An $(8 / 5+\varepsilon)$-approximation for minimum two-edge-connectivity augmentations of trees

Guy Even
Tel Aviv University

(joint work with J. Feldman, G. Kortsarz and Z. Nutov

We consider the following problem: given a ground set V, a tree $T=$ (V, \mathcal{E}), and an additional edge set E disjoint from \mathcal{E}, find a minimum size set of edges $F \subseteq E$ such that $(V, \mathcal{E} \cup F)$ is 2-edge connected. This problem is NP-hard. For a long time 2 was the best approximation ratio known. Recently, Nagamochi derived a $(1.875+\varepsilon)$-approximation algorithm. We give a new algorithm with a better approximation ratio of $(1.6+\varepsilon)$, and a simpler analysis.

