Anti-Ramsey Colorings in Several Rounds

Ralph Faudree
University of Memphis

(joint work with Aart Blokhuis, András Gyárfás and Miklós Ruszinkó)

For positive integers $k \leq n$ and t let $\chi^{t}(k, n)$ denote the minimum number of colors such that at least in one of the total t colorings of edges of K_{n} all $\binom{k}{2}$ edges of every $K_{k} \subseteq K_{n}$ get different colors. Generalizing a result of Körner and Simonyi, it is shown in this paper that $\chi^{t}(3, n)=\Theta\left(n^{1 / t}\right)$. Also tworound colorings in cases $k>3$ are investigated. Tight bounds for $\chi^{2}(k, n)$ for all values of k except for $k=5$ are obtained. Conversely, let $t(k, n)$ denote the minimum number of colorings such that - having the same $\binom{k}{2}$ colors in each coloring - at least in one of the total t colorings of K_{n} all $\binom{k}{2}$ edges of every $K_{k} \subseteq K_{n}$ get different colors. It is also shown, that for $k=n / 2 t(k, n)$ is exponentially large. Several related questions are investigated.

