
Lecture 4: Hierarchy and Symmetry in Data Analysis –
Thinking Ultrametrically

Minicourse, First International Conference on Models of Complex
Hierarchic Systems and Non-Archimedean Analysis, Cinvestav –
Abacus Center, Mexico. Fionn Murtagh.

Themes

1. Applications
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3. Hierarchical Clustering – Terminology
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9. Clustering Through Matrix Row and Column Permutation
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Themes 2/2

10. The Generalized Ultrametric

11. Link with Formal Concept Analysis

12. Applications of Generalized Ultrametric

13. Hierarchy, Ultrametric Topology and the p-Adic Number
System

14. p-Adic Encoding of a Dendrogram; Remarks

15. Matrix form of p-Adic Encoding; Remarks

16. p-Adic Distance on a Dendrogram

17. Scale-Related Symmetry: The Dilation Operator

18. Remarkable Symmetries in Very High Dimensional Spaces

19. Partial Ultrametric Embedding

20. Ultrametric Baire Space and Distance

21. Approximating an Ultrametric for Similarity Metric Space
Searching

22. Symmetry: Examples Seen

23. Final Word
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Applications 1/2

I In data analysis, both because of the fitting of tree structures
and/or visualizations to data sets, to provide a possible way to
present a range of partitions to the user, and also to provide
for a genealogical model to be fit to data.

I In physics in order to take account of phenomena at very
small spatial and time scales, where discreteness of structures
is represented well by p-adic number systems; and also for any
systems that involve movement between discrete states that
are characterized by their energy levels.

I A considerable number of search and discovery algorithms
developed in recent years have an interpretation or vantage
point in terms of ultrametric topology.
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Applications 2/2

I Ultrametric topology and closely associated p-adic number
theory as used in a wide range of fields, that all share strong
elements of common mathematical and computational
underpinnings.

I These include data analysis, including in the “big data” world
of massive and high dimensional data sets; physics at very
small scales; search and discovery in general information
spaces; and in logic and reasoning.
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Hierarchy and Other Symmetries in Data Analysis, 1/3

I H. Weyl, Symmetry, Princeton University Press, 1983, makes
the case for the fundamental importance of symmetry in
science, engineering, architecture, art and other areas. As a
“guiding principle”, “Whenever you have to do with a
structure-endowed entity ... try to determine its group of
automorphisms, the group of those element-wise
transformations which leave all structural relations
undisturbed. You can expect to gain a deep insight in the
constitution of [the structure-endowed entity] in this way.
After that you may start to investigate symmetric
configurations of elements, i.e. configurations which are
invariant under a certain subgroup of the group of all
automorphisms; ...”
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Hierarchy and Other Symmetries in Data Analysis, 2/3

I Herbert A. Simon, Nobel Laureate in Economics, originator of
“bounded rationality” and of “satisficing”, believed in
hierarchy as the basis of the human and social sciences, as the
following quotation shows: “... my central theme is that
complexity frequently takes the form of hierarchy and that
hierarchic systems have some common properties independent
of their specific content. Hierarchy, I shall argue, is one of the
central structural schemes that the architect of complexity
uses.” (H.A. Simon, The Sciences of the Artificial, MIT Press,
1996.)
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Hierarchy and Other Symmetries in Data Analysis, 3/3

I Symmetries in data, such that the data represent complex
phenomena, and the symmetries provide a model for
understanding these complex phenomena. Hierarchy gives rise
to a rich expanse of symmetries and we will be concerned
mostly with hierarchy.

I Partitioning a set of observations leads to some very simple
symmetries. This is one approach to clustering and data
mining. But such approaches, often based on optimization,
are of less direct interest here. Instead I will pursue the theme
pointed to by Simon, namely that the notion of hierarchy is
fundamental for interpreting data and the complex reality
which the data expresses.
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Hierarchical Clustering – Terminology 1/2

I For us here, this is unsupervised classification. Having the
“data speak for themselves”. Also termed automatic
classification, clustering.

I Alternative is supervised classification, also known as
discriminant analysis or (in a general way) machine learning.
Here: training set used to learn decision making (class
assignment) rules. Then the test set is use to validate the
machine learning, followed by generalizion.

