ¢ C p"'Z,.
Naturally, for any x €supp ¢, * + kaZ C p™Z,, which implies that k > m.
In conclusion, ¢ € D(Qy) if and only there exist integers k, m, with k > m, such that
@ is constant on the cosets of p’“ZZ (i.e. on the cosets of meg/kag) and is supported
on p™Zy. These functions form C-vector space denoted as D;*(Qp) := Dj*. We fix a set

of representatives I's of p™Zr / kaZ =: Gy, then the characteristic functions of the balls
1 +kaZ, I € Gy, span D}, i.e.

{Q (pk [ [Hp) }IeGm,k

are a basis for D}". Notice that the dimension of D}* is #G,, = p™ 9.

Lemma 6.4. F(D}") Cc D-F.
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Proof. Take ¢ € D}, since 90( > rea,,, 18 (p"C |z — I||p>, and F is a linear operator,

) =
we may assume that ¢ (z (p ||z — I||p). Then

Fx%(Q(p’“Hﬂf—fllp)) = | x(-x)de=p” xpflfn X, (D€ - y) dy

I+p*zy

= D0 (pel,)
Finally, we verify that if [|{[, < p™™, then
Xp (& 1) legwpmzp= Xp (€0 - 1),
and consequently p=" Xp &-1Q <Hp’“£H ) e D", O

Exercise 22. Show the following assertion. The map

D(Qy) — D)
(6.3)
@ —
where p an Xp (§ - 2) ¢ (v) dx, is a well-defined linear operator, with inverse given by
@)= [ (€03

In other words, the mapping (6.3) is a isomorphism of C-vector spaces on D(Q}).

6.4. The inverse Fourier transform. One expects that the inverse Fourier transform be
given by

@)= [ wcafOare= [ GEaf©es

b @"

This formula does not always make sense since J/C\iS not L' when f € L.

Exercise 23. Show that the Fourier transform of f(x) = Q <]$|p> In <L) is

|z,

0 if ¢, <1

(=) lel, " o 1gl, > 1,

Definition 11. If g is locally integrable and k € Z, we define

Arg = /g g(z) Ay (z)d"x = /x” . g(z)d .

Notice that if ¢ € L', then Ayg — an r)d"r as k — oo (why?). Now, the limit

limg_,o, Arg may exist even though an x) d"z does not exist.
P

f(&) =
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Exercise 24. To show the following fact: if f € L', k € Z, then

Ac(Po @) = | T@Ox @08
= [ f@Woly—a)dy=p™ / fy)dy.

i lz—yll,<p=*
Definition 12. Let f : Q) — C be locally integrable. A point x € Q) is called a regular
point of [ if

fula) = [ Fy)dy — f (@) as k- os.

lz—yll,<p=*

Theorem 6.1 ([23, Theorem 1.14]). Let f be a locally integrable function. There exists a

zero measure subset L = L(f) such that any v € Qp \ L is a regular point of f.

Exercise 25. Assume that f is locally integrable and continuous at x. Show that
o [ F)d'y — f(x) ask - oo.
lo—yll, <p=*
Corollary 6.1. If f € L, then
A () = [ T @) (-2 ac©) de - f(x)
Q
almost everywhere. In particular, it converges at each point of continuity of f.

Proof. The corollary follows from Exercise 24, Theorem 6.1 and Exercise 25. O

Theorem 6.2. If f and f are both integrable then f is equal a.e. to a continuous function.
With f modified (on a set of measure zero) to be continuous, we have

(6.4) fo)= [ gt fEQae forateeq
Proof. 1f fis integrable, then A, (j? Xp (=€ )) converges to a continuous function:

(6.5) | wtenfers

By Corollary 6.1, f (z) agrees with (6.5) a.e. and consequently f is continuous almost
everywhere. By modifying f on a set of measure zero we obtain formula (6.4). O

Exercise 26. Define
ﬁ(@;) = {f : QZ —C: f, fE L' and f, fA are continuous.}

Then L(Qy) F, L(Qy) s an isomorphism of C-vector spaces. In particular, the formula

fOy=[ f(ede

Q3
holds.
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Corollary 6.2. If f, g € L' and f =G a.e., then f(z) = g(z) a.e.

