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BSC-CNS (Barcelona Supercomputing Center –
Centro Nacional de Supercomputación)

BSC-CNS objectives:
� R&D in 

Computer 
Sciences, Life 
Sciences and 
Earth Sciences

� Supercomputing 
support to 
external 
research

MareNostrum III 

Minotauro

Cluster with 128 Bull B505 blades
each:
� 2 Intel E5649 (6-Core) 

processor at 2.53 GHz
� 2 M2090 NVIDIA GPU Cards
� 24 GB of Main memory
� Peak Performance: 185.78 

Tflops
� 250 GB SSD (Solid State Disk) 

as local storage
� 2 Infiniband QDR (40 Gbit each) 

to a non-blocking network
� RedHat Linux
� 14 links of 10 GbitEth to

connect to BSC GPFS Storage



Abacus:
ABACUS-CINVESTAV is a World Class Space for Science 
and Technology Specialized in Applied Mathematics and High 
Performance Computing of the “Centro de Investigación y de 
Estudios Avanzados del IPN” (CINVESTAV). 

– The Cinvestav was created in 1961 by presidential decree as a 
public agency with legal personality and its own assets. The 
Cinvestav has twenty-eight research departments that are 
distributed by the nine campuses throughout Mexico. 

– The ABACUS-CINVESTAV project is an initiative of COMECYT, 
CONACYT and  CINVESTAV formally launched in October 2011. 

– The ABACUS-CINVESTAV project was conceived as a forward-
looking and frontier knowledge development proposal for the 
strengthening and reinforcement of two fundamental aspects 
applied mathematics and high performance computing. 

– ABACUS-CINVESTAV enrolls prestigious national and 
international researchers and a very considerable number of post 
doctorate and graduate students from various regions of the 
country and the world in an interdisciplinary and inter-institutional 
scheme. ABACUS-CINVESTAV implements lines of research in 
strategic areas of scientific and technological knowledge with 
emphasis in Applied Mathematics and High Performance 
Computing.

IBM PureFlex1
4 x240 nodes, each with: * 1 
Sandy Bridge E5-2690 de 8C @ 
2.9Ghz Processor
* 96GB RAM, * 146 GB HD Raid 
1, * 2 10Gb ports

2 iDataplex nodes, each with: * 2 
Intel E5-2603 4C 1.8Ghz 10Mb 
Cache Processors
* 16Gb RAM, * 2 NVDIA Tesla 
K20, * 2 1 Gb Ports, 



Why parallel programming?

Solve larger problems

Run memory demanding codes

Solve problems with greater speed



Modern Parallel Architectures

Two basic architectural schemes:

–Distributed Memory

–Shared Memory



Modern Parallel Architectures

Now most computers have a mixed architecture 

– + accelerators -> hybrid architectures



Top500

….

Paradigm Change in HPC

What about applications? 

�http://www.top500.org/



Titan (currently #1)

�A Cray XK7 system containing 18,688 nodes, each with
�16-core AMD Opteron 6274 processor 
�NVIDIA Tesla K20 GPU accelerator. 

�Titan also has more than 700 terabytes of memory.
�The combination of central processing units (CPUs), the traditional
foundation of high-performance computers, and more recent GPUs
will allow Titan to occupy the same space as its Jaguar predecessor
while using only marginally more electricity.



Performance



Top 10 2012



Roadmap to Exascale
(architectural trends)



Where Watts are burnt?

Today (at 40nm) moving 3 64bit operands to compute a 64bit 
floating-point FMA takes 4.7x the energy with respect to the FMA 
operation itself

A
B
C

D = A + B* C

Extrapolating down to 10nm integration, the energy required to move date
Becomes 100x !



MPP System

When? 2012

PFlop/s >2

Power >1MWatt

Cores >150000

Threads >500000

Arch Option 
for BG/Q



Accelerator

A set (one or more) of very simple execution units that can perform few operations (with 
respect to standard CPU) with very high efficiency. When combined with full featured 
CPU (CISC or RISC) can accelerate the “nominal” speed of a system. (Carlo Cavazzoni)

CPU ACC.

CPU ACC.
Physical integration

CPU & ACC
Architectural integration

Single thread perf. throughput



nVIDIA GPU

Tesla packs 2496 
CUDA  cores 



ATI FireStream, AMD GPU 

2012
New Graphics Core Next 

“GCN”
With new instruction set and 

new SIMD design



Intel MIC (Knight Ferry)



ARM + GPU

�Build the next HPC system on 
commodity and super-commodity 
components 
�– 100M tablets in 2012 
�– 750M smartphones in 2012 

� BSC Pedraforca: a First ARM + GPU 
Cluster for HPC 
�GPU-accelerated cluster vs. GPU-
accelerator cluster

�We’ve hit the power wall 
�ALL computers are limited by 
power consumption 



What about parallel App?

In a massively parallel context, an upper limit for the 
scalability of parallel applications is determined by the 
fraction of the overall execution time spent in non-scalable 
operations (Amdahl's law).

maximum speedup tends to 
1 / ( 1 − P ) 

P= parallel fraction

1000000 core

P = 0.999999

serial fraction= 0.000001



Programming Models

• At present, one model still dominates HPC  application codes 
• Message Passing (MPI) for internode communication

• Shared Memory (OpenMP) for intra-node parallelism

• Rapid adoption of GPUs in Top500 supercomputers has been met within by 
augmenting the MPI/OpenMP hybrid model with an additional third model that 
targets the Single Instruction Multiple Data (SIMD) architecture of GPUs.
• The most popular CUDA 
• OpenCL an alternative open standard framework

• directive-based open standards OpenACC
• OmpSs

• extends OpenMP with directives  for asynchronous parallelism and 
heterogeneity (devices  like GPUs). 

• specifies data dependencies and MPI communication as tasks.
• supports shared memory systems, systems with CUDA GPUs (other 

accelerator devices Intel MIC, OpenCL GPUs FPGAs) and clusters of 
these



trends

Vector

Distributed 
memory

Shared 
Memory

Hybrid codes

MPP System, Message Passing: MPI

Multi core nodes: OpenMP

Accelerator (GPGPU, 
FPGA): Cuda, OpenCL

Scalar Application



Message Passing domain decomposition
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Ghost Cells - Data exchange
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Message Passing: MPI

Main Characteristic
• Library
• Coarse grain
• Inter node parallelization 

(few real alternative)
• Domain partition
• Distributed Memory
• Almost all HPC parallel 

App

Open Issue
• Latency
• OS jitter
• Scalability



Shared memory
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Shared Memory: OpenMP

Main Characteristic
• Compiler directives
• Medium grain
• Intra node parallelization 

(pthreads)
• Loop or iteration partition
• Shared memory
• Many HPC App

Open Issue
• Thread creation overhead
• Memory/core affinity
• Interface with MPI



OpenMP 

!$omp parallel do
do i = 1 , nsl

call 1DFFT along z ( f [ offset( threadid ) ] )
end do
!$omp end parallel do
call fw_scatter ( . . . )
!$omp parallel
do i = 1 , nzl
!$omp parallel do

do j = 1 , Nx
call 1DFFT along y ( f [ offset( threadid ) ] )

end do
!$omp parallel do

do j = 1, Ny
call 1DFFT along x ( f [ offset( threadid ) ] )

end do
end do
!$omp end parallel



Accelerator/GPGPU

Sum of 1D array

+



CUDA sample

void CPUCode( int* input1, int* input2, int* output, int length) {
for ( int i = 0; i < length; ++i ) {

output[ i ] = input1[ i ] + input2[ i ];
}

} 

__global__void GPUCode( int* input1, int*input2, int* output, int length) {
int idx = blockDim.x * blockIdx.x + threadIdx.x;

if ( idx < length ) {
output[ idx ] = input1[ idx ] + input2[ idx ];

}
} 

Each thread executes one loop iteration



CUDA
OpenCL

Main Characteristic
• Ad-hoc compiler
• Fine grain
• offload parallelization (GPU)
• Single iteration parallelization
• Ad-hoc memory
• Few HPC App

Open Issue
• Memory copy
• Standard
• Tools
• Integration with other 

languages



Hybrid (MPI+OpenMP+CUDA+…)

Take the positive off all models
–Exploit memory hierarchy
–Many HPC applications are adopting this model
–Mainly due to developer inertia
–Hard to rewrite million of source lines

Must rethink the design of our algorithms and softwa re
– Manycore and Hybrid architectures are disruptive tech nology
– Similar to what happened with cluster computing and message

passing
– Rethink and rewrite the applications, algorithms, a nd software
– Data movement is expensive
– Flops are cheap



Hybrid parallel programming

MPI: Domain partition

OpenMP: External loop partition

CUDA: assign inner loops
Iteration to GPU threads

�Hybridization is the process of converting an application with a single level of 
parallelism to an application with multiple levels of parallelism. 
�Over the past 15 years a majority of the applications that run on High 
Performance Computing systems have employed MPI for all of the parallelism 
within the application. 
�In the Peta-Exascale computing regime, effective utilization of the hardware 
requires multiple levels of parallelism matched to the macro architecture of the 
system to achieve good performance. 
�OmPSS and OpenACC allow a unified code base to be deployed for either 
(Manycore CPU or Manycore CPU+GPU) while permitting architecture specific 
optimizations to expose new dimensions of parallelism to be utilized.



OmPSS

• Extend OpenMP with new directives to support asynchronous parallelism and 
heterogeneity (devices like GPUs).

• Asynchronous parallelism is enabled in OmpSs by the use data-dependencies between the 
different tasks of the program. The OpenMP task construct is extended with 
input , output and inout clauses to this end. They allow to specify for each task in the 
program what data a task is waiting for and signaling is readiness.

Example and dependency graph:

void foo ( int *a, int *b )
{

for ( i = 1; i < N; i++ ) {
#pragma omp task input(a[i-1]) inout(a[i]) output(b[i])

propagate(&a[i-1],&a[i],&b[i]);

#pragma omp task input(b[i-1]) inout(b[i])
correct(&b[i-1],&b[i]); 

}
}



OmPSS

• To support heterogeneity a new construct is introduced: the target construct. The intent of 
the target construct is to specify that a given element can be run in a set of devices. 
The target construct can be applied to either a task construct or a function definition.

Example:

##pragma omp target device ({ smp | cuda }) \
[ implements ( function_name )] \
{ copy_deps | [ copy_in ( array_spec ,...)] 
[ copy_out (...)] [ copy_inout (...)] }

�The proposed solution is to use 
support for tasks and efficient task 
scheduling to exploit parallelism and 
simplify programming.