I Methodologies include: statistical modelling; graph theory;
neural networks; optimization; linear algebra for low dimension
decomposition; and other approaches.

I Classifying data, i.e. observations, objects, events,
phenomena, etc.
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Hierarchical Clustering – Terminology 2/2

I Families of clustering, or unsupervised classification,
algorithms, include: (i) array permuting and other
visualization approaches; (ii) partitioning to form (discrete or
overlapping) clusters through optimization, including
graph-based approaches; and – of interest to us in this article
– (iii) embedded clusters interrelated in a tree-based way.

I Traditionally, agglomerative clustering, as opposed to divisive.
In recent years a range of algorithms have come to the fore,
using spatial density, or grids, and these are often divisive.
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A Brief Introduction to p-Adic Numbers

I p-Adic numbers were introduced by Kurt Hensel in 1898.

I Rational numbers, Q, expressed as any integer divided by any
other (non-zero) integer.

I Q is “well-behaved” and “tangible”. Rationals can be used to
make measurements.

I A repeating decimal like 0.33333 . . . is easily expressed as a
rational. But π and e (base of Naperian logs) are not.

I To go further than rationals using approximation, we need to
allow for “continuity” and this presupposes a topology.

I To endow the rationals with a topology, we need a completion
of the field Q of rationals.

I To complete the field Q of rationals, we need Cauchy
sequences and this requires a norm on Q (because the Cauchy
sequence must converge, and a norm is the tool used to show
this).
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I Archimedean norm such that: ∀ x , y ∈ Q, with |x | < |y |, then
∃ N integer, such that |Nx | > |y |.

I Write: |x |∞ for this norm.

I If the completion of the rationals is Archimedean, then we
have R = Q∞, the reals. Acceptable if space is taken as
commutative and Euclidean.

I Alternatives: all norms are known. Besides the Q∞ norm, we
have an infinity of norms, |x |p, labelled by primes, p.
Ostrowski’s theorem these are all the possible norms on Q.

I So we have an unambiguous labelling, via p, of the infinite set
of non-Archimedean completions of Q to a field endowed with
a topology.

I In all cases, we obtain locally compact completions, Qp, of Q.
They are the fields of p-adic numbers. All these Qp are
continua. Being locally compact, they have additive and
multiplicative Haar measures. As such we can integrate over
them, such as for the reals.
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Brief Discussion of p-Adic and m-Adic Numbers

I p: a prime; m: a non-zero positive integer.

I A p-adic number is such that any set of p integers which are in
distinct residue classes modulo p may be used as p-adic digits.

I Recall that a ring does not allow division, while a field does.
m-Adic numbers form a ring; but p-adic numbers form a field.
So a priori, 10-adic numbers form a ring. This provides us
with a reason for preferring p-adic over m-adic numbers.

I We can consider various p-adic expansions.
I 1.

∑n
i=0 aip

i , which defines positive integers. For a p-adic
number, we require ai ∈ 0, 1, ...p − 1. (In practice: just write
the integer in binary form.)

2.
∑n

i=−∞ aip
i defines rationals.

3.
∑∞

i=k aip
i where k is an integer, not necessarily positive,

defines the field Qp of p-adic numbers.

I Qp, the field of p-adic numbers, is (as seen in these
definitions) the field of p-adic expansions.
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I The choice of p is a practical issue. Indeed, adelic numbers
use all possible values of p.

I A biotechnology example is considered as follows.

I DNA (desoxyribonucleic acid) is encoded using four
nucleotides: A, adenine; G, guanine; C, cytosine; and T,
thymine.

I In RNA (ribonucleic acid) T is replaced by U, uracil.

I A 5-adic encoding can be used, since 5 is a prime and thereby
offers uniqueness.

I Or a 4-adic encoding can be used, or a 2-adic encoding, with
the latter based on 2-digit boolean expressions for the four
nucleotides (00, 01, 10, 11).