Proof. Since (f/—\g) =0, by Theorem 6.2, (f — ¢g) (x) =0 a.e. O

Remark 10. Monotone convergence lemma (Levi’s monotone convergence theorem). Let
hy : Qp — [0,00], k € N, be a sequence of non-negative Borel measurable functions satisfying

0 < hy(2) < hpya () oo forany x € Q).

Assume that h : Q) — [0, 00] is the pointwise limit of the sequence {hy}, . Then h is Borel
measurable and

lim hi (z)d"x :/ h(z)d"x.
Qn Q

k—o00 n
P

Corollary 6.3. If f € L', f > 0 and f is continuous at zero, then f € L and f(z) =
an Xp (=€ - ) f(§) d"€ at each regular point of f. In particular, f(0) = an f(&de.

Proof. We need only to show that ]? € L'. Since f and A, € L', by Lemma 6.3 and Exercise
20, we have

FE AL de= | f(&)d(€)de.
Qy Q3

By Theorem 6.1,

$0 = jim [ J@o@ae=pmpt [ Feae

k—oo Qn k—oo
P

i.e.

-~

f(0) = lim [ f (&) Ay (§) d"¢.

Finally, by using the fact that f > 0, and monotone convergence lemma, we have f cLt. O

7. THE L?>-THEORY

Theorem 7.1. If f € L' N L?, then HfHQ = |I£ll,-
Proof. We set g(z) := f(—x), then § = ? Since f, g € L', fxg € L' and

Fro=fa=|f| >0

cf. Proposition 6.3 and Lemma 6.2.
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Now, since f, g € L?, then f * g is continuous, indeed, by using the Cauchy-Schwarz
inequality,

(Frg) (@ +y) — (f+9) (@) = /{f(rc+y—z)—f(rc—z)}g(z)d”z

< / 9(2) dn / @ty —2)— fla— ) dn

91l /If(u +y) = fldz = Nglly 1 +y) = fO)ll, = 0asy — 0,

by the dominated convergence theorem and the fact that
[fluty) = f)l” < dmax {|f(w+ )", [f @)} < 4{[f@+y)]" +|f @)’}

We now apply Corollary 6.3 to f * g, with f x g > 0, to get that f x g = ‘ﬂ € L' and

(re9) 0= [

Remark 11. Let (Y, ||-|ly) be a Banach space, this means that (Y, |-||y) is a normed complex

g(=2) f(z)d"z = / ()2 dms.

n
P

Feo)| e =

Q
UJ

space such that'Y is a complete metric space for the distance induced by ||-|ly-. Let (X, |||l x)
be a complex normed space, and let D(T') be a subspace of (X, ||||x). Let T : D(T) — Y be
a linear bounded operator, i.e. T satisfies T'(ax + Py) = oT'(x) + BT (y) for any o, B € C,
and any x, y € D(T), and

T

sup
sen(r)  |1llx
Then T has an extension T : D(T) — Y, where D(T) denotes the closure of D(T) in
(X, ||l ), with the same norm Hf” =||T||. If D(T) = X, i.e. if D(T) is dense in X, then

T s unique.

Remark 12. Let T : X — Y be a bounded (i.e. |T|| := sup,cx H H(”)HY < o0) linear operator.

Then T is continuous if and only if T' is bounded.

From this theorem, it follows that the mapping
L'NnL? — [?
f —  f
is an L2-isometry on L' N L?, which is a dense subspace of L? (Why?). Thus, this mapping

has an extension to an L2-isometry from L? into L?. We now extend the Fourier transform
to L2
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Definition 13. For f € L?, let

(71) fr = fAg, fork eN,
and
F(© = Jim €)= Jim | (€ 0) f)d"s,

where the limit is taken in L.

Lemma 7.1. If f, g € L?, then

fodty= [ fgdy.
Qp Qp
Proof. We first notice that fi L> f and g; L? g, and that f, g € L' N L? for every k. Hence,
by Lemma 6.3,
J,

Now, by using Theorem 7.1 and the Cauchy-Schwarz inequality,

fr grpd"z = / fo grd’z.
Q

n
P

fe grpd"x
Q3

< [ Fell l1gelly = W Fll2 lgxllz

which means that the bilinear form
(foo96) = | fu gpd"x
Qp
is bounded (and consequently continuous) in each variable in L?, then
fr gpd"x Ij} f gd"x.
Q Q

A similar result holds for the bilinear form (fx, gx) — an fAk grd"x. O

Theorem 7.2. The Fourier transform is unitary in L>.

