Daisy Structure in Desarguesian Projective Planes of Order 2^{n+1}

Gabriela Araujo Pardo
IMATE-UNAM

We distribute the points and lines of the Desarguesian projective plane of order 2^{n+1}, denoted $P G\left(2,2^{n+1}\right)$, according to a special structure that we call the DAISY STRUCTURE. This structure distributes the points in three seets using a family of Hyperovals, and allow us to distribute the lines on a dual structure whose combinatoric scheme is controled by a special block design which turns out to be isomorphic to the projective space of dimension n over Z_{2}, denoted $P G(n, 2)$.

Finally, we apply this to find a lower bound for the heterochromatic number of the projective plane, if we see it as a hypergraph.

