Generating upper bounds for the sums of squares formulae problem

Adolfo Sánchez IIMAS-UNAM

The number $r*_Z s$ is the smallest integer t such that there exists a formula of the form $(x_1^2+\cdots+x_r^2)(y_1^2+\cdots+y_s^2)=z_1^2+\cdots+z_t^2$, where each z_i is a bilinear form in the sets of indeterminates X and Y with integer coefficients. Finding a formula of this type is equivalent to obtaining an $r\times s$ consistently signed intercalate matrix of type [r,s,t]. Most of the best upper bounds known for $r*_Z s$ ($1\leq r,s\leq 64$) are obtained by juxtaposing two of these matrices of smaller size. However, an "irreducible" juxtaposition of 5 matrices was recently given, so as to provide the best upper bounds known for some $r*_Z s$. Here we describe all the irreducible configurations that juxtapose k matrices, for $k\leq 9$. Also, we show an algorithm that, for given $r,s\geq 1$, and a set C of upper bounds on $i*_Z j$ ($i\leq r,j\leq s$, and i+j< r+s), produces the juxtaposition of $k\leq 7$ matrices that yields the lowest bound on $r*_Z s$ induced by C.