Proof. We have to show that the Fourier transform is a bijective linear mapping that pre-
serves the L2-norm. We already know that f F. [ is alinear L2-isometry. It remains to show
that that it is onto. By contradiction, we assume that F is not onto. Notice that F(L?) is

]?"2 = || flly, if F(L?) # L?, then by general theory of Hilbert spaces,
F(L?) has an orthogonal complement F(L?)* such that L? = F(L?) & F(L?)*, where for
any g € F(L2)* and any f € F(L?), <fA, g> = 0. Then, there exists h € L?, ||A[|, # 0 such
that

closed in L? because

<J/C\,E> = fhd”x =0 for any f € L%
Q

By using Lemma 7.1, h = 0, but HE”Q = [|h|, = HEH2 = 0, cf. Theorem 7.1, which
contradicts HEHQ # 0. 0
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Exercise 27. Show that HfH = ||fll, for f € L* is equivalent to for any f, g € L?,
2
(fr9) = (F.5) ie. | foaw= | [ga
Qp ap

Exercise 28. For f € L?, we set ffor the reflection of f define as f(x) = f(—x). Show
that if f € L?, then

Frn=5(7).
Theorem 7.3. If f € L?, then
klim Xp (€ - 7) f(z)d"s = f(f’) almost everywhere.
70 x|l <p*

Proof. We use that Ay, f, ]/”\ € L?, jointly with Lemma 7.1 and Exercise 27 to get

i [ (€ @ =t | e A
x|, <p b
~tw [ FoRE-aae = | Feae.
oo Jap lg—al, <p—
Now, since fA € L2, then ]/“\ € L}, the result follows from Theorem 6.1. O

Remark 13. (i) The Fourier transform can be extended to L' + L?, which means that if
f=fi+ fo, with fy € LY, fo € L?, then [ = fi + fo, where the Fourier transforms are
defined in L' and L? respectively. The function f is well-defined in L}

loc*

(ii) If f € L', g € L?, p € [1,2], then f/*\g = f G ae., ¢f. [23, Theorem 2.7].

8. D AS A TOPOLOGICAL VECTOR SPACE

We define a topology on D as follows. We say that a sequence {goj}jeN of functions in D
converges to zero, if the two following conditions hold:

(C1) there are two fixed integers k& and m such that each ¢; is constant on the cosets of
kaZ and is supported on p"Zy, i.e. p; € Di;

(C2) ¢; — 0 uniformly.

D endowed with the above topology becomes a topological vector space.

We recall that D" is C-vector space of dimension N, := # (me;‘ / ka;L). Given ¢ =
(c1,..-,¢cn,,,) € CNmi we set ||| = max; |¢;|. Then (CNer ||-]|) is a Banach space and

((CN’”"“, H”(c) ~ D" as topological spaces, (why?).

A key fact is that uniform convergence in D} agrees with the convergence in the supremum norm
(L*°-norm), which in turn agrees with the convergence in the ||-||-norm.

Exercise 29. Show that D is a complete and separable topological vector space.
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Theorem 8.1. The map
D(@Q,) — D(Qy)
(8.1)
@ —
where p (&) = an Xp (€ - 2) ¢ (v)dx, is a homeomorphism of topological vector spaces , with
1nverse given by
@)= [ g (-¢nzEd

Proof. We already know that (8.1) is an isomorphism of vector spaces. It remains to show
that the continuity of F and F~!. Let ¢; D, le. ;¢ € Dy for some integers m, k, and
@, unif, . Since @}, § € D% in order to show that ©; D , it is sufficient to establish
that @, unif, 3, ie. ||@; — @HOO — 0 as j — oo. By using that

-2l < [ lei-eldos<le -l [ a
Q Py

P

= 7"l — el 0as i oo

The continuity of the inverse Fourier transform is established by using the same argument.
O

9. THE SPACE OF DISTRIBUTIONS ON @g

The C-vector space D’ (Qg) := D" of all continuous linear functionals on D is called the
Bruhat-Schwartz space of distributions. We endow D’ with the weak topology, i.e. a sequence
{Tj},cn in D' converges to T if

lim 75 (¢) =T (¢) for any ¢ € D.

j—o0
Exercise 30. Define the map
DxD — C

(T,p)  — T(p).