I A default norm has been used, based on a longest common
prefix – with p-adic digits from the start or left of the
sequence.
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Ultrametric Space for Representing Hierarchy
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Figure : The strong triangular inequality defines an ultrametric: every
triplet of points satisfies the relationship: d(x , z) ≤ max{d(x , y), d(y , z)}
for distance d . Cf. by reading off the hierarchy, how this is verified for all
x , y , z : d(x , z) = 3.5; d(x , y) = 3.5; d(y , z) = 1.0. In addition the
symmetry and positive definiteness conditions hold for any pair of points.
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Ultrametric Topology

1. Ultrametric topology was introduced by Marc Krasner in
1944. Ultrametric inequality having been formulated by
Hausdorff in 1934.

2. (Schikhof, Ultrametric Calculus, 1984.) Real and complex
fields gave rise to the idea of studying any field K with a
complete valuation |.| comparable to the absolute value
function.

3. Such fields satisfy the “strong triangle inequality”
|x + y | ≤ max(|x |, |y |).

4. Given a valued field, defining a totally ordered Abelian (i.e.
commutative) group, an ultrametric space is induced through
|x − y | = d(x , y).

5. Various terms are used interchangeably for analysis in and
over such fields such as p-adic, ultrametric, non-Archimedean,
and isosceles.

6. Natural geometric ordering of metric valuations: real line.
Ultrametric case: a hierarchy or rooted tree.
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Some Geometrical Properties of Ultrametric Spaces

See I.C. Lerman, Classification et Analyse Ordinale des Données,
Dunod, Paris, 1981.

1. In an ultrametric space, all triangles are either isosceles with
small base, or equilateral.

2. Every point of a circle in an ultrametric space is a centre of
the circle.

3. In an ultrametric topology, every ball is both open and closed
(termed clopen).

4. An ultrametric space is 0-dimensional.

5. Informally, in an ultrametric space everything “lives” in a
hierarchy expressed by a tree.
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For an n× n matrix of positive reals, symmetric with respect to the
principal diagonal, to be a matrix of distances associated with an
ultrametric distance on X , a sufficient and necessary condition is
that a permutation of rows and columns satisfies the following
form of the matrix:

1. Above the diagonal term, equal to 0, the elements of the
same row are non-decreasing.

2. For every index k , if

d(k, k + 1) = d(k , k + 2) = · · · = d(k, k + `+ 1)

then

d(k + 1, j) ≤ d(k , j) for k + 1 < j ≤ k + `+ 1

and
d(k + 1, j) = d(k , j) for j > k + `+ 1

Under these circumstances, ` ≥ 0 is the length of the section
beginning, beyond the principal diagonal, the interval of
columns of equal terms in row k .
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To illustrate the ultrametric matrix format, consider the small data
set shown in the table below. A dendrogram produced from this is
in the figure (to follow). The ultrametric matrix that can be read
off this dendrogram is shown in the next table. Finally a
visualization of this matrix, illustrating the ultrametric matrix
properties discussed, is presented.

Table : Input data: 8 iris flowers characterized by sepal and petal widths
and lengths. From Fisher’s iris data (Fisher, 1936).

Sepal.Length Sepal.Width Petal.Length Petal.Width

iris1 5.1 3.5 1.4 0.2
iris2 4.9 3.0 1.4 0.2
iris3 4.7 3.2 1.3 0.2
iris4 4.6 3.1 1.5 0.2
iris5 5.0 3.6 1.4 0.2
iris6 5.4 3.9 1.7 0.4
iris7 4.6 3.4 1.4 0.3
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Figure : Hierarchical clustering of 7 iris flowers using data from Table 18.
No data normalization was used. The agglomerative clustering criterion
was the minimum variance or Ward one.
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Ultrametric matrix

Table : Ultrametric matrix derived from the dendrogram in the previous
figure.

iris1 iris2 iris3 iris4 iris5 iris6 iris7
iris1 0 0.6480741 0.6480741 0.6480741 1.1661904 1.1661904 1.1661904
iris2 0.6480741 0 0.3316625 0.3316625 1.1661904 1.1661904 1.1661904
iris3 0.6480741 0.3316625 0 0.2449490 1.1661904 1.1661904 1.1661904
iris4 0.6480741 0.3316625 0.2449490 0 1.1661904 1.1661904 1.1661904
iris5 1.1661904 1.1661904 1.1661904 1.1661904 0 0.6164414 0.9949874
iris6 1.1661904 1.1661904 1.1661904 1.1661904 0.6164414 0 0.9949874
iris7 1.1661904 1.1661904 1.1661904 1.1661904 0.9949874 0.9949874 0
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Ultrametric matrix visualization

