Exponential laws for ultrametric partially differentiable functions and applications

Helge Glöckner (Universität Paderborn)

I'll present exponential laws for spaces of continuously differentiable functions in several variables over a valued field \mathbb{K} which have different degrees of differentiability in their arguments (the so-called C^{α} -functions). For example,

$$C^{(\alpha,\beta)}(U \times V, E) \cong C^{\alpha}(U, C^{\beta}(V, E))$$

if $\alpha \in (\mathbb{N}_0 \cup \{\infty\})^n$, $\beta \in (\mathbb{N}_0 \cup \{\infty\})^m$, $U \subseteq \mathbb{K}^n$ and $V \subseteq \mathbb{K}^m$ are open (or suitable more general) subsets, and E is a topological K-vector space.

A first application concerns density questions of locally polynomial functions and polynomial functions (including the solution to an open problem by Enno Nagel). Notably, $\operatorname{Pol}(U, E)$ is dense in $C^{\alpha}(U, E)$ and in $C^{r}(U, E)$, for each locally convex space E over a complete ultrametric field \mathbb{K} , locally closed, locally cartesian subset $U \subseteq \mathbb{K}^{n}$, α as before and $r \in \mathbb{N}_{0} \cup \{\infty\}$.

As a second application, one obtains a new proof for the characterization of C^r -functions on $(\mathbb{Z}_p)^n$ in terms of the decay of their Mahler expansions.

In both applications, the exponential laws enable a simple inductive proof by a reduction to the one-dimensional, vector-valued case.

References

- Araujo, J. and W.H. Schikhof, The Weierstrass-Stone approximation theorem for p-adic Cⁿ-functions, Ann. Math. Blaise Pascal 1 (1994), 61-74.
- [2] Glöckner, H., Exponential laws for ultrametric partially differentiable functions and applications, preprint, arXiv:1209.1384v3.
- [3] Nagel, N., Fractional non-Archimedean calculus in many variables, to appear in p-Adic Numbers, Ultrametric Analysis and Applications.

Helge Glöckner, Universität Paderborn, Warburger Str. 100, 33098 Paderborn, Germany; Email glockner@math.upb.de