Approximating small vertex-connectivity problems via Set-Covers

Guy Kortsarz The Open University

(joint work with Z. Nutov)

Given an undirected graph with costs on the edges, and an integer k, we consider the problem of finding a k-node connected spanning subgraph of minimum cost. For the general instance of the problem, the previously best known algorithm has approximation ratio 2k. For $k \leq 5$, algorithms with approximation ratio lceil (k + 1)/2 rceil are known. For metric costs Khuller and Raghavachari gave a (2 + 2(k - 1)/n)-approximation algorithm. We obtain the following results.

1) An $I(k - k_0)$ -approximation algorithm for the problem of making a k_0 connected graph k-connected by adding a minimum cost edge set, where I(k) < k for $k \ge 7$.

2) A (2 + (k - 1)/n)-approximation algorithm for metric costs.

3) A lceil (k+1)/2 rceil-approximation algorithm for k = 6, 7.

4) A fast lceil (k+1)/2 rceil-approximation algorithm for k = 4.

The multiroot problem generalizes the min-cost k-connected subgraph problem. In the multiroot problem, requirements k_u for every node u are given, and the aim is to find a minimum-cost subgraph that contains max k_u, k_v internally disjoint paths between every pair of nodes u, v. For the general instance of the problem, the best known algorithm has approximation ratio 2k, where $k = \max k_u$. For metric costs there is a 3-approximation algorithm. We consider the case of metric costs, and, using our techniques, improve for $k \leq 7$ the approximation guarantee from 3 to less than 2.5.