Anti-Ramsey Colorings in Several Rounds

Ralph Faudree University of Memphis

(joint work with Aart Blokhuis, András Gyárfás and Miklós Ruszinkó)

For positive integers $k \leq n$ and $t \operatorname{let} \chi^t(k, n)$ denote the minimum number of colors such that at least in one of the total t colorings of edges of K_n all $\binom{k}{2}$ edges of every $K_k \subseteq K_n$ get different colors. Generalizing a result of Körner and Simonyi, it is shown in this paper that $\chi^t(3, n) = \Theta(n^{1/t})$. Also tworound colorings in cases k > 3 are investigated. Tight bounds for $\chi^2(k, n)$ for all values of k except for k = 5 are obtained. Conversely, let t(k, n) denote the minimum number of colorings such that – having the same $\binom{k}{2}$ colors in each coloring – at least in one of the total t colorings of K_n all $\binom{k}{2}$ edges of every $K_k \subseteq K_n$ get different colors. It is also shown, that for k = n/2 t(k, n)is exponentially large. Several related questions are investigated.