On the Heterochromatic Number of Stars

Juan José Montellano* and Víctor Neumann-Lara IMATE-UNAM

Let K_{n} be the complete graph of order n and $K_{1, q}$ the star of q edges, with $n>q \geq 2$. Now let c be the minimum number such that every surjective c-coloring of the edges of K_{n} procudes at least one copy of $K_{1, q}$ all whose edges have different colours (i.e., an heterochromatic copy of $K_{1, q}$).

In 1996, Y. Manoussakis, M. Spyratos, Zs. Tuza and M. Voigt conjectured that

$$
c=\left[\frac{n(q-2)+4}{2}\right] .
$$

We disprove this conjecture by proving that
$g(n q) \mid 1 \geq c \geq g(n, q)$ if n and q are odd and $\frac{r(n, n-q+2}{n-q+2} \geq \frac{1}{2} ;$
and
$c=g(n, q)$ in the remaining case, where

$$
g(n, q)=\left[\frac{n(q-2)}{2}\right]+\left[\frac{n}{n-q+2}\right]+1
$$

and $r(n, n-q+2)$ is the residue of $n \bmod n-q+2$.