OmPSS MultiGPU/Clusters

• Automatic handling of Multi-GPU execution
• One manager thread per GPU: data transfers, task execution, 
synchronization

• Clusters: One runtime instance per node
• One master image
• N-1 worker images
• Communication
thread 
• Data transfers



OpenACC

Accelerator programming API standard to program acc elerators 
Portable across operating systems and various types  of host CPUs 
and accelerators. 
Allows parallel programmers to provide simple hints , known as 
“directives,” to the compiler, identifying which ar eas of code to 
accelerate, without requiring programmers to modify  or adapt the 
underlying code itself. 
Aimed at incremental development of accelerator cod e 

Directives facilitate code development for accelerators
– Provide the functionality to: Initiate accelerator startup/shutdown 
– Manage data or program transfers between host (CPU)  and accelerator 
– Scope data between accelerator and host (CPU) 
– Manage the work between the accelerator and host. 
– Map computations (loops) onto accelerators
– Fine-tune code for performance 



OpenACC

Parallelism: 
• Support coarse-grain parallelism

• Fully parallel across execution units 
• Limited synchronizations across
• coarse-grain parallelism

• Support for fine-grain parallelism often implemente d as SIMD 
– Vector operations
– Programmer need to understand the differences betwe en them. Efficiently map parallelism to 

accelerator 
– Understand synchronizations available

Memory Model
– Host + Accelerator memory may have completely separ ate memories Host may 

not be able to read/write device memory that is not  mapped to a shared virtual addressed. 

– All data transfers must be initiated by host Typically using direct memory accesses 
(DMAs) 

Data movement is implicit and managed by compiler 
Device may implement weak consistency memory model 



OpenACC
OpenACC Parallel Directive

Starts parallel execution on accelerator 
– Specified by: 

#pragma acc parallel [clause 
[,clause]…] new-line 
structured block 

– When encountered: Gangs of workers threads 
are created to execute on accelerator 

– One worker in each gang begins executing 
the code following the structured block 

– Number of gangs/workers remains constant 
in parallel region 

OpenACC Kernels Directive
Defines a region of a program that is to be compile d 
into a sequence of kernels for execution on the 
accelerator 

– Each loop nest will be a different kernel 
– Kernels launched in order in device 
– Specified by: 

#pragma acc kernels [clause 
[,clause]…] new-line 
structured block 

OpenACC Data Directive
The data construct defines scalars, arrays and 
subarrays to be allocated in the accelerator 
memory for the duration of the region. 
Can be used to control if data should be 
copied-in or out from the host 

– Specified by: 
#pragma acc data [clause 
[,clause]…] new-line
structured block 

OpenACC Loop Directive
Used to describe what type of parallelism to 
use to execute the loop in the accelerator. 
Can be used to declare loop-private variables, 
arrays and reduction operations. 

– Specified by: 
#pragma acc loop [clause 
[,clause]…] new-line 
for loop



Conclusion

• Traditional
• MPI
• OpenMP

• GPU
• CUDA/OpenCL

• Hybrid
• MPI + OpenMP +CUDA/OpenCL
• OmPSS
• OpenACC

Parallel programming trends in extremely scalable architectures
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MPI
Based on presentation by Janko Strassburg, BSC

Isaac Rudomin
BSC



MPI - Message Passing Interface 2

Motivation

High Performance Computing

Processing speed
+

Memory capacity

Software development for:
Supercomputers, Clusters, Grids



MPI - Message Passing Interface 3

Programming MPP/Clusters

Possibilities:
Special parallel programming languages
Extensions of existing sequential programming languages
Usage of existing sequential programming languages + 
libraries with external functions for message passing



MPI - Message Passing Interface 4

Usage of Existing Sequential Programming 
Languages

Approach:
– Use FORTRAN/C
– Function calls to message passing library

Explicit parallelism:
User defines

– which processes to execute,
– when and how to exchange messages, und
– which data to exchange within messages.



MPI - Message Passing Interface 5

MPI Intention

Specification of a standard library for programming message 
passing systems
Interface: practical, portable, efficient, and flexible
� Easy to use
For vendors, programmers, and users



MPI - Message Passing Interface 6

MPI Goals

Design of an API (Application Programming Interface)
Possibilities for efficient communication
(Hardware-Specialities, ...)
Implementations for heterogeneous environments
Definition of an interface in a traditional way 
(comparable to other systems)
Availability of extensions for increased flexibility
Definition, that is easy to be realized on different kinds of 
hardware platforms.



MPI - Message Passing Interface 7

MPI Forum

Collaboration of 40 Organisations (world-wide):
IBM T.J. Watson Research Center
Intels NX/2
Express
nCUBE’s VERTEX
p4 - Portable Programs for Parallel Processors
PARMACS
Zipcode
PVM
Chameleon
PICL
...



MPI - Message Passing Interface 8

Available Implementations

MPICH
CHIMP
LAM
FT-MPI
Open MPI:
– Combined effort from FT-MPI, LA-MPI, LAM/MPI, PACX-

MPI
– De facto standard; used on many TOP500 systems

Vendor specific implementations:
– Bull, Fujitsu, Cray, IBM, SGI, DEC, Parsytec, HP, ...
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MPI Programming Model

Parallelization: 
– Explicit parallel language constructs (for communication)
– Library with communication functions

Classification of Flynn: 
– MIMD (multiple instructions streams over multiple data streams)
– No (automatic) synchronization of processes

Programming Model: 
– SPMD (single program multiple data)
– All processes load the same source code
– Distinction through process number



MPI - Message Passing Interface 10

MPI Program

2 Parts:
– User code
– MPI Functionality (from MPI Library)

Computer 1

Process 0

User code

MPI Library.

Process 1

User code

MPI Library.

Computer 2

Process 2

User code

MPI Library.

Network
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MPI Functionality

Process Creation and Execution
Queries for system environment
Point-to-point communication (Send/Receive)
Collective Operations (Broadcast, ...)
Process groups
Communication context
Process topologies
Profiling Interface



MPI - Message Passing Interface 12

Processes

Characteristics:
For Parallelism, computation must be partitioned
into multiple processes (or tasks)
Processes are assigned to processors � mapping
– 1 Process = 1 Processor
– n Processes = 1 Processor

Multitasking on one processor:
– Disadvantage: Longer execution time due to time-

sharing
– Advantage: Overlapping of communication latency



MPI - Message Passing Interface 13

Granularity

The size of a process defines its
granularity

Coarse Granularity: each process contains many 
sequential execution blocks � execution time
Fine Granularity: each process contains only few 
(sometimes one) instructions



MPI - Message Passing Interface 14

Granularity

Granularity = 
Size of computational blocks between 
communication and synchronization operations

The higher the granularity, the 
– smaller the costs for process creation
– smaller the number of possible processes and the 

achievable parallelism



MPI - Message Passing Interface 15

Parallelization

Data Partitioning:
SPMD = Single Program Multiple Data
Task Partitioning:
MPMD = Multiple Program Multiple Data
“Chinese Army Technique”

Types of Process-Creation:
Static
Dynamic



Data Partitioning (SPMD)

MPI - Message Passing Interface 16

void main()
{

int i,j;
char a;
for(i=0;
...

Implementation:
1 Source code

Execution:
n Executables

void main()
{

int i,j;
char a;
for(i=0;
...

void main()
{

int i,j;
char a;
for(i=0;
...

void main()
{

int i,j;
char a;
for(i=0;
...

Processor 1 Processor 2

Process 1 Process 2 Process 3 



Task-Partitioning
(MPMD)

MPI - Message Passing Interface 17

void main()
{

int i,j;
char a;
for(i=0;
...

Implementation:
m Source codes

Execution:
n Executables

void main()
{

int i,j;
char a;
for(i=0;
...

Processor 1 Processor 2

Process 1 Process 2 Process  3

void main()
{

int k;
char b;
while(b=
...

void main()
{

int k;
char b;
while(b=
...

void main()
{

int k;
char b;
while(b=
...
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Comparison: SPMD/MPMD

SPMD:
One source code for all processes
Distinction in the source code through
control statements

if (pid() == MASTER) { ... }

else { ... }

Widely used



MPI - Message Passing Interface 19

Comparison: SPMD/MPMD

MPMD:
One source for each process
Higher flexibility and modularity
Administration of source codes difficult
Additional effort during process creation
Dynamic process creation possible



MPI - Message Passing Interface 20

Process Creation

Static:
All processes are defined before execution
System starts a fixed number of processes
Each process receives same copy of the code



MPI - Message Passing Interface 21

Process Creation

Dynamic:
Processes can creation/execute/terminate other processes 
during execution
Number of processes changes during execution
Special constructs or functions are needed

Advantage: 
higher flexibility than SPMD
Disadvantage: 
process creation expensive � overhead



MPI - Message Passing Interface 22

Process Creation/Execution

Commands:
Creation and execution of processes is not part of the 
standard, but instead depends on the chosen implementation:
Compile: mpicc -o <exec> <file>.c

Execute: mpirun -np <proc> <exec>

Process Creation: only static (before MPI-2)
SPMD programming model
Mapping of process to processes not part of the standard 
(permits optimal automatic mapping)



MPI - Message Passing Interface 23

Basic-Code-Fragment

Initialization and Exit:
1. #include <mpi.h>

2. ... 

3. int main(int argc, char *argv[])

4. {

5. MPI_Init(&argc, &argv);

6. ...

7. MPI_Finalize();

8. }

Initialize MPI

Terminate and
Clean up MPI

Provide
Command Line 

Parameters

Interface defintion
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Structure of MPI Functions

General:
1. result = MPI_Xxx(…);

Example:
1. result = MPI_Init(&argc, &argv);

2. if(result!=MPI_SUCCESS) {

3. fprintf(stderr,”Problem”);

4. fflush(stderr);

5. MPI_Abort(MPI_COMM_WORLD,result);

6. }
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Query Functions

Identification:
Who am I?
Which process number has the current process?

MPI_Comm_rank(MPI_COMM_WORLD, &myrank)

Who else is there?
How many processes have been started?

MPI_Comm_size(MPI_COMM_WORLD, &mysize)

Characteristics: 0 <= myrank < mysize



MPI - Message Passing Interface 26

MPI & SPMD Restrictions

Ideally: Each process executes the same code.
Usually: One (or a few) processes execute slightly different 
codes.

Preliminaries:
Statements to distinguish processes and the subsequent code 
execution

Example: Master-slave program
� complete code within one program/executable
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Master-Slave Program

1. int main(int argc, char *argv[])
2. {
3. MPI_Init(&argc, &argv);
4. ...
5. MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
6. if(myrank == 0)
7. master();
8. else
9. slave();
10. ...
11. MPI_Finalize();
12. }
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Global Variables

Problem:
1. int main(int argc, char *argv[])

2. { float big_array[10000];

Solution:
1. int main(int argc, char *argv[])

2. {

3. if(myrank == 0) {

4. float big_array[10000];
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Global Variables

Problem:
1. int main(int argc, char *argv[])

2. { float big_array[10000];

Solution:
1. int main(int argc, char *argv[])

2. {

3. float *big_array;

4. if(myrank == 0) {

5. big_array = (float *)malloc(...)
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Guidelines for 
Using Communication

Try to avoid communication as much as possible: 
more than a factor of 100/1000 between transporting 
a byte and doing a multiplication
– Often it is faster to replicate computation than to compute 

results on one process and communicate them to other 
processes.

Try to combine messages before sending.
– It is better to send one large message than several small 

ones.



