Fast approximation graph partitioning algorithms

Guy Even University of Saarlandes

(joint work with Seffi Naor, Satish Rao, Baruch Schieber)

We study graph partitioning problems on graphs with edge capacities and vertex weights. The problems of b-balanced cuts and k-multiway separators are unified by a new problem called minimum capacity ρ -separators. A ρ -separator is a subset of edges whose removal partitions the vertex set into connected components such that the sum of the vertex weights in each component is at most ρ times the weight of the graph.

We present a new and simple $O(\log n)$ -approximation algorithm for minimum capacity ρ -separators which is based on spreading metrics yielding an $O(\log n)$ -approximation algorithm both for b-balanced cuts and for k-multiway separators.

The algorithm is based on a technique called spreading metrics that enables us to formulate directly the minimum capacity ρ -separator problem as an integer program. The deterministic running time for computing a separator (ignoring ploy-logarithmic factors) is $O(m^2n)$ and the randomized running time is $O(m^2)$.