A visualization of the ultrametric matrix of the Table, where bright
or white = highest value, and black = lowest value.
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Clustering Through Matrix Row and Column Permutation

1. Clustering by visualization.

2. Referred to also as block modelling.

3. There are optimized ways to carry this out (e.g. based on the
graph traversal algorithm known as the travelling salesman
problem).

4. For such approaches, underpinning them are row and column
permutations, that can be expressed in terms of the
permutation group, Sn, on n elements.
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The Generalized Ultrametric

1. Ultrametric defined on the power set or join semilattice.
2. Typically hierarchical clustering is based on a distance (which

can be relaxed often to a dissimilarity, not respecting the
triangular inequality, and mutatis mutandis to a similarity),
defined on all pairs of the object set: d : X × X → R+. I.e., a
distance is a positive real value. Usually we require that a
distance cannot be 0-valued unless the objects are identical.

3. A different form of ultrametrization is achieved from a
dissimilarity defined on the power set of attributes
characterizing the observations (objects, individuals, etc.) X .

4. Here we have: d : X × X −→ 2J , where J indexes the
attribute (variables, characteristics, properties, etc.) set.

5. This gives rise to a different notion of distance, that maps
pairs of objects onto elements of a join semilattice.

6. The latter can represent all subsets of the attribute set, J.
That is to say, it can represent the power set, commonly
denoted 2J , of J.
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Link with Formal Concept Analysis

1. As an example, consider, say, n = 5 objects characterized by 3
boolean (presence/absence) attributes, shown in the figure
(next slide; top).

2. Define dissimilarity between a pair of objects in this table as a
set of 3 components, corresponding to the 3 attributes, such
that if both components are 0, we have 1; if either component
is 1 and the other 0, we have 1; and if both components are 1
we get 0.

3. We get then d(a, b) = 1, 1, 0 which we will call d1,d2. Then,
d(a, c) = 0, 1, 0 which we will call d2. Etc. With the latter we
create lattice nodes as shown in the middle part of the figure
(next slide).

4. Rule for each component: 0,0 −→ 1; 1,0 −→ 1; 0,1 −→ 1;
1,1 −→ 0.
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Example: 5 objects, boolean attributes, associated lattice

v1 v2 v3
a 1 0 1
b 0 1 1
c 1 0 1
e 1 0 0
f 0 0 1

The set d1,d2,d3 corresponds to: d(b, e) and d(e, f )
The subset d1,d2 corresponds to: d(a, b), d(a, f ), d(b, c), d(b, f ), and d(c, f )
The subset d2,d3 corresponds to: d(a, e) and d(c, e)
The subset d2 corresponds to: d(a, c)

Clusters defined by all pairwise linkage at level ≤ 2:
a, b, c, f
a, c, e

Clusters defined by all pairwise linkage at level ≤ 3:
a, b, c, e, f
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1. In Formal Concept Analysis it is the lattice itself which is of
primary interest.

2. Traditional hierarchical cluster analysis is based on
d : I × I → R+. The following was considered by Janowitz:
hierarchical cluster analysis “based on abstract posets” (a
poset is a partially ordered set), based on d : I × I → 2J .

3. Also Mel Janowitz: cluster, then summarize (implies
traditional hierarchical clustering).

4. Alternatively: summarize, then cluster (implies Formal
Concept Analysis).
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Applications of Generalized Ultrametrics

1. Usual ultrametric for a set I, d : I × I −→ R+.

2. Generalized ultrametric where the range is a subset of the
power set: d : I × I −→ Γ, where Γ is a partially ordered set.

3. Applications include:

4. Non-monotonic reasoning, application of a succession of
conditionals (sometimes called consequence relations).
Negation or multiple valued logic (i.e. encompassing
intermediate truth and falsehood) require support for
non-monotonic reasoning.