Basic Functions:
send(parameter_list)

Send Function:
In origin process
Creates message

recv(parameter_list)

Receive Function:
In destination process
Receives transmitted 
message

MPI - Message Passing Interface 31

Message Passing

Destination

Send Recv

Origin

Message



On the origin process:
send(&x,destination_id)

On the destination process:
recv(&y, source_id)

MPI - Message Passing Interface 32

Simple Functions

Message
passing

Recv(&y,1)

Process 1 Process 2

Send(&x,2)

x y

T
im

e
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Standard Send
int MPI_Send (void *buf, int count, 

MPI_Datatype datatype, int dest, 
int tag, MPI_Comm comm)

buf Address of message in memory
count Number of elements in message
datatype Data type of message
dest Destination process of message
tag Generic message tag
comm Communication handler

MPI_Datatype   MPI_CHAR,MPI_INT,MPI_FLOAT,...
MPI_Comm       MPI_COMM_WORLD
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Standard Receive
int MPI_Recv (void *buf, int count, 

MPI_Datatype datatype, int source, int tag,
MPI_Comm comm, MPI_Status *status)

buf Address of message im memory
count Expected number of elements in message
datatype Data type of message
source Origin process of message
tag Generic message tag
comm Communication handler
status Status-Information
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Example: Hello World

Process 1 
Str = “Hello World ”

Send(Str)

Process 0
Recv(Str)

print(Str)
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Example: Hello World

1. if (myrank == 1) {

2. char sendStr[] = “Hello World”;

3. MPI_Send(sendStr, strlen(sendStr)+1, MPI_CHAR, 

4. 0 ,3, MPI_COMM_WORLD );

5. }

6. else {

7. char recvStr[20];

8. MPI_Recv(recvStr, 20, MPI_CHAR, 1, 3, 

9. MPI_COMM_WORLD, &stat );

10. printf(“%s\n”,recvStr);

11. }
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Example: Round Robin

Process 0

MPI_Send( Str,...)
MPI_Recv( Str,...)
printf( Str)

Process 1

MPI_Recv( Str,...)
printf( Str)
MPI_Send( Str,...)

Process 2

MPI_Recv( Str,...)
printf( Str)
MPI_Send( Str,...)

Process 3

MPI_Recv( Str,...)
printf( Str)
MPI_Send( Str,...)
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Standard Receive

Remark:
Maximum message length is fixed:

If message is bigger � overflow error
If message is smaller � unused memory

� Allocate sufficient space before calling MPI_Recv
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Standard Receive
How many elements have been received?

int MPI_Get_count (MPI_Status *status, MPI_Datatype
datatype, int *count)

Status-Information:
1. struct MPI_Status {
2. int MPI_SOURCE;
3. int MPI_TAG;
4. int MPI_ERROR;
5. int count;
6. ...
7. }; Number of Elements

in case of  
MPI_ANY_SOURCE

in case of
MPI_ANY_TAG
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MPI Specifics

Communicators: Scope of communication operations
Structure of messages: complex data types
Data transfer:
– Synchronous/asynchronous
– Blocking/non-blocking

Message tags/identifiers
Communication partners:
– Point-to-point
– Wild card process and message tags
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Communicators

Scope of processes
Communicator group processes
A group defines the set of processes, 
that can communicate with each other
Used in point-to-point and collective communication
After starting a program, its processes subscribe to the 
“Universe” ==> MPI_COMM_WORLD

Each program has its own “Universe”
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Usage of Communicators

Fence off communication environment
Example: Communication in library
What happens, if a program uses a parallel library 
that uses MPI itself?
2 Kinds of communicators:
– Intra-communicator: inside a group
– Inter-communicator: between groups

Processes in each group are always numbered 0 to m-1
for m processes in a group
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MPI Specifics

Communicators: Scope of communication operations
Structure of messages: complex data types
Data transfer:
– Synchronous/asynchronous
– Blocking/non-blocking

Message tags/identifiers
Communication partners:
– Point-to-point
– Wild card process and message tags
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Structure of Messages

Standard data types:
– Integer, Float, Character, Byte, ...
– (Continuous) arrays

Complex data types:
– Messages including different data: counter + elements
– Non-continuous data types: sparse matrices

Solutions:
– Pack/unpack functions
– Special (common) data types:

• Array of data types
• Array of memory displacements

– Managed by the message-passing library
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Point-to-Point Communication

MPI:
Data types for message contents:
– Standard types: 

• MPI_INT

• MPI_FLOAT

• MPI_CHAR

• MPI_DOUBLE

• ...

– User defined types: derived from standard types
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Data Transfer

Blocking:
Function does not return, 
before message can be accessed again 
Process is „blocked“

Non-blocking:
Function returns, whether data transfer is finished or not
Requires function to query the status of the data transfer
Message buffers are needed
– Length of message is limited

Overlapping of communication and computation is possible 
– � Reduction of execution time
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Data Transfer with
Message Buffer

Non-blocking send:

Message
buffer

Recv(&y,1)

Process 1 Process 2 

Send(&x,2)

T
im

e
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MPI Viewpoint

Concepts for blocking:
Locally blocking:
– Function is blocked, until messages has been copied into 

buffer
– Transfer needs not be completed

Locally non-blocking:
– Function returns immediately, whether message has been 

copied or not
– User is responsible for message
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Standard Send/Receive
MPI_Send:
– Is locally complete as soon as the message is free for 

further processing
– The message needs not be received
� most likely it will have been transferred to 
communication buffer

MPI_Recv:
– Is locally complete, as soon as the message has been 

received
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Pitfall: Deadlock

Cyclic message exchange in a ring:

if (rank == 0) {
MPI_Send(buffer,length,MPI_CHAR,1,…);
MPI_Recv(buffer,length,MPI_CHAR,1,…);

} else if (rank == 1) {
MPI_Send(buffer,length,MPI_CHAR,0,…);
MPI_Recv(buffer,length,MPI_CHAR,0,…);

}

Problem: both processes are blocked, since each process is 
waiting on receive to complete send. 
Cyclic resource-dependencies
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Deadlock Solution

No cyclic dependencies:

if (rank == 0) {
MPI_Send(buffer,length,MPI_CHAR,1,…);
MPI_Recv(buffer,length,MPI_CHAR,1,…);

} else if (rank == 1) {
MPI_Recv(buffer,length,MPI_CHAR,0,…);
MPI_Send(buffer,length,MPI_CHAR,0,…);

} 
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Blocking Test
int MPI_Probe (int source, int tag

MPI_Comm comm, MPI_Status *status)

source Origin process of message
tag Generic message tag
comm Communication handler
status Status information

Is locally complete,
as soon as a message has been received
Does not return the message, 
but provides only status information about it
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MPI_Sendrecv

Performs send and receive in one single function call: 

MPI_Sendrecv (
pointer to send buffer  void *sendbuf,
size of send message (in elements) int sendcount,
datatype of element MPI_Datatype sendtype,
destination int dest,
tag int sendtag,
pointer to receive buffer  void *recvbuf,
size of receive message (in elem.) int recvcount,
datatype of element MPI_Datatype recvtype,
source int source,
tag int recvtag,
communicator MPI_Comm communicator,
return status MPI_Status *status);
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MPI_Sendrecv_replace

Performs send and receive in one single function call and operates only one 
one single buffer:

MPI_Sendrecv_replace (
pointer to buffer  void *buf,

size of message (in elements) int count,

datatype of element MPI_Datatype type,

destination int dest,

tag int sendtag,

source int source,

tag int recvtag,

communicator MPI_Comm communicator,

return status MPI_Status *status);
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Non-blocking Functions
MPI_Isend:
– Returns immediately, 

whether function is locally complete or not
– Message has not been copied 
� Changes may affect contents of message

MPI_Irecv:
– Returns immediately, 

whether a message has arrived or not

MPI_Iprobe: 
– Non-blocking test for a message
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Auxiliary Functions

Is an operation completed or not?

int MPI_Wait(MPI_Request *request, MPI_Status *status)

Waits until operation is completed

int MPI_Test(MPI_Request *request, int *flag, 
MPI_status *status)

Returns immediately. 
flag contains status of request (true/false).
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Additional Wait-Functions
int MPI_Waitany(int count, 

MPI_Request *array_of_requests, int *index, MPI_Sta tus 
*status)

int MPI_Waitall(int count, 
MPI_Request *array_of_requests,

MPI_Status *status)

int MPI_Waitsome(int incount, 
MPI_Request *array_of_requests, int *outcount, int 

*array_of_indices, 
MPI_Status *array_of_statuses)
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Additional Test-Functions
int MPI_Testany(int count, 

MPI_Request *array_of_requests, int *index, 
int *flag, MPI_Status *status)

int MPI_Testall(int count, 
MPI_Request *array_of_requests,
int *flag, MPI_Status *status)

int MPI_Testsome(int incount, 
MPI_Request *array_of_requests, int *outcount, int 

*array_of_indices, 
MPI_Status *array_of_statuses)
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Non-Blocking Functions

Message
buffer

MPI_Recv(&y,1)

Process 1 Process 2

MPI_Isend

MPI_Wait completed

T
im

e
Example: Overlapping of Computation and Communication
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Example: Overlapping
1. if (myrank == 0) {
2. int x;
3. MPI_Isend(&x,1,MPI_INT,1,3,MPI_COMM_WORLD,

req)
4. compute();
5. MPI_Wait(req,status);
6. }
7. else {
8. int x;
9. MPI_Recv(&x,1,MPI_INT,0,3,MPI_COMM_WORLD,

stat)
10. }
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Additional Send-Modes
Possibilities:

Blocking Non-blocking

Standard MPI_Send MPI_Isend

Synchronous MPI_Ssend MPI_Issend

Buffered MPI_Bsend MPI_Ibsend

Ready MPI_Rsend MPI_Irsend
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Additional Send-Modes

All functions are available blocking & non-blocking

Standard Mode:
– No assumption about corresponding receive function
– Buffers depend on implementation

Synchronous Mode:
– Send/Receive can be started independently but must finish 

together
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Data Transfer

Synchronous communication: Rendezvous
Return from function represents end of transfer
Message buffers are not required
Send function waits until receive finished
Recv function waits until message arrives

Side effect: synchronization of processes
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Data Transfer

Asynchronous Communication:
Send and receive have no temporal connection
Message buffers are required
Buffers located at sender or receiver
Send process does not know, 
whether message actually arrived or not
Target process may not receive a message
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Synchronous Data Transfer

Case 1: Send is called before receive

Request

Ack

Message

Recv(&y,1)

Process 1 Process 2 

Send(&x,2)

E
x
e
c
u
t
i
o
n

b
l
o
c
k
e
d

T
im

e
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Synchronous Data Transfer

Case 2: Recv is called before send

Request

Message

Recv(&y,1)

Process 1 Process 2 

Send(&x,2)

T
im

e

E
x
e
c
u
t
i
o
n

b
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o
c
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e
d
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Additional Send-Modes
Possibilities:

Blocking Non-blocking

Standard MPI_Send MPI_Isend

Synchronous MPI_Ssend MPI_Issend

Buffered MPI_Bsend MPI_Ibsend

Ready MPI_Rsend MPI_Irsend
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Message Tags

Additional Parameter:

Identifier for message contents
Supports distinction of different messages
(e.g. commands, data, ...)
Increases flexibility
msgtag is usually arbitrarily chosen integer

