Approximating small vertex-connectivity problems via Set-Covers

Guy Kortsarz
The Open University

(joint work with Z. Nutov)

Given an undirected graph with costs on the edges, and an integer k, we consider the problem of finding a k-node connected spanning subgraph of minimum cost. For the general instance of the problem, the previously best known algorithm has approximation ratio $2 k$. For $k \leq 5$, algorithms with approximation ratio lceil $(k+1) / 2$ rceil are known. For metric costs Khuller and Raghavachari gave a $(2+2(k-1) / n)$-approximation algorithm. We obtain the following results.

1) An $I\left(k-k_{0}\right)$-approximation algorithm for the problem of making a $k_{0}-$ connected graph k-connected by adding a minimum cost edge set, where $I(k)<k$ for $k \geq 7$.
2) A $(2+(k-1) / n)$-approximation algorithm for metric costs.
3) A lceil $(k+1) / 2$ rceil-approximation algorithm for $k=6,7$.
4) A fast lceil $(k+1) / 2$ rceil-approximation algorithm for $k=4$.

The multiroot problem generalizes the min-cost k-connected subgraph problem. In the multiroot problem, requirements k_{u} for every node u are given, and the aim is to find a minimum-cost subgraph that contains max k_{u}, k_{v} internally disjoint paths between every pair of nodes u, v. For the general instance of the problem, the best known algorithm has approximation ratio $2 k$, where $k=\max k_{u}$. For metric costs there is a 3 -approximation algorithm. We consider the case of metric costs, and, using our techniques, improve for $k \leq 7$ the approximation guarantee from 3 to less than 2.5.