5. The convergence to fixed points that are based on a
generalized ultrametric system is precisely the study of
spherically complete systems and expansive automorphisms.

6. As expansive automorphisms we see here again an example of
symmetry at work.
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Hierarchy, Ultrametric Topology and the p-Adic Number
System

1. Importance of p-adic representation for physics on very small
scales: see work of Igor Volovich from the 1980s.

2. Volovich (2010) poses the general principle that the
fundamental physical laws should be invariant under the
change of the number field. This leads to the following
ambitious statement: “If these ideas are true then number
theory and the corresponding branches of algebraic geometry
are ... the ultimate and unified physical theory”.

3. Hierarchy, as a branching process, is a good means of
expressing suboptimal and/or discrete energy states or levels.

4. Genealogy, evolutionary processes, etc.

5. Sequence of partitions. Partial order on the clusters/nodes,
total order on the partitions.
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p-Adic Encoding of a Dendrogram

1. We introduce now the one-to-one mapping of clusters
(including singletons) in a dendrogram H into a set of
p-adically expressed integers (a fortiori, rationals, or Qp).

2. The field of p-adic numbers is the most important example of
ultrametric spaces.

3. Addition and multiplication of p-adic integers, Zp, are
well-defined. Inverses exist and no zero-divisors exist.
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Terminal-to-root traversal in a dendrogram or binary
rooted tree

I Use the path x ⊂ q ⊂ q′ ⊂ q′′ ⊂ . . . qn−1, where x is a given
object specifying a given terminal, and q, q′, q′′, . . . are the
embedded classes along this path, specifying nodes in the
dendrogram.

I The root node is specified by the class qn−1 comprising all
objects.
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Labelled, ranked dendrogram on 8 terminal nodes, x1, x2, . . . , x8.
Branches are labelled +1 and −1. Clusters are: q1 =
{x1, x2}, q2 = {x1, x2, x3}, q3 = {x4, x5}, q4 = {x4, x5, x6}, q5 =
{x1, x2, x3, x4, x5, x6}, q6 = {x7, x8}, q7 = {x1, x2, . . . , x7, x8}.
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Using terminal-to-root traversals, define p-adic encoding of
terminal nodes, and hence objects

x1 : +1 · p1 + 1 · p2 + 1 · p5 + 1 · p7

x2 : −1 · p1 + 1 · p2 + 1 · p5 + 1 · p7

x3 : −1 · p2 + 1 · p5 + 1 · p7

x4 : +1 · p3 + 1 · p4 − 1 · p5 + 1 · p7

x5 : −1 · p3 + 1 · p4 − 1 · p5 + 1 · p7

x6 : −1 · p4 − 1 · p5 + 1 · p7

x7 : +1 · p6 − 1 · p7

x8 : −1 · p6 − 1 · p7
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Remarks on this Encoding 1/2

1. If p = 2 the resulting decimal equivalents could be the same:
cf. contributions based on +1 · p1 and −1 · p1 + 1 · p2.

2. Coding based on p = 3 is required to avoid ambiguity among
decimal equivalents.

3. A precise definition of the tree considered here is: labelled
ranked binary tree.

4. We require the labels +1 and −1 for the two branches at any
node. Of course we could interchange these labels, and have
these +1 and −1 labels reversed at any node. By doing so we
will have different p-adic codes for the objects, xi .

5. The following properties hold: (i) Unique encoding: the
decimal codes for each xi (lexicographically ordered) are
unique for p ≥ 3; and (ii) Reversibility: the dendrogram can
be uniquely reconstructed from any such set of unique codes.
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Remarks on this Encoding 2/2

1. The p-adic encoding defined for any object set can be
expressed as follows for any object x associated with a
terminal node:

x =
n−1∑
j=1

cjp
j where cj ∈ {−1, 0,+1} (1)

2. In greater detail we have:

xi =
n−1∑
j=1

cijp
j where cij ∈ {−1, 0,+1} (2)

Here j is the level or rank (root: n − 1; terminal: 1), and i is
an object index.