Example:
send(&x,2,5) � recv(&y,1,5)
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Wildcard-Identifiers

Receive-Function:
Defines message origin and and message tag
Only corresponding messages are accepted
All other messages are ignored

Wild card == Joker
Permits messages from arbitrary origin
Permits messages with arbitrary tag
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Wild Card

recv(&y,a,b) origin = a
tag = b

recv(&y, ?,b) arbitrary origin
tag = b

recv(&y,a, ?) origin = a
arbitrary tag 

recv(&y, ?, ?) arbitrary origin
arbitrary tag
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Point-to-Point Communication

MPI Specifics:

Wild Card at receive operation:
– for message origin: MPI_ANY_SOURCE

– for message tag: MPI_ANY_TAG

Problem:
Race Conditions/Nondeterminism
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Collective Operations

Until now:
Point-to-point operations ==> 1 Sender, 1 Receiver

Now:
Functions and operations 
involving multiple processes
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Collective Operations

Possibilities:
MPI_Barrier : has to be passed by all processes
MPI_Bcast : one process to all others
MPI_Gather : collect data of other processes
MPI_Scatter : distribute data onto other processes
MPI_Reduce : combine data of other processes
MPI_Reduce_scatter : combine and distribute

...
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Barrier Synchronization

int MPI_Barrier(MPI_Comm comm)

Communicator comm defines a group of processes, 
that has to wait 
until each process has arrived at the barrier



Broadcast/Multicast
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Process 0

BCast()

data

Process 2

BCast()

data

Process 1 

BCast()

data

msg
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MPI Broadcast

int MPI_Bcast(
void *buffer, int count, 

MPI_Datatype datatype, 
int root, MPI_Comm comm)

Message buf of process root is distributed to all 
processes within communicator comm
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Scatter

Distribute the array msg_arr
of process root to all other processes

– Contents at index i is sent to process i
– Different implementations possible:

Data may be returned to root, ...
– Widely used in SPMD Model



Scatter
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Process 0

Scatter()

data

Process n-1

Scatter()

data

Process 1

Scatter()

data

msg_arr

... . . .
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MPI Scatter

int MPI_Scatter (
void *sendbuf, int sendcount, MPI_Datatype 

sendtype, 
void *recvbuf, int recvcount, MPI_Datatype 

recvtype, 
int root, MPI_Comm comm)
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Gather

Collect data of all processes on process root
in array msg_arr

– Data of process i is stored at index i
– Opposite of Scatter-Operation
– Usually at the end of a distributed computation
– Different implementations possible



Gather
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Process 0 

Gather()

data

Process n-1

Gather()

data

Process 1

Gather()

data

msg_arr

... . . .
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MPI Gather

int MPI_Gather(
void *sendbuf, int sendcount, MPI_Datatype 

sendtype, 
void *recvbuf, int recvcount, MPI_Datatype 

recvtype, 
int root, MPI_Comm comm)
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Example: Data Collection
1. int data[10];

2. ...

3. MPI_Comm_rank(MPI_COMM_WORLD,&myrank);

4. if (myrank == 0) {

5. MPI_Comm_size(MPI_COMM_WORLD,&grp_size);

6. buf = (int*)malloc(grpsize*10*sizeof(int));

7. }

8. MPI_Gather(data,10,MPI_INT,

9. buf,grpsize*10,MPI_INT,0,MPI_COMM_WORLD);
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Reduce

Global operation on process root during data collection

– Combination of Gather + global operation
– logical or arithmetic operation possible
– Different implementations possible:

operation on root, 
partial, distributed operations, ...



Reduce
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Process 0

Reduce()

data

Process n-1

Reduce()

data

Process 1

Reduce()

data

. . .msg +
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MPI Reduce

int MPI_Reduce(
void *sendbuf, void *recvbuf, 

int count, MPI_Datatype datatype, MPI_Op op, 
int root, MPI_COMM comm)

Operations:
MPI_MAX, MPI_MIN, MPI_SUM, MPI_PROD, …
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Selected Features

Communicators: 
How to create process groups?
Topologies:
How to create virtual topolgies?
General data types:
How to use your own data types?
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Selected Features

Communicators: 
How to create process groups?
Topologies:
How to create virtual topolgies?
General data types:
How to use your own data types?
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Communicators

Standard intra-communicator:
– MPI_COMM_WORLD = 

All processes of a program

Functions:
– MPI_Comm_group ( comm, group )
– MPI_Group_excl ( group, n, ranks, newgroup )
– MPI_Comm_create ( comm, group, comm_out )
– MPI_Comm_free ( comm )
– ...
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Example: Communicator

#include <mpi.h>

int main(int argc, char *argv[])
{

int rank,size;
int array[8] = {2,3,0,0,0,0,0,0};
int i,subrank;
MPI_Status status;
MPI_Group group;
MPI_Comm comm;

MPI_Init(&argc,&argv);
MPI_Comm_rank(MPI_COMM_WORLD,&rank);
MPI_Comm_size(MPI_COMM_WORLD,&size);
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Example: Communicator
...

MPI_Comm_group(MPI_COMM_WORLD,&group);
MPI_Group_excl( group,2,array,& group);
MPI_Group_rank( group,&subrank);
MPI_Group_size( group,&size);

MPI_Comm_create(MPI_COMM_WORLD,group,& comm);
if(subrank != MPI_UNDEFINED) {

MPI_Gather(&rank,1,MPI_INT,&array,1,
MPI_INT,0, comm);

MPI_Comm_free(& comm);
}
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Example: Communicator

...

if(rank == 0) {
for(i=0;i<size;i++) printf("%d ",array[i]);
printf("\n");
}

MPI_Finalize();
}

mpirun –np 8 group

0 1 4 5 6 7
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OpenMP fundamentals, parallel regions

OpenMP Overview
The OpenMP model
Writing OpenMP programs
Creating Threads
Data-sharing attributes

OpenMP
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What is OpenMP?

It’s an API extension to the C, C++ and Fortran languages to 
write parallel programs for shared memory machines
– Current version is 3.1 (July 2011)

• ... 4.0 is open for public comments

– Supported by most compiler vendors
• Intel, IBM, PGI, Sun, Cray, Fujitsu, HP, GCC...

Maintained by the Architecture Review Board (ARB), a 
consortium of industry and academia
http://www.openmp.org

OpenMP



4

A bit of history

OpenMP
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Advantages of OpenMP

Mature standard and implementations
– Standardizes practice of the last 20 years

Good performance and scalability
Portable across architectures
Incremental parallelization
Maintains sequential version
– (mostly) High level language

Some people may say a medium level language :-)
Supports both task and data parallelism
Communication is implicit

OpenMP
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Disadvantages of OpenMP

Communication is implicit
Flat memory model
Incremental parallelization creates false sense of glory/failure
No support for accelerators (...yet, maybe in 4.0)
No error recovery capabilities (...yet, 4.0)
Difficult to compose
Lacks high-level algorithms and structures
Does not run on clusters



MPI - Message Passing Interface 7

OpenMP at a glance
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Execution Model

OpenMP uses a fork-join model
– The master thread spawns a team of threads that joins at the end of 

the parallel region
– Threads in the same team can collaborate to do work

OpenMP
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Memory model

OpenMP defines a relaxed memory model
– Threads can see different values for the same variable
– Memory consistency is only guaranteed at specific points
– Luckily, the default points are usually enough

Variables can be shared or private to each thread

OpenMP
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OpenMP directives syntax

In Fortran
Through a specially formatted comment:

s e n t i n e l construct [ clauses ]
where sentinel is one of:
– !$OMP or C$OMP or *$OMP in fixed format
– !$OMP in free format

In C/C++
Through a compiler directive:

#pragma omp construct [ clauses ]

OpenMP syntax is ignored if the compiler does not recognize
OpenMP (we’ll be using C/C++ syntax through this tutorial)

OpenMP
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Headers/Macros

C/C++ only
– omp.h contains the API prototypes and data types definitions
– The _OPENMP is defined by the OpenMP enabled compilers

• Allows conditional compilation of OpenMP

Fortran only
– The omp_lib module contains the subroutine and function 

definitions

OpenMP
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Structured Block

Definition
Most directives apply to a structured block:

– Block of one or more statements
• One entry point, one exit point

– No branching in or out allowed
– Terminating the program is allowed

OpenMP
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The parallel construct

Directive
#pragma omp parallel [ clauses ]

s t r u c t u r e d block
where clauses can be:

– num_threads(expression)
– if(expression)
– shared(var-list)
– private(var-list)
– firstprivate(var-list)
– default(none|shared| private | firstprivate )
– reduction(var-list)
– copyin(var-list)

OpenMP
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The parallel construct

Specifying the number of threads
– The number of threads is controlled by an internal control variable 

(ICV) called nthreads-var
– When a parallel construct is found a parallel region with a maximum of 

nthreads-var is created
• Parallel constructs can be nested creating nested parallelism

– The nthreads-var can be modified through
• the omp_set_num_threads API called
• the OMP_NUM_THREADS environment variable

– Additionally, the num_threads clause causes the implementation to 
ignore the ICV and use the value of the clause for that region

OpenMP
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The parallel construct

Avoiding parallel regions
– Sometimes we only want to run in parallel under certain conditions

• E.g., enough input data, not running already in parallel, ...

– The if clause allows to specify an expression. When it evaluates to 
false the parallel construct will only use 1 thread

• Note that it still creates a new team and data environment

OpenMP
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Putting it together

Example

void main ( ) {

#pragma omp parallel

. . . 
omp_set_num_threads ( 2 ) ;

#pragma omp parallel

. . . 

#pragma omp parallel num_threads( random()%4+1) if
(N>=128)

. . . 

}

OpenMP
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Putting it together

Example

void main ( ) {

#pragma omp parallel

. . . An unknown number of threads here. Use 
OMP_NUM_THREADS
omp_set_num_threads ( 2 ) ;

#pragma omp parallel

. . . A team of two threads here
#pragma omp parallel num_threads( random()%4+1) if
(N>=128)

. . . A team of [1..4] threads here
}

OpenMP
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Other useful routines
int omp_get_num_threads() Returns the number of threads 
in the current team
int omp_get_thread_num() Returns the id of the thread in the 
current team
int omp_get_num_procs() Returns the number of processors 
in the machine
int omp_get_max_threads() Returns the maximum number 
of threads that will be used in the next parallel region
double omp_get_wtime() Returns the number of seconds 
since an  arbitrary point in the past

OpenMP
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Data environment

A number of clauses are related to building the data 
environment that the construct will use when executing
shared
private
firstprivate
default
threadprivate
lastprivate
reduction
copyin
copyprivate

OpenMP
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Data-sharing attributes

Shared
When a variable is marked as shared, the variable inside the

construct is the same as the one outside the construct
– In a parallel construct this means all threads see the same variable

• but not necessarily the same value
– Usually need some kind of synchronization to update them correctly

• OpenMP has consistency points at synchronizations

Example
int x =1;
#pragma omp parallel shared( x ) num_threads( 2 )
{

x++;
printf("%d\n" , x ) ;

}
printf("%d\n" , x ) ;

Prints 2 or 3 (three printfs in total)

OpenMP
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Data-sharing attributes

Private
When a variable is marked as private, the variable inside the 
construct is a new variable of the same type with an undefined 
value
– In a parallel construct this means all threads have a different variable
– Can be accessed without any kind of synchronization

Example
int x =1;
#pragma omp parallel private( x ) num_threads( 2 )
{

x++;
printf("%d\n" , x ) ;

}
printf("%d\n" , x ) ;

Can print anything (twice, same or different)
Prints 1

OpenMP
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Data-sharing attributes

Firstprivate
When a variable is marked as firstprivate, the variable inside the 
construct is a new variable of the same type but it is initialized to the 
original value of the variable
– In a parallel construct this means all threads have a different variable with the same 

initial value
– Can be accessed without any kind of synchronization

Example
int x =1;
#pragma omp parallel firstprivate( x ) num_threads( 2 )
{

x++;
printf("%d\n" , x ) ;

}
printf("%d\n" , x ) ;

Prints 2 twice 
Prints 1

OpenMP
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Data-sharing attributes
What is the default?

