On the Heterochromatic Number of Stars

Juan José Montellano^{*} and Víctor Neumann–Lara IMATE–UNAM

Let K_n be the complete graph of order n and $K_{1,q}$ the star of q edges, with $n > q \ge 2$. Now let c be the minimum number such that every surjective c-coloring of the edges of K_n procudes at least one copy of $K_{1,q}$ all whose edges have different colours (i.e., an heterochromatic copy of $K_{1,q}$).

In 1996, Y. Manoussakis, M. Spyratos, Zs. Tuza and M. Voigt conjectured that

$$c = \left[\frac{n(q-2)+4}{2}\right].$$

We disprove this conjecture by proving that

 $g(nq) \mid 1 \ge c \ge g(n,q)$ if n and q are odd and $\frac{r(n,n-q+2)}{n-q+2} \ge \frac{1}{2}$; and

c = g(n,q) in the remaining case, where

$$g(n,q) = \left[\frac{n(q-2)}{2}\right] + \left[\frac{n}{n-q+2}\right] + 1$$

and r(n, n - q + 2) is the residue of $n \mod n - q + 2$.