Then (T, ) is a bilinear form which is continuous in T and ¢ separately. We call this map
the pairing between D' and D. From now on we will use (T, ) instead of T ().

Exercise 31. If f € L?, 1 < p < 00, then f induces a distribution. More precisely,
(f,0) = [ food"x
Remark 14. If T is a distribution and g is a locally integrable function such that

(T, ) = an gpd"x for all p € D,

we identify T with function g. In this case, some authors say that T is a reqular distribution.
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Example 21. (i) The distribution (0,¢) = ¢ (0) is called the Dirac distribution.
(i) (L) = [ g pd".

Lemma 9.1. Every linear functional on D is continuous, i.e. D' agrees with the algebraic
dual of D.

Proof. Let T : D — C be a linear functional, and let {goj }jeN be a sequence of test functions
converging to 0. Then ¢; € D, for all j, consequently

e @) = 3 e (sllz-11,),
I1€Cm i

and max;eq,, , |¢; (I)] — 0 as j — oo. Then

T, @)= Y. ;T (20 le—11,)) = 3 o, (1),

IGGm’k IEGm,k
and
T, ()] < D el o, (D<) el Igg}f}g{% (D] — o,
]EGmJC IGGmyk ’
as j — oo. O

10. THE FOURIER TRANSFORM ON D’

Definition 14. For T € D’ its Fourier transform, denoted as F (T') or f, is the distribution
defined as
(F(T),¢)=(T,F () forall ¢ € D.

Notice that since ¢ — F (@) is a homeomorphism of D, F (T) is well-defined.
Example 22. 5 =1. Indeed,
(3.¢) = (0.2) = 2(0) = [ g wd"x = (1,p) for all ¢ € D.

Definition 15. The inverse Fourier transform of T € D', denoted as F ' (T) or T, is
defined as
(FHT),¢) = (T, F 1 (p)) forall p € D.

Remark 15. Notice that F~' (T) € D' and that F~' (F(T)) =T for any T € D'.
Lemma 10.1. The map T — F (T) is a homeomorphism of D' onto D'.

Proof. The onto part follows from Remark 15. For the continuity, we proceed as follows. Let
T; DT, ie. (Tj,¢) _ (T,p) for all p € D. Then

(75.0) = (1,,3) = (1) forall y € D,

—

i.e.

(fj, Lp) — (f, cp) for all p € D.
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Definition 16. Linear change of variables for distributions. For A € GL,, (QZ) and b € Qy,

we define .
(T (Az +b), 0) = MtA|(,wPny—®»-

Example 23. Recall that T,(¢ (z)) = ¢ (x —b) for b € Q) and ¢ € D. Then, for G € D',
(TG, 0) = (G, Towgp) -

Example 24. The reflection operator, denoted as'e, acting on ¢ € D is defined as ¢ (z) =
¢ (—x). Then Then, for G € D, <C~}’, gp) = (G, p).

Exercise 32. Show that
G—F(@G),G—-F'Q),G—TG, G -G

are homeomorphisms of D' onto D’.
Definition 17. For G € D' and 6 € D, we define the distribution G by
(0G, p) = (G,0p) forall p € D.
Why is this definition correct?
Exercise 33. For i, o € D, G € D', the maps
G =G, ¥—yp
are continuous maps from D' into D' and from D into D, respectively.

Exercise 34. Show that F,_¢ (x, (x-&)) =6 (£ — &) in D'.

-

Example 25. We want to compute F;* (Héll 5 2), where a > 0 and m > 0. Notice that if

Telermz ¢ L'. If we use the notion

a > n, then W € L' (Why?). In the general case, HE”Q
P

of improper integral, we have
X (=€ ) = X (=€ )
s d = ) a5 A"
Q{r; €11, +m? j=—o00 |§||pfpj 1€, +m?
The exact mathematical meaning of this formula is
N
X (=€) : 1
> —d”&D Fl |l —=a—] as N — 0.
j=—00 ||g||f_pa Hf” ¢ ||§||p + m?

Indeed, for any test function p, we have

S “;—5':;¢<x>dnsdnx= [ ACED G rer

=oo @ ely=p 1€llp an pely<ov €15
F(p)
||£f<p ||§|| —|—m2 {g; } g||pj;pN ||§||p + m?