Static/global storage is shared
Heap-allocated storage is shared
Stack-allocated storage inside the construct is private
Others

– If there is a default clause, what the clause says 
• none means that the compiler will issue an error if the attribute is not explicitly set by the programmer

– Otherwise, depends on the construct
• For the parallel region the default is shared

Example
int x , y ;
#pragma omp parallel private( y )
{

x = x is shared
y = y is private
#pragma omp parallel private( x )
{

x = x is private
y = y is shared

}
}

OpenMP



24

Data-sharing attributes
Threadprivate storage
Static/global storage is shared

#pragma omp t h r e a d p r i v a t e ( var-l i s t )
Can be applied to:

– Global variables
– Static variables
– Class-static members

Allows to create a per-thread copy of “global” variables
threadprivate storage persist across parallel regions if the number of threads is the 
same
Threadprivate persistence across nested regions is complex

Example
#char foo ( )
{

s t a t i c char b u f f e r [BUF_SIZE ] ;
#pragma omp t h r e a d p r i v a t e ( b u f f e r )

Creates one static copy of buffer per thread
Now foo can be called by multiple threads at the same time

. . .
return b u f f e r ; foo returns correct address to caller

}

OpenMP
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Worksharing constructs

Worksharing constructs divide the execution of a 
code region among the threads of a team
– Threads cooperate to do some work
– Better way to split work than using thread-ids
– Lower overhead than using tasks

• But, less flexible

In OpenMP, there are four worksharing constructs:
– single
– loop worksharing
– section
– workshare

Restriction: worksharings cannot be nested

OpenMP
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Loop parallelism

The for construct
#pragma omp for [ clauses ]

for ( init -expr ; test -expr ; inc -expr )

where clauses can be:
– private
– firstprivate
– lastprivate(variable-list)
– reduction(operator:variable-list)
– schedule(schedule-kind)
– nowait
– collapse(n)
– ordered

OpenMP
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The for construct

How does it work?
The iterations of the loop(s) associated to the construct 
are divided among the threads of the team

– Loop iterations must be independent
– Loops must follow a form that allows to compute the number of 

iterations
– Valid data types for induction variables are: integer types, pointers and 

random access iterators (in C++)
• The induction variable(s) are automatically privatized

– The default data-sharing attribute is shared

It can be merged with the parallel construct:
#pragma omp parallel for

OpenMP
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The for construct

Example
void foo ( int m, int N, int M)
{

int i ;

#pragma omp parallel for private( j ) 
New created threads cooperate to execute all the iterations of the loop

for ( i = 0; i < N; i ++ ) The i variable is automatically privatized

for ( j = 0; j < M; j ++ ) j Must be explicitly privatized

m[ i ] [ j ] = 0;
}

Example 2
void foo ( std : : vector <int > &v )
{

#pragma omp parallel for
for ( std : : vector <int > : : iterator it = v . begin ( ) ;

random access iterators (and pointers) are valid types

it < v . end ( ) ; != cannot be used in the test expression

it ++ )
*it = 0;

}

OpenMP
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Removing dependences

Example
x = 0;
for ( i = 0; i < n ; i ++ )
{

v [ i ] = x ;

x += dx ; Each iteration x depends on the previous one. Can’t be parallelized

}

Example 2
x = 0;
for ( i = 0; i < n ; i ++ )
{

x = i * dx ; But x can be rewritten in terms of i. Now it can be parallelized

v [ i ] = x ;
}

OpenMP
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The lastprivate clause

When a variable is declared lastprivate, a private 
copy is generated for each thread. Then the value of 
the variable in the last iteration of the loop is copied 
back to the original variable
– A variable can be both firstprivate and lastprivate

OpenMP
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The reduction clause

A very common pattern is where all threads 
accumulate some values into a single variable

– E.g., n += v[i], our heat program, ...
– Using critical or atomic is not good enough 

• Besides being error prone and cumbersome

Instead we can use the reduction clause for basic types
– Valid operators are: +, -, *, |, ||, &, &&,^, min, max

• User-defined reductions coming soon...

– The compiler creates a private copy that is properly initialized
– At the end of the region, the compiler ensures that the shared variable 

is properly (and safely) updated

We can also specify reduction variables in the parallel 
construct

OpenMP
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The reduction clause

Example
int vector_sum ( int n , int v [ n ] )

{

int i , sum = 0;

#pragma omp parallel for reduction ( + : sum)

{ Private copy initialized here to the identity value

for ( i = 0; i < n ; i ++ )

sum += v [ i ] ;

} Shared variable updated here with the partial values of each thread

return sum;

}

OpenMP
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The schedule clause

The schedule clause determines which iterations are 
executed by each thread

– If no schedule clause is present then is implementation defined

There are several possible options as schedule:
– STATIC
– STATIC,chunk
– DYNAMIC[,chunk]
– GUIDED[,chunk]
– AUTO
– RUNTIME

OpenMP
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The schedule clause

Static schedule
– The iteration space is broken in chunks of approximately size N/num -

threads. Then these chunks are assigned to the threads in a Round-
Robin fashion

Static, N schedule (Interleaved)
– The iteration space is broken in chunks of size N. Then these chunks 

are assigned to the threads in a Round-Robin fashion

Characteristics of static schedules
– Low overhead
– Good locality (usually)
– Can have load imbalance problems

OpenMP
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The schedule clause

Dynamic, N schedule
– Threads dynamically grab chunks of N iterations until all iterations have 

been executed. If no chunk is specified, N = 1.

Guided, N schedule
– Variant of dynamic. The size of the chunks deceases as the threads 

grab iterations, but it is at least of size N. If no chunk is specified, N = 
1.

Characteristics of dynamic schedules
– Higher overhead
– Not very good locality (usually)
– Can solve imbalance problems

OpenMP
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The schedule clause

Auto schedule
– In this case, the implementation is allowed to do whatever it wishes

• Do not expect much of it as of now

Runtime schedule
– The decision is delayed until the program is run through the sched-

nvar ICV. It can be set with:
• The OMP_SCHEDULE environment variable
• The omp_set_schedule() API call

OpenMP
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The nowait clause

When a worksharing has a nowait clause then the 
implicit barrier at the end of the loop is removed
– This allows to overlap the execution of non-dependent 

loops/tasks/worksharings

Example
#pragma omp for nowait First and second loop are independent, so we can 

overlap them Side note: you would better fuse the loops in this case

for ( i = 0; i < n ; i ++ )

v [ i ] = 0;

#pragma omp for

for ( i = 0; i < n ; i ++ )

a [ i ] = 0;

OpenMP
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The nowait clause

Example
#pragma omp for nowait First and second loops are dependent! No 
guarantees that the previous iteration is finished

for ( i = 0; i < n ; i ++ )

v [ i ] = 0;

#pragma omp for

for ( i = 0; i < n ; i ++ )

a [ i ] = v [ i ] v [ i ] ;

OpenMP
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The nowait clause

Exception: static schedules
– If the two (or more) loops have the same static schedule and all have the same number 

of iterations

Example
#pragma omp for schedule( stat ic , M) nowait

for ( i = 0; i < n ; i ++ )

v [ i ] = 0;

#pragma omp for schedule( stat ic , M)

for ( i = 0; i < n ; i ++ )

a [ i ] = v [ i ] v [ i ] ;

OpenMP
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The collapse clause

Allows to distribute work from a set of n nested loops
– Loops must be perfectly nested
– The nest must traverse a rectangular iteration space

Example
#pragma omp for collapse( 2 )

for ( i = 0; i < N; i ++ ) i and j loops are folded and iterations 
distributed among all threads. Both i and j are privatized

for ( j = 0; j < M; j ++ )

foo ( i , j ) ;

OpenMP
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Basic Synchronizations

Why synchronization?

Mechanisms

Threads need to synchronize to impose some ordering in the 
sequence of actions of the threads. OpenMP provides different 
synchronization mechanisms:

– barrier
– critical
– atomic
– taskwait
– ordered
– locks

OpenMP
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Thread Barrier

The barrier construct
#pragma omp barrier

– Threads cannot proceed past a barrier point until all threads reach the barrier AND all 
previously generated work is completed

– Some constructs have an implicit barrier at the end 
• E.g., the parallel construct

Example
#pragma omp parallel

{

foo ( ) ;

#pragma omp barrier

Forces all foo occurrences to happen before all bar occurrences

bar ( ) ;

} Implicit barrier at the end of the parallel region

OpenMP
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Exclusive access

The critical construct
#pragma omp critical [ ( name ) ]

s t r u c t u r e d block
– Provides a region of mutual exclusion where only one thread can be working at any 

given time.
– By default all critical regions are the same, but you can provide them with names

• Only those with the same name synchronize

Example
int x =1;
#pragma omp parallel num_threads( 2 )
{
#pragma omp critical

x++; Only one thread at a time here
}

p r i n t f ("%d\n" , x ) ; Prints 3!

OpenMP
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Exclusive access

Example
int x=1 , y =0;

#pragma omp parallel num_threads( 4 )

{

#pragma omp critical ( x ) 
Different names: One thread can update x while another updates y

x++;

#pragma omp critical ( y )

y++;

}

OpenMP
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Exclusive access

The atomic construct
#pragma omp atomic

expression
– Provides an special mechanism of mutual exclusion to do read & update operations
– Only supports simple read & update expressions

• E.g., x += 1, x = x - foo()
– Only protects the read & update part

• foo() not protected
– Usually much more efficient than a critical construct
– Not compatible with critical

Example
int x =1;
#pragma omp parallel num_threads( 2 )
{#
pragma omp atomic

x++; Only one thread at a time updates x here
}
p r i n t f ("%d\n" , x ) ; Prints 3!

OpenMP
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Exclusive access

Example
int x =1;

#pragma omp parallel num_threads( 2 )

{

#pragma omp critical

Different threads can update x at the same time!

x++;

#pragma omp atomic

x++;

}

p r i n t f ("%d\n" , x ) ; Prints 3,4 or 5 :(

OpenMP
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Heat diffusion

Parallel loops
The file solver.c implements the computation of the Heat 
diffusion

1. Annotate the jacobi, redblack, and gauss functions with 
OpenMP

2. Execute the application with different numbers of processors
• compare the results
• evaluate the performance

OpenMP
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Task Parallelism in OpenMP

Task parallelism in OpenMP
Task parallelism model

Parallelism is extracted from “several” pieces of code
Allows to parallelize very unstructured parallelism
– Unbounded loops, recursive functions, ...