3. We have used: cj = +1 for a left branch, = −1 for a right
branch, and = 0 when the node is not on the path from that
particular terminal to the root.
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Matrix form of p-Adic Encoding 1/3

1. A matrix form of this encoding is as follows, where {·}t
denotes the transpose of the vector.

2. Let x be the column vector {x1 x2 . . . xn}t .
Let p be the column vector {p1 p2 . . . pn−1}t .
Define a characteristic matrix C of the branching codes, +1
and −1, and an absent or non-existent branching given by 0,
as a set of values cij where i ∈ I , the indices of the object set;
and j ∈ {1, 2, . . . , n − 1}, the indices of the dendrogram levels
or nodes ordered increasingly. For the dendrogram used, we
therefore have as follows.
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Matrix form of p-Adic Enoding 2/3

C = {cij} =



1 1 0 0 1 0 1
−1 1 0 0 1 0 1

0 −1 0 0 1 0 1
0 0 1 1 −1 0 1
0 0 −1 1 −1 0 1
0 0 0 −1 −1 0 1
0 0 0 0 0 1 −1
0 0 0 0 0 −1 −1


(3)

For given level j , ∀i , the absolute values |cij | give the membership
function either by node, j , which is therefore read off columnwise;
or by object index, i , which is therefore read off rowwise.
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Matrix form of p-Adic Enoding 3/3

The matrix form of the p-adic encoding used in equations seen is:

x = Cp (4)

Here, x is the decimal encoding, C is the matrix with dendrogram
branching codes (cf. example shown in expression (3)), and p is
the vector of powers of a fixed prime p.
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Remarks on Matrix form of p-Adic Encoding 1/2

1. Labels +1 and −1 were required (as opposed to the choice of
0 and 1, which might have been our first thought) to fully
cater for the ranked nodes (i.e. the total order, as opposed to
a partial order, on the nodes).

2. We can consider the objects that we are dealing with to have
equivalent integer values. I.e., decimal equivalents of the
p-adic expressions used above for x1, x2, . . . .

3. We have equivalence between: a p-adic number; a p-adic
expansion; and an element of Zp (the p-adic integers).

4. The coefficients used to specify a p-adic number, F.Q. Gouvêa
(2003) notes, “must be taken in a set of representatives of the
class modulo p. The numbers between 0 and p − 1 are only
the most obvious choice for these representatives. There are
situations, however, where other choices are expedient.”
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Remarks on Matrix form of p-Adic Encoding 2/2

1. (F. Critchley and W. Heiser, Journal of Classification, 1988.)
Matrix C used there. Title: “Hierarchical trees can be
perfectly scaled in one dimension”. My (somewhat trivial)
view: p-adic numbering is feasible, and hence a one
dimensional representation of terminal nodes is easily arranged
through expressing each p-adic number with a real number
equivalent.

2. (B. Mirkin, “Linear embedding of binary hierarchies and
applications”, B. Mirkin, F. McMorris, F. Roberts, and A. Rzhetsky (Eds.) Mathematical

Hierarchies and Biology, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, V.

37, AMS: Providence, 331-356, 1997.) A nest (i.e. cluster nesting) indicator
function is defined, based on the set
{aw ,−bw , 0}, aw , bw ∈ R+ in the same way that the set
{1,−1, 0} is used above for the matrix C . Orthonormality
properties of the nest indicator functions are studied.
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p-Adic Distance on a Dendrogram 1/4

1. We will now induce a metric topology on the p-adically
encoded dendrogram, H. It leads to various symmetries
relative to identical norms, for instance, or identical tree
distances.

2. We use the following longest common subsequence, starting
at the root: we look for the term pr in the p-adic codes of the
two objects, where r is the lowest level such that the values of
the coefficients of pr are equal.