—1
f ||£|| ( ) ng_ (m’f._l(@)) fOTN SUﬁCiently large,
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Definition 18. We say that a locally constant function f belongs to U, if and only if f is
constant on the cosets ofkaZ for some k € Z.

Example 26. (i) D C Ujpe. (ii) Consider f € Uy such that | f (y)] e Wl e L fort > 0.
Then

)= [ =) = F @)y €

Proposition 10.1. f € U, if and only if f € D’ and there is k € Z such that T,f = [ for
any x € kaz.

Proof. If f € Uy, and Uy C Li,, then f gives rise an element from D’ satisfying (7, f, ¢) =
(f, ) for any = € p*Z.
Conversely, assume that f € D', and 7,.f = f, for all x € kaZ. We set

Then h(y) € Upe. Indeed, since for all = € kaZ,

Now we show that f = h in D’. It is sufficient to verify

(h. @) = (f. ) Le. P [ (Toyf, Di) o (y) d™y = (f,90)

for ¢ equals to the characteristic function of a ball of type J + plZZ. If [ > k, we can replace
¢ by the characteristic function of J + p’“ZZ. If £ > [, we decompose J + plZZ into cosets
modulo p*Z7, i.e.

J+ﬁ@:9ﬁ+ﬁ@,

where the J;s runs through a finite set of representatives. Now we can replace an replace ¢
by the characteristic function of J; + kaZ. Finally,

<ha ]-Ji—i-p’“Z;l) = pkn f (T—yfa Ak) d'y = f (T—Ji—p’“ufa Ak) d"y

Jit+pkZy Ly

Zy Zy

= <f7 1Ji+pk22’> .

Definition 19. For T € D' and ¢ € D, T * ¢ is defined by m =5T.

Exercise 35. Show that for T' € D' and ¢ € D, the map T — T * ¢ is a continuous map
from D' into D'. See Exercise 33.

Exercise 36. To show the following formulas for ¢, ¢ € D, G € D' and x € Qj:

(i) (Tsp) = T.5:
(ii) (T .G) = T,C:;
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(iii) (9 0) = B * 0

(iv) (B * ) = p* 9.

Proposition 10.2 ([23, Theorem 3.15]). The following three characterizations of o+ G € D’
for ¢ € D, G € D' are equivalent:

(i) pxG =9 C;

(ii) (o % G, 1) = (G, 3 % ) for ¥ € D;

(iii) ¢ * G belongs to Uy, and agrees with function

9(x) = (G, To9) = (G(y), ¢ (x —y)).
Exercise 37. Show that the map G — fG, f € Uy, is a continuous map of D' into D'.

Definition 20. A distribution G € D' has compact support if there is a k € 7Z such that

We denote by D! the C-vector space of distributions with compact support.

comp

Theorem 10.1. f € U, if and only szA has compact support. In particular, if f € D' then
T.f=f forallzx EkaZ if and only if Apf = f.

Proof. Assume that f € Uj,. and that 7,.f = f (i.e. f o przp = f(z)). By using Proposition
10.2-(iii), we have

FOF) = FH A0+ f = F (D) + f = bux f
=p" [ fydy=p" [ fdy=p"f(x) [ dy=f(2),

lz—yll,<p=* x+pkZy T4phZn

Now suppose that f € D’ satisfying Axf = f. Then for any ¢ € D and for all x € ka;},

(Tofo0) = (f. Tap) = (F (f) . F T (Toaw)
— (FUN©) % (- OF (@) (©) = (A O T () x, (2 O F 1 (#) (9)

!
= (F©. 2% @O F @) ©) = (FF) = (£.9).
U

Remark 16. if f € D' satisfies T,f = [ for all x € p*Z & f € D' with Ayf = f. Henc
(Fe) = (1) =(AfiB) = (. 4D)
= (f (S)ém (&) xp (- &) @ (x) d”af)
= [ (f(©), A () x, (x-) p(2)d"z,

Q
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(g) = (f (&), (& x o (- &)). Here, it is necessary to use that if T € D’ (@g),

G eD ((@zl) then T x G € D’ (Q”*m) suc that

(T'(2) x G(y), ¢ (,9)) = (T'(x), (G(y), ¢ (x,9)))
= (GW), (T(x), 6 (x,y))), for ¢(z,y) €D (Q"™).