OpenMP
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Task Parallelism in OpenMP

What is a task in OpenMP ?
Tasks are work units whose execution may be deferred
– they can also be executed immediately

Tasks are composed of:
– code to execute
– a data environment

• Initialized at creation time

– internal control variables (ICVs)

Threads of the team cooperate to execute them

OpenMP
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Creating tasks

The task construct
#pragma omp task [ clauses ]

s t r u c t u r e d block

Where clauses can be:
– shared
– private
– firstprivate

• Values are captured at creation time

– default
– if(expression)
– untied

OpenMP
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When are tasks created?

Parallel regions create tasks
– One implicit task is created and assigned to each thread

• So all task-concepts have sense inside the parallel region

Each thread that encounters a task construct
– Packages the code and data
– Creates a new explicit task

OpenMP
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Default task data-sharing attributes

If no default clause
– Implicit rules apply

• e.g., global variables are shared

Otherwise...
– firstprivate
– shared attribute is lexically inherited

OpenMP
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Default task data-sharing attributes

In Practice
Example
int a ;
void foo ( ) {

int b , c ;
#pragma omp parallel shared( b )
#pragma omp parallel private( b )
{

int d ;
#pragma omp task
{

int e ;
a = shared
b = firstprivate
c = shared
d = firstprivate
e = private

} } }
Tip: default(none) is your friend if you do not see it clearly

OpenMP
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List traversal

Example
void t r a v e r s e _ l i s t ( L i s t l )

{

Element e ;

for ( e = l-> f i r s t ; e ; e = e->next )

#pragma omp task

process ( e ) ; e is firstprivate
}

OpenMP
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Task synchronization

There are two main constructs to synchronize tasks:
– barrier

• Remember: all previous work (including tasks) must be completed

– taskwait

The taskwait construct
#pragma omp taskwait

Suspends the current task until all children tasks are completed
– Just direct children, not descendants

OpenMP



56

List Traversal

Example
void t r a v e r s e _ l i s t ( L i s t l )

{

Element e ;

for ( e = l-> f i r s t ; e ; e = e->next )

#pragma omp task

process ( e ) ;

#pragma omp taskwait

} All tasks guaranteed to be completed here: 
Now we need some threads to execute the tasks

Example 2
L i s t l

#pragma omp parallel

traverse_list( l ) ; This will generate multiple traversals; 
We need a way to have a single thread execute traverse_list

OpenMP



57

Giving work to just one thread
The single construct

#pragma omp single [ clauses ]
s t r u c t u r e d block

where clauses can be:
– private
– firstprivate
– nowait
– copyprivate

Only one thread of the team executes the structured block
There is an implicit barrier at the end

Example
int main ( int argc , char argv )
{

#pragma omp parallel
{

#pragma omp single
{

printf ("Hello world!\n" ) ; This program outputs just one “Hello world”
}}}

OpenMP
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List traversal

Example
L i s t l

#pragma omp parallel

#pragma single

traverse_list ( l ) ; One thread creates the tasks of the traversal 

All threads cooperate to execute them

OpenMP
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Task scheduling

Tasks are tied by default
– Tied tasks are executed always by the same thread

• Not necessarily the creator
– Tied tasks have scheduling restrictions

• Deterministic scheduling points (creation, synchronization, ... )
– Tasks can be suspended/resumed at these points

• Another constraint to avoid deadlock problems
– Tied tasks may run into performance problems

The untied clause
– A task that has been marked as untied has none of the previous
scheduling restrictions:

• Can potentially switch to any thread
• Can potentially switch at any moment
• Bad mix with thread based features

– thread-id, critical regions, threadprivate

• Gives the runtime more flexibility to schedule tasks

OpenMP
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Task scheduling

The if clause
– If the the expression of an if clause evaluates to false

• The encountering task is suspended
• The new task is executed immediately

– with its own data environment
– different task with respect to synchronization

• The parent task resumes when the task finishes
• Allows implementations to optimize task creation

– For very fine grain task you may need to do your own if

OpenMP
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Common tasking problems

Search problem

void search ( int n , int j , bool s ta t e )
{

int i , res ;
if ( n == j ) {
/* good solution , count it */
solutions ++;
return ;

}
/* try each possible solution */

for ( i = 0; i < n ; i ++)
{

state [ j ] = i ;
if ( ok ( j +1 , state ) ) {

search ( n , j +1 , state ) ;
}}}

OpenMP
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Common tasking problems
Search problem

void search ( int n , int j , bool s ta t e )
{

int i , res ;
if ( n == j ) {

/* good solution , count it */
solutions ++;
return ;

}
/* try each possible solution */
#pragma omp task
for ( i = 0; i < n ; i ++)
{

state [ j ] = i ;
if ( ok ( j +1 , state ) ) {

search ( n , j +1 , state ) ;
}}}

Data scoping:  Because it’s an orphaned task all variables are firstprivate
State is not captured: Just the pointer is captured not the pointed data

OpenMP
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Common tasking problems
Search problem

void search ( int n , int j , bool s ta t e )
{

int i , res ;
if ( n == j ) {
/* good solution , count it */
solutions ++;
return ;

}
/* try each possible solution */
#pragma omp task
for ( i = 0; i < n ; i ++)
{

state [ j ] = i ;
if ( ok ( j +1 , state ) ) {

search ( n , j +1 , state ) ;
}}}

Problem #1: Incorrectly capturing pointed data
firstprivate does not allow to capture data through pointers
Solutions

1 Capture it manually
2 Copy it to an array and capture the array with firstprivate

OpenMP
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Common tasking problems
Search problem

void search ( int n , int j , bool s ta t e )
{

int i , res ;
if ( n == j ) {
/* good solution , count it */
solutions ++;
return ;

}
/* try each possible solution */
#pragma omp task
for ( i = 0; i < n ; i ++)
{

bool new_state = a l l o c a ( sizeof ( bool )n ) ;
memcpy( new_state , state , sizeof ( bool )n ) ;
new_state [ j ] = i ;
if ( ok ( j +1 , new_state ) ) {
search ( n , j +1 , new_state ) ;

}}}

Caution! Will new_state still be valid by the time memcpy is executed?
Problem #2: Data can go out of scope!

OpenMP
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Common tasking problems
Problem: Stack-allocated parent data can become invalid before being used by child tasks

– Only if not captured with firstprivate
Solutions

1 Use firstprivate when possible
2 Allocate it in the heap: Not always easy (we also need to free it)
3 Put additional synchronizations: May reduce the available parallelism

Search problem

void search ( int n , int j , bool s ta t e )
{

int i , res ;
if ( n == j ) {

/* good solution , count it */
solutions ++; Shared variable needs protected access
return ;

}
/* try each possible solution */
#pragma omp task
for ( i = 0; i < n ; i ++)
{

bool new_state = a l l o c a ( sizeof ( bool )n ) ;
memcpy( new_state , state , sizeof ( bool )n ) ;
new_state [ j ] = i ;
if ( ok ( j +1 , new_state ) ) {

search ( n , j +1 , new_state ) ;
}}

#pragma omp taskwait
}

Solutions: Use critical, Use atomic, Use threadprivate

OpenMP
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Common tasking problems

Example

int solution s =0;

int mysolutions=0;

#pragma omp threadprivate (mysolutions) Use a separate counter for each thread

void start_sear ch ( )

{

#pragma omp parallel

{

#pragma omp single

{

bool initial_state [ n ] ;

search ( n ,0 , initial_state ) ;

}

#pragma omp atomic

solutions += mysolutions ; Accumulate them at the end

}

}

OpenMP
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Common tasking problems

Example

void search ( int n , int j , bool *state )
{

int i , res ;
if ( n == j ) {
/* good solution , count it */
mysolutions++;
return ;
}
/* try each possible solution */
for ( i = 0; i < n ; i ++)

#pragma omp task
{
bool *new_state = a l l o c a ( sizeof ( bool )n ) ;
memcpy( new_state , state , sizeof ( bool )n ) ;
new_state [ j ] = i ;
if ( ok ( j +1 , new_state ) ) {

search ( n , j +1 , new_state ) ;
}

}
#pragma omp taskwait

}

OpenMP
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Programming using a hybrid MPI/OpenMP approach

Alternatives
MPI + computational kernels in OpenMP
– Use OpenMP directives to exploit parallelism between communication 

phases
• OpenMP parallel will end before new communication calls

MPI inside OpenMP constructs
– Call MPI from within for-loops, or tasks

• MPI needs to support multi-threaded mode

MPI compiler driver gets the proper OpenMP option
– mpicc -openmp
– mpicc -fopenmp

OpenMP
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Practical: heat diffusion

Heat diffusion using OpenMP tasks
Enter the OpenMP directory to do the following exercises

– part2 contains the version to be annotated with tasks
– part3 contains the multisort example to be annotated with tasks

MPI+OpenMP Heat diffusion
Parallel loops
– The file solver.c implements the computation of the Heat diffusion

1 Use MPI to distribute the work across nodes
2 Annotate the jacobi, redblack, and gauss functions with OpenMP tasks
3 Execute the application with different numbers of nodes/processors, and 
compare the results

OpenMP
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Evolution of computers
All include multicore or 
GPU/accelerators
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Parallel programming models

Traditional programming models
– Message passing (MPI)
– OpenMP
– Hybrid MPI/OpenMP

Heterogeneity
– CUDA
– OpenCL
– OpenACC

...