3. Use our case study set of p-adic codes for x1, x2, . . . and
relations, as an example,
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p-Adic Distance on a Dendrogram 2/4

Refer to slides 31, 32.
For x1 and x2, we find the term we are looking for to be p1, and so
r = 1.
For x1 and x5, we find the term we are looking for to be p5, and so
r = 5.
For x5 and x8, we find the term we are looking for to be p7, and so
r = 7.
Having found the value r , the distance is defined as p−r
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p-Adic Distance on a Dendrogram 3/4

1. This longest common prefix metric is also known as the Baire
distance.

2. In topology the Baire metric is defined on infinite strings.

3. It is more than just a distance: it is an ultrametric bounded
from above by 1, and its infimum is 0 which is relevant for
very long sequences, or in the limit for infinite-length
sequences. T

4. The longest common prefix metric leads directly to Patrick
Erik Bradley’s p-adic hierarchical classification.

5. This is a special case of the “fast” hierarchical clustering that
we have developed (see other lectures).

6. Relative to the longest common prefix metric, there are other
related forms of metric, and simultaneously ultrametric.

7. E.g. Metric defined via the integer part of a real number.
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p-Adic Distance on a Dendrogram 3/4

1. Or, for integers x , y consider: d(x , y) = 2−orderp(x−y) where
p is prime, and orderp(i) is the exponent (non-negative
integer) of p in the prime decomposition of an integer.

2. Furthermore let S(x) be a series: S(x) =
∑

i∈N aix
i . (N are

the natural numbers.) The order of S(i) is the rank of its first
non-zero term: order(S) = inf{i : i ∈ N; ai 6= 0}. (The series
that is all zero is of order infinity.) Then the ultrametric

similarity between series is: d(S ,S ′) = 2−order(S−S ′).
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Scale-Related Symmetry: The Dilation Operator 1/3

1. Motivation for name: dilation operator is used in the wavelet
transform.

2. This operator is p-adic multiplication by 1/p.

3. Consider the set of objects {xi |i ∈ I} with its p-adic coding.

4. Take p = 2. (Non-uniqueness of corresponding decimal codes
is not of concern to us now, and taking this value for p is
without any loss of generality.)

5. Multiplication of x1 = +1 · 21 + 1 · 22 + 1 · 25 + 1 · 27 by
1/p = 1/2 gives: +1 · 21 + 1 · 24 + 1 · 26.

6. Each level has decreased by one, and the lowest level has been
lost.

7. Subject to the lowest level of the tree being lost, the form of
the tree remains the same.

8. By carrying out the multiplication-by-1/p operation on all
objects, it is seen that the effect is to rise in the hierarchy by
one level.
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Scale-Related Symmetry: The Dilation Operator 2/3

1. Let us call product with 1/p the operator A.

2. The effect of losing the bottom level of the dendrogram
means that either (i) each cluster (possibly singleton) remains
the same; or (ii) two clusters are merged.

3. Therefore the application of A to all q implies a subset
relationship between the set of clusters {q} and the result of
applying A, {Aq}.

4. Repeated application of the operator A gives Aq, A2q, A3q,
. . . .

5. Starting with any singleton, i ∈ I , this gives a path from the
terminal to the root node in the tree.

6. Each such path ends with the null element, which we define
to be the p-adic encoding corresponding to the root node of
the tree.

7. Therefore the intersection of the paths equals the null
element.
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Scale-Related Symmetry: The Dilation Operator 3/3

1. Benedetto and Benedetto (2004) discuss A as an expansive
automorphism of I , i.e. form-preserving, and locally expansive.

2. Implications: For any q, let us take q,Aq,A2q, . . . as a
sequence of open subgroups of I , with q ⊂ Aq ⊂ A2q ⊂ . . . ,
and I =

⋃
{q,Aq,A2q, . . . }. This is termed an inductive

sequence of I , and I itself is the inductive limit. (H. Reiter
and J.D. Stegemen, Classical Harmonic Analysis and Locally
Compact Groups, OUP, 2000.)

3. Each path defined by application of the expansive
automorphism defines a spherically complete system. (W.H.
Schikhof, Ultrametric Calculus, CUP, 1984; A.C.M. Van Rooij,
Non-Archimedean Functional Analysis, Marcel Dekker, 1978.)