Definition 21. If T, W € D’ (QZ) and W has compact support, then Tx W € D’ (Qg) is

defined by
T«W=TW.

Exercise 38. IfW € D’ (@Z) has compact support, then the map T — T'xW 1is a continuous

map from D’ (QZ) into D’ (Qg)
Hint: Notice that the following mappings are continuous:

(@) - D(Q)

T - T

=)

and

D (QR) mult. W D' (Q)

T — TW
[P | F
D(Q) W, D' (Qp)-
T — TxW

Theorem 10.2. (i) Let T1,...,T, € D' (Q2) all but (at most) one being in U

T, ---T,eD (QZ) s well-defined as a conmutative and associative product.
(ii) Let Wy, ..., Wy €D (Qg) all but (at most) one being in Deomy. Then Ty *
D’ (Qg) 18 well-defined as a conmutative and associative convolution product.

11. SOME ADDITIONAL EXAMPLES

Example 27. (i) Take ¢ € D, then the associated distribution has compact support.

(i) 0 € D' has compact support (Why?).
(iii) Let T € D', then 0 «T =T. Indeed,

5/\ A~

=5T=1T=T.
(iv) Let T € D', then 6, x T € D', more precisely §y * T € Upoe. Then

lim §,«T =T inD.

k—o0

Indeed,
lim m — lim 6,7 = lim AT =T in D.

k—oo k—o0 k—o0

Then

xT, €
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Example 28. D is dense in D', every distribution is the weak limit of a sequence of test
functions. Take T' € D', then 6, % T € Uipe, Ay (0 *T) € D for any l, k. We now show that

lim (lim (Al(/ék\*T))> =T inD.

l—o0 \k—o00
Indeed, Al@g\*T) = % (m) =0 Akf. For a fized §;, the map
D — D
G — (51 * G

is continuous. Then limy_, o 0; * Akf = ] * T. And consequently,

lim (lim (Al@?T») = llggo §*T=TinD.

l—oo \k—o00

Example 29. Let q(z) € Q, [2]\Q, and ¢ € D(Q,). The Igusa local zeta function attached
to the pair (q,) is the distribution

Zo(siq) D(Q) — C

¥ — [ e(@)la@)l,dz,
Qp~q~1(0)
for Re(s) > 0. Here we use that for a > 0 and s € C, a® = e*™%. In this evample, we show
that Z,(s; q) has a meromorphic continuatiom to the whole complex plane such that Z,(s;q)
s a rational function in p~°. We set

(@) = R@) [T (& - )"

where the «; are the roots of q(x) belonging to the suppp and R(x) # 0 for any x € suppyp.
Then there exists a covering of suppp such that:

(i) suppp = |I;Z, Bi (%:);

(i) each ball By (Z;) contains up most one root of q(x), say c;. In this case we change
By (%) by By (v);

(ii) |R(x)], |B,@n= |R(Ti)], fori=1,..., M.

The announced properties of the covering follow from the following considerations. Since
Q, is a metric space and o; # o if i # j, there exist t' € Z such that

Bt/ (Oéz) N Bt/ (Oéj) = @ ZfZ 7é j
Let x; € suppyp, since |R(m)|p # 0 for any x € suppyp, there exist a ball By (T;) such that

0 < Hlf R x < su R €T < R ?C/z )
xEBt//(fi)’ ( )’p mEBt//p(Ei)| ( )|p ‘ ( )‘p

Then by the ultrametric inequality |R(z)|, |p,, @)= |R(T:)],-
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Now assuming that T; = oy fori=1,...,1, with M > [, we have
M S
Zo(s;q) = > [ la(@)])dw
=1 By(%;)
l S €;S M S
= > | Ri@lz -l de+ > [ la(@)],dx
=1 By(a;) i=l+1 By(Z;)
l S €is t M ~\|S
= > IR (Oéz‘)|p [l —Oéz‘lpl dr+p~" > |Q(«Tz‘)|p
i=1 Bi(aw) i=l+1
l s _—t—e;s ]'_pil —t M ~\|8
= Y |Ri(a)fp | —— |+ 2 la(@)],-
i=1 I —p i=l+1
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