StarSs

OpenMP

MPI

CUDA
OpenCL

OpenACC

Simple programming paradigms that 
enable easy application development 
are required
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StarSs principles 

StarSs: a family of task based programming models
– Basic concept: write sequential on a flat single address space + 

directionality annotations
• Order IS defined 
• Dependence and data access related information (NOT specification) in a 

single mechanism
• Think global, specify local

• Intelligent runtime
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void Cholesky( float *A ) {
int i, j, k;
for (k=0; k<NT; k++) {

spotrf (A[k*NT+k]) ; 
for (i=k+1; i<NT; i++) 

strsm (A[k*NT+k], A[k*NT+i]); 
// update trailing submatrix
for (i=k+1; i<NT; i++) {

for (j=k+1; j<i; j++)
sgemm( A[k*NT+i], A[k*NT+j], A[j*NT+i]);

ssyrk (A[k*NT+i], A[i*NT+i]);
}

}

Example: Cholesky OpenMP
TS

TS
NB

NB

TS

TS

void Cholesky( float *A ) {
int i, j, k;
for (k=0; k<NT; k++) {

spotrf (A[k*NT+k]);
#pragma omp parallel for
for (i=k+1; i<NT; i++) 

strsm (A[k*NT+k], A[k*NT+i]); 
for (i=k+1; i<NT; i++) {

for (j=k+1; j<i; j++) {
#pragma omp task 
sgemm( A[k*NT+i], A[k*NT+j], A[j*NT+i]);

}
#pragma omp task 
ssyrk (A[k*NT+i], A[i*NT+i]);
#pragma omp taskwait

}
}

}
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Execution in OpenMP
void Cholesky( float *A ) {

int i, j, k;
for (k=0; k<NT; k++) {

spotrf (A[k*NT+k]);
#pragma omp parallel for
for (i=k+1; i<NT; i++) 

strsm (A[k*NT+k], A[k*NT+i]); 
for (i=k+1; i<NT; i++) {

#pragma omp parallel for
for (j=k+1; j<i; j++)

sgemm( A[k*NT+i], A[k*NT+j], A[j*NT+i]);
ssyrk (A[k*NT+i], A[i*NT+i]);

}
} void Cholesky( float *A ) {

int i, j, k;
for (k=0; k<NT; k++) {

spotrf (A[k*NT+k]);
#pragma omp parallel for
for (i=k+1; i<NT; i++) 

strsm (A[k*NT+k], A[k*NT+i]); 
// update trailing submatrix
for (i=k+1; i<NT; i++) {

#pragma omp task 
{
#pragma omp parallel for
for (j=k+1; j<i; j++)

sgemm( A[k*NT+i], A[k*NT+j], A[j*NT+i]);
}
#pragma omp task 
ssyrk (A[k*NT+i], A[i*NT+i]);
}
#pragma omp taskwait

}}
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void Cholesky( float *A ) {
int i, j, k;
for (k=0; k<NT; k++) {

spotrf (A[k*NT+k]) ; 
for (i=k+1; i<NT; i++) 

strsm (A[k*NT+k], A[k*NT+i]); 
// update trailing submatrix
for (i=k+1; i<NT; i++) {

for (j=k+1; j<i; j++)
sgemm( A[k*NT+i], A[k*NT+j], A[j*NT+i]);

ssyrk (A[k*NT+i], A[i*NT+i]);
}

}

StarSs: data-flow execution of sequential programs

#pragma omp task inout ([TS][TS]A)
void spotrf (float *A);
#pragma omp task input ([TS][TS]T) input ([TS][TS]B)
void strsm (float *T, float *B);
#pragma omp task input ([TS][TS]A,[TS][TS]B) inout ([TS][TS]C )
void sgemm (float *A, float *B, float *C);
#pragma omp task input ([TS][TS]A) inout ([TS][TS]C)
void ssyrk (float *A, float *C);

Write
Decouple
how we write
form
how it is executed

ExecuteTS

TS
NB

NB

TS

TS
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OmpSs syntax
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OmpSs = OpenMP + StarSs extensions

OmpSs is based on OpenMP + StarSs with some differences:
– Different execution model

– Extended memory model
– Extensions for point-to-point inter-task synchronizations

• data dependencies

– Extensions for heterogeneity

– Other minor extensions
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Execution Model

Thread-pool model
– OpenMP parallel “ignored”

All threads created on startup

– One of them starts executing main
All get work from a task pool

– And can generate new work
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OmpSs: Directives

#pragma omp task [ input (...)] [ output (...)] [ in out (...)] [ concurrent (...)] [ commutative (…)] [pr iority(…)]

{ function or code block }

To compute dependences

To relax dependence 
order allowing concurrent 
execution of tasks

Wait for sons or specific data availability
Relax consistency to main program

#pragma omp taskwait [on (...)] [noflush]

To relax dependence order 
allowing change of order of 
execution of commutative 
tasks

Task implementation for a GPU device
The compiler parses CUDA/OpenCL kernel 
invocation syntax

Support for multiple implementations of a task

Ask the runtime to ensure data is accessible in the 
address space of the device

#pragma omp target device ({ smp | cuda | opencl })     \
[ndrange (…)]\
[ implements ( function_name )]           \

{ copy_deps | [ copy_in ( array_spec ,...)] [ copy_out (...)] [ copy_inout (...)] }

Provides configuration for CUDA/OpenCL kernel

To set priorities to tasks
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OmpSs: Directives

#pragma omp task [ in (...)] [ out (...)] [ inout (.. .)] [ concurrent (...)] [ commutative (…)] [priority (…)]

{ function or code block }

Alternative syntax towards new 
OpenMP dependence specification

To relax dependence 
order allowing concurrent 
execution of tasks

To relax dependence order 
allowing change of order of 
execution of commutative 
tasks

To set priorities to tasks
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OpenMP: Directives

#pragma omp task [ depend (in: …)] [ depend(out:…)] [ depend(inout:...)] 

{ function or code block }

OpenMP dependence specification

Direct contribution of BSC at 
OpenMP promoting dependences
and heterogeneity clauses
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Main element: tasks

Task
– Computation unit. Amount of work (granularity) may vary in a wide range (µsecs to msecs 

or even seconds), may depend on input arguments,…
– Once started can execute to completion independent of other tasks

– Can be declared inlined or outlined 

States:
– Instantiated : when task is created. Dependences are computed at the moment of 

instantiation. At that point in time a task may or may not be ready for execution
– Ready: When all its input dependences are satisfied, typically as a result of the completion 

of other tasks 
– Active : the task has been scheduled to a processing element. Will take a finite amount of 

time to execute.
– Completed : the task terminates, its state transformations are guaranteed to be globally 

visible and frees its output dependences to other tasks.
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Main element: inlined tasks

Pragmas inlined
– Applies to a statement
– The compiler outlines the statement (as in OpenMP)

int   main   (    )
{

int X[100];

#pragma  omp   task
for (int i =0; i< 100; i++) X[i]=i;

#pragma omp taskwait 

... 
}

for
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Main element: inlined tasks

Pragmas inlined
– Standard OpenMP clauses private, firstprivate, ... can be used  

int   main   (    )
{

int X[100];

int i=0;
#pragma omp task firstprivate (i)
for ( ; i< 100; i++) X[i]=i; 

}

int   main   (    )
{

int X[100];

int i;
#pragma omp task private(i)
for (i=0; i< 100; i++) X[i]=i; 

}
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Main element: outlined tasks
Pragmas outlined: attached to function definition
– All function invocations become a task
– The programmer gives a name, this enables later to provide several 

implementations 

#pragma  omp   task
void   foo (int Y[size], int size) {
int j;

for (j=0; j < size; j++) Y[j]= j;
}

int main()
{
int X[100];

foo (X, 100) ;
#pragma omp taskwait 
...
}

foo
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Main element: outlined tasks
Pragmas attached to function definition
– The semantic is capture value 

• For scalars is equivalent to firstprivate

• For pointers, the address is captured

#pragma  omp   task
void   foo (int Y[size], int size) {
int j;

for (j=0; j < size; j++) Y[j]= j;
}

int main()
{
int X[100];

foo (X, 100) ;
#pragma omp taskwait 
...
}

foo
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Synchronization

#pragma omp taskwait
– Suspends the current task until all children tasks are completed

void traverse_list ( List l )
{

Element e ;
for ( e = l-> first; e ; e = e->next )
#pragma omp task

process ( e ) ;

#pragma omp taskwait
}

1 2

3 4

...

Without taskwait the subroutine will return 
immediately after spawning the tasks 
allowing the calling function to continue 
spawning tasks
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Defining dependences

Clauses that express data direction:
– in
– out
– inout

Dependences computed at runtime taking into account these 
clauses
#pragma omp task output( x )
x = 5; //1
#pragma omp task input( x )
printf("%d\n" , x ) ; //2
#pragma omp task inout( x )
x++; //3
#pragma omp task input( x )
printf ("%d\n" , x ) ; //4

1

2

3

4

antidependence
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Defining dependences

#pragma omp task input (*px) 
void do_print (int *px) { 

printf(”from do_print %d\n" , *px ) ;
}

int main()
{
int x;

x=3;

#pragma omp task output( x )
x = 5; //1
#pragma omp task input( x )
printf(”from main %d\n" , x ); //2
do_print(&x); //3
#pragma omp task inout( x )
x++; //4
#pragma omp task input( x )  
printf (”from main %d\n" , x ); //5

}

1

2

4

5

3

non-taskified:
executed 
sequentially
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Synchronization

#pragma taskwait on ( expression )

• Expressions allowed are the same as for the dependency clauses

• Blocks the encountering task until the data is available

#pragma omp task input([N][N]A, [N][N]B) inout([N][N]C)
void dgemm(float *A, float *B, float *C);
main() {
(

...
dgemm(A,B,C); //1
dgemm(D,E,F); //2
dgemm(C,F,G); //3
dgemm(A,D,H); //4
dgemm(C,H,I); //5

#pragma omp taskwait on (F)
prinft (“result F = %f\n”, F[0][0]);

dgemm(H,G,C); //6

#pragma omp taskwait
prinft (“result C = %f\n”, C[0][0]);
}

1 2

35

6

4
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Task directive: array regions

Indicating as input/output/inout subregions of a larger structure:
input (A[i]) 

� the input argument is element i of A 

Indicating an array section:
input ([BS]A) 

� the input argument is a block of size BS from address A 
input (A[i;BS])

� the input argument is a block of size BS from address &A[i]
� the lower bound can be omitted (default is 0)
� the upper bound can be omitted if size is known (default is N-1, being N the size)

input (A[i:j])
� the input argument is a block from element A[i] to element A[j] (included)
� A[i:i+BS-1] equivalent to A[i; BS]
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Examples dependency clauses, array sections

int a[N];
#pragma omp task input(a)

int a[N];
#pragma omp task input(a[0:N-1])
//whole array used to compute dependences

=

int a[N];
#pragma omp task input(a[0:3])
//first 4 elements of the array used to compute dependences

int a[N];
#pragma omp task input([N]a)
//whole array used to compute dependences

=

int a[N];
#pragma omp task input(a[0;N])
//whole array used to compute dependences

int a[N];
#pragma omp task input(a[0;4])
//first 4 elements of the array used to compute dependences

=

=
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Examples dependency clauses, array sections 
(multidimensions)

int a[N][M]; 
#pragma omp task input(a[2:3][3:4])
// 2 x 2 subblock of a at a[2][3]

int a[N][M]; 
#pragma omp task input(a[2:3][0:M-1])
//rows 2 and 3 

int a[N][M]; 
#pragma omp task input(a[0:N-1][0:M-1])
//whole matrix used to compute dependences

int a[N][M]; 
#pragma omp task input(a[0;N][0;M])
//whole matrix used to compute dependences

=

int a[N][M]; 
#pragma omp task input(a[2;2][3;2])
// 2 x 2 subblock of a at a[2][3]

=

int a[N][M]; 
#pragma omp task input(a[2;2][0;M])
//rows 2 and 3 

=
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Examples dependency clauses, array sections

#pragma omp task input ([n]vec) inout (*results)
void sum_task ( int *vec , int n , int *results);

void main(){

int actual_size;

for (int j; j<N; j+=BS){ 

actual_size = (N- j> BS ? BS: N-j);

sum_task (&vec[j], actual_size, &total);

}

}

BS

results

vec

< BS

dynamic size of argument
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Examples dependency clauses, array sections

for (int j; j<N; j+=BS){
actual_size = (N- j> BS ? BS: N-j);