4. This is a formalization of well-defined subset embeddedness.
Such a methodological framework finds application in
multi-valued and non-monotonic reasoning (noted earlier).
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Haar Wavelet Transform on a Hierarchy, with Hard
Thresholding
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Haar Wavelet Transform on a Hierarchy 2/2

I Hierarchy on upper left is wavelet transformed; small wavelet
coefficients are set to zero (hard thresholding); hierarchy is
re-constituted (inverse wavelet transform); result is on upper
right.

I Net result can also be seen in lower right

I This can be contrasted with usual partitioning on lower left.

I We have a piecewise or clusterwise smooth of our data.

I (See Murtagh, Journal of Classification, The Haar wavelet
transform of a dendrogram, 24, 3-32, 2007.)
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Remarkable Symmetries in Very High Dimensional Spaces
1/2

1. As ambient dimensionality increases, distances became more
and more ultrametric. (Rammal et al., Murtagh, Hall,
Donoho, etc.)

2. That is to say, a hierarchical embedding becomes more and
more immediate and direct as dimensionality increases.

3. Hence there is inherent hierarchical structure in high
dimensional data spaces.

4. Points in high dimensional spaces become increasingly
equidistant with increase in dimensionality.

5. Donoho: “not only are the points [of a Gaussian cloud in very
high dimensional space] on the convex hull, but all
reasonable-sized subsets span faces of the convex hull. This is
wildly different than the behavior that would be expected by
traditional low-dimensional thinking”.
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Remarkable Symmetries in Very High Dimensional Spaces
2/2

1. Very simple structures in very high dimensions are not
necessarily trivial.

2. Even very simple structures (hence with many symmetries)
can be used to support fast and perhaps even constant time
worst case proximity search.

3. In the machine learning framework, there are important
implications ensuing from the simple high dimensional
structures.

4. Very high dimensional clustered data contain symmetries that
in fact can be exploited to “read off” the clusters in a
computationally efficient way.

5. What we might want to look for in contexts of considerable
symmetry are the “impurities” or small irregularities that
detract from the overall dominant picture.
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Example of the change of topological properties as
ambient dimensionality increases 1/2

1. Table will show typical results, based on 300 sampled triangles
from triplets of points.

2. For uniform, the data are generated on [0, 1]m; hypercube
vertices are in {0, 1}m, and for Gaussian on each dimension,
the data are of mean 0, and variance 1.

3. Dimen. is the ambient dimensionality.

4. Isosc. is the number of isosceles triangles with small base, as a
proportion of all triangles sampled.

5. Equil. is the number of equilateral triangles as a proportion of
triangles sampled.

6. UM is the proportion of ultrametricity-respecting triangles (=
1 for all ultrametric).
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Example of the change of topological properties as
ambient dimensionality increases 2/2

No. points Dimen. Isosc. Equil. UM

Uniform

100 20 0.10 0.03 0.13
100 200 0.16 0.20 0.36
100 2000 0.01 0.83 0.84
100 20000 0 0.94 0.94

Hypercube

100 20 0.14 0.02 0.16
100 200 0.16 0.21 0.36
100 2000 0.01 0.86 0.87
100 20000 0 0.96 0.96

Gaussian

100 20 0.12 0.01 0.13
100 200 0.23 0.14 0.36
100 2000 0.04 0.77 0.80
100 20000 0 0.98 0.98
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Application to Segmentation of Financial Time Series

1. Financial futures, circa March 2007, denominated in euros
from the DAX exchange. Data stream is at the millisecond
rate. Comprises about 382,860 records. Each record includes:
5 bid and 5 asking prices, together with bid and asking sizes
in all cases, action.

2. Extracted one symbol (commodity) with 95,011 single bid
values.

3. “Sliding windows”, embeddings that were: 100, 1000, 10000
values in length. Defined points in 100-, 1000-, or
10000-dimensional space.

4. Histograms of distances were studied using model-based
clustering.

5. This included model identification using the Bayesian
Information Criterion, BIC.

6. From the clusters, the segments were inferred.
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Partial Ultrametric Embedding: Notes 1/3

1. Permutation representations of a data stream. Hierarchies can
also be represented as permutations. Hence we can associate
data streams with hierarchies. (Early computational work on
hierarchical clustering used permutation representation to
great effect (“packed representation” used by Robin Sibson