Connectivity of Δ -Matroids

Guadalupe Rodríguez Sánchez CINVESTAV–IPN

A Δ -matroid is a set system $D = (V, \mathcal{F})$ where V is a finite set and $\mathcal{F} \subseteq \mathcal{P}(\mathcal{V})$ satisfies the following Δ -Exchange Axiom:

 $(A\Delta)$ for $F_1, F_2 \in \{$, for $x \in F_1 \Delta F_2$, there exist $y \in F_1 \Delta F_2$ such that $F_1 \Delta x, y \in \mathcal{F}$.

Given a partition V', V" of a set V, two subsets $\mathcal{F}' \subseteq \mathcal{P}(\mathcal{V}'), \mathcal{F}$ " $\subseteq \mathcal{P}(\mathcal{V}")$, we define:

$$F' \times F'' = F' \cup F'' : F' \in F', F'' \in F''.$$

Let $D = (V, \mathcal{F})$ be Δ -matroid. A subset $V' \subseteq V$ is a 1-separator of D if there exists $\mathcal{F}' \subseteq \mathcal{P}(\mathcal{V}')$ and $\mathcal{F}'' \subseteq \mathcal{P}(\mathcal{V}'')$ such that $\mathcal{F} = \mathcal{F}' \times \mathcal{F}''$.

The subset V' is a 2-separator of D if there exists $\mathcal{F}'_{\infty}, \mathcal{F}'_{\in} \subseteq \mathcal{P}(\mathcal{V}')$ and $\mathcal{F}'_{\infty}, \mathcal{F}'_{\in} \subseteq \mathcal{P}(\mathcal{V}')$ such that $\mathcal{F} = (\mathcal{F}'_{\infty} \times \mathcal{F}'_{\infty} \cup (\mathcal{F}'_{\in} \times \mathcal{F}''_{\in}).$

We define a graph G_D^2 associated with a Δ -matroid D and we characterize the behaviour of graph G_D^2 when D has a 1 – separator and when D is even and it has a 2 – separator.

On the other hand, we study representability of D-matroids under composition. Suppose we want to compose two Δ -matroids D_1 and D_2 and let D be the Δ -matroid resulting by the composition, then if D_1, D_2 are representables over a field \mathbb{F} , we obtain the representation of D for the case when D is an even Δ -matroid.