#pragma omp task input (vec[j;actual_size]) inout(results) firtprivate(actual_size,j)
for (int count = 0; count < actual_size; count++)

results += vec [j+count] ;
}

BS

results

vec

< BS

dynamic size of argument
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Examples dependency clauses, array sections

#pragma omp task input([NB][NB]A, [NB][NB]B) inout([NB][NB]C)
void matmul(double *A, double *B, double *C, 
unsigned long NB)
{

int i, j, k;

for (i = 0; i < NB; i++)
for (j = 0; j < NB; j++)

for (k = 0; k < NB; k++)
C[i][j] +=A[i*NB+k]*B[k*NB+j];

}

NB

NB
DIM

DIM

NB

NB

void compute(unsigned long NB, unsigned long DIM, 

double *A[DIM][DIM], double *B[DIM][DIM], double *C[DIM][DIM])

{

unsigned i, j, k;

for (i = 0; i < DIM; i++)

for (j = 0; j < DIM; j++)

for (k = 0; k < DIM; k++)

matmul (A[i][k], B[k][j], C[i][j], NB);

}



23/05/2013

31

Examples dependency clauses, array sections

void matmul(double *A, double *B, double *C, 
unsigned long NB)
{

int i, j, k;

for (i = 0; i < NB; i++)
for (j = 0; j < NB; j++)

for (k = 0; k < NB; k++)
C[i][j];+=A[i*NB+k]*B[k*NB+j];

}

NB

NB
DIM

DIM

NB

NB

void compute(unsigned long NB, unsigned long DIM, 

double *A[DIM][DIM], double *B[DIM][DIM], double *C[DIM][DIM])

{

unsigned i, j, k;

for (i = 0; i < DIM; i++)

for (j = 0; j < DIM; j++)

for (k = 0; k < DIM; k++)

#pragma omp task input([NB][NB]A[i][k], [NB][NB]B[k][j]) inout(NB][NB]C[i][j])\

firstprivate (i, j, k)

matmul (A[i][k], B[k][j], C[i][j], NB);

}
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Concurrent

#pragma omp task input ( ...) output (...) concurrent (var)

Less-restrictive than regular data dependence 
� Concurrent tasks can run in parallel

– Enables the scheduler to change the order of execution of the tasks, or even 
execute them concurrently 
� alternatively the tasks would be executed sequentially due to the inout
accesses to the variable in the concurrent clause 

– Dependences with other tasks will be handled normally

� Any access input or inout to var will imply to wait for all previous 
concurrent tasks  

The task may require additional synchronization
– i.e., atomic accesses

– programmer responsibility: with pragma atomic, mutex, ...
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Concurrent

sumsum sum sum

...

BS

vec

print

...
atomic access to total

#pragma omp task input ([n]vec ) concurrent (*results)

void sum_task (int *vec , int n , int *results)

{

int i ;

int local_sum=0;

for ( i = 0; i < n ; i ++)

local_sum += vec [i] ;

#pragma omp atomic

* results += local_sum;

}

void main(){

for (int j=0; j<N; j+=BS) sum_task (&vec[j], BS, &total);

#pragma omp task input (total)

printf (“TOTAL is %d\n”, total);

}
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Commutative

#pragma omp task input ( ...) output (...) commutative(var)

Less-restrictive than regular data dependence 
� denoting that tasks can execute in any order but not concurrently

Enables the scheduler to change the order of execution of the tasks, but without 
executing them concurrently 

� alternatively the tasks would be executed sequentially in the order of 
instantiation due to the inout accesses to the variable in the commutative 
clause 

– Dependences with other tasks will be handled normally
�Any access input or inout to var will imply to wait for all previous 

commutative tasks  
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Commutative

sum

sum

sum

sum

...

BS

vec

print

...

#pragma omp task input ([n]vec ) commutative(*results)

void sum_task (int *vec , int n , int *results)

{

int i ;

int local_sum=0;

for ( i = 0; i < n ; i ++)

local_sum += vec [i] ;

* results += local_sum;

}

void main(){

for (int j=0; j<N; j+=BS) sum_task (&vec[j], BS, &total);

#pragma omp task input (total)

printf (“TOTAL is %d\n”, total);

}

Tasks executed out 
of order but not 
concurrently

No mutual access
required
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Differences between concurrent and commutative
Tasks timeline: views at 
same time scale
Tasks timeline: views at 
same time scale

Histogram of tasks 
duration: at same 
control scale

In this case, concurrent is more efficient … but tasks have more duration
and variability
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Hierarchical task graph

Nesting
– Tasks can generate tasks themselves 

Hierarchical task dependences

– Dependences only checked between siblings
• Several task graphs

• Hierarchical
• There is no  implicit taskwait at the end of a task waiting for its 

children 
– Different level tasks share the same resources 

• When ready, queued in the same queues 
• Currently, no priority differences between tasks and its children 
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#pragma omp task input([BS][BS]A, [BS][BS] B) inout([BS][BS]C) 
void block_dgemm(float *A, float *B, float *C);

#pragma omp task input([N]A, [N]B) inout([N]C)
void dgemm(float (*A)[N], float (*B)[N], float (*C)[N]){
int i, j, k;
int NB= N/BS;

for (i=0; i< N; i+=BS)
for (j=0; j< N; j+=BS)

for (k=0; k< N; k+=BS)
block_dgem(&A[i][k*BS], &B[k][j*BS], &C[i][j*BS]);

}

main() {
(

...
dgemm(A,B,C);
dgemm(D,E,F);
#pragma omp taskwait

}

Hierarchical task graph
Block data-layout 

BS
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Example sentinels

#pragma omp task output (*sentinel)

void foo ( .... , int *sentinel){ // used to force dependences under complex structures 
(graphs, ... )

...

}  

#pragma omp task input (*sentinel)

void bar ( .... , int *sentinel){ 

...

}  

main () {

int sentinel;

foo (..., &sentinel);

bar (..., &sentinel)

}

•• Mechanism to handle complex dependences

• when difficult to specify proper input/output clauses

• To be avoided if possible

• the use of an element or group of elements as 
sentinels to represent a larger data-structure is valid

• however might made code non-portable to 
heterogeneous platforms if copy_in/out clauses  
cannot properly specify the address space that 
should be accessible in the devices

foo

bar
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Mercurium Compiler 

Recognizes constructs and transforms them to calls to the runtime
Manages code restructuring for different target 
devices
– Device-specific handlers

– May generate code in a 
separate file 

– Invokes different back-end 
compilers 
� nvcc for NVIDIA
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Runtime structure
Support to different programming models: OpenMP (OmpSs), StarSs, Chapel
Independent components for thread, task, dependence management, task 
scheduling, ...
Most of the runtime independent of the target architecture: SMP, GPU, 
tasksim simulator, cluster
Support to heterogeneous targets 
� i.e., threads running tasks in regular cores and in GPUs

Instrumentation
�Generation of execution traces

NANOS API

Task
Management

trace

In
st

ru
m

en
ta

tio
n

Architecture Interface

Application
(StarSs, OmpSs, ...)

Data
Coherence
& 
Movement

Thread
Management

Task
Scheduling

GPUSMP Cluster tasksim

Dependence
Management

Scheduling
Policies

dep.
aware

Bf

local.

...

Paraver

SimTrace



23/05/2013

42

Compiling

Compiling
frontend --ompss  -c bin.c

Linking
frontend --ompss -o bin bin.o

where frontend is one of:

mcc C

mcxx C++

mnvcc CUDA & C

mnvcxx CUDA & C++

mfc Fortran (In development)
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Compiling

Compatibility flags:
– -I, -g, -L, -l, -E, -D, -W

Other compilation flags:

-k Keep intermediate files

--debug Use Nanos++ debug version

--instrumentation Use Nanos++ instrumentation version 

--version Show Mercurium  version number

--verbose Enable Mercurium verbose output

--Wp,flags Pass flags to preprocessor (comma separated)

--Wn,flags Pass flags to native compiler (comma separated)

--Wl,flags Pass flags to linker (comma separated)

--help To see many more options :-)
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Executing

No LD_LIBRARY_PATH or LD_PRELOAD needed
./bin

Adjust number of threads with OMP_NUM_THREADS
OMP_NUM_THREADS=4 ./bin
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Nanos++ options

� Other options can be passed to the Nanos++ runtime via 
NX_ARGS

NX_ARGS=”options” ./bin

--schedule=name Use name task scheduler

--throttle=name Use name throttle-policy

--throttle-limit=limit Limit of the throttle-policy (exact meaning depends on 
the policy)

--instrumentation=name Use name instrumentation module

--disable-yield Nanos++ won't yield threads when idle

--spins=number Number of  spin loops when idle

--disable-binding Nanos++ won't bind threads to CPUs

--binding-start=cpu First CPU where a thread will be bound

--binding-stride=number Stride between bound CPUs
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Nanox helper

Nanos++ utility to
– list available modules:

nanox --list-modules
– list available options:

nanox --help
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Tracing

Compile and link with --instrument
mcc --ompss --instrument -c bin.c

mcc -o bin --ompss --instrument bin.o

When executing specify which instrumentation module to use:
NX_INSTRUMENTATION=extrae ./bin

Will generate trace files in executing directory
– 3 files: prv, pcf, rows
– Use paraver to analyze
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Reporting problems

Compiler problems
– http://pm.bsc.es/projects/mcxx/newticket

Runtime problems
– http://pm.bsc.es/projects/nanox/newticket

Support mail
– pm-tools@bsc.es

Please include snapshot of the problem
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Programming methodology

Correct sequential program
Incremental taskification
– Test every individual task with forced sequential in-order execution

• � 1 thread, scheduler = FIFO, throtle=1
Single thread out-of-order execution

Increment number of threads
– Use taskwaits to force certain levels of serialization
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Visualizing Paraver tracefiles

Set of Paraver configuration files ready for OmpSs. Organized in 
directories
– Tasks: related to application tasks
– Runtime, nanox-configs: related to OmpSs runtime internals
– Graph_and_scheduling: related to task-graph and tas k scheduling 
– DataMgmgt: related to data management
– CUDA: specific to GPU
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Tasks’ profile

2dp_tasks.cfg

Tasks’ profile 

threads

tasks’ types

gradient color, 
indicates given estadístic:
i.e., number of tasks instances 

control window:
timeline where each 
color represent the 
task been executed
by each thread

light blue: not executing
tasks

different colours
represent different 
task type
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Tasks duration histogram

3dh_duration_task.cfg

threads

time intervals

gradient color, 
indicates given estadístic:
i.e., number of tasks instances 
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Tasks duration histogram

3dh_duration_task.cfg

control window: 
task duration
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Tasks duration histogram

3dh_duration_task.cfg

3D window: 
task type
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Tasks duration histogram

3dh_duration_task.cfg

3D window: 
task type

chooser: 
task type



23/05/2013

56

Threads state profile
2dp_threads_state.cfg

threads

runtime state

control window:
timeline where each 
color represent the 
runtime state of each
thread 
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www.bsc.es

OmpSs
Based on presentation by Rosa M Badia, Xavier Martorell

Isaac Rudomin
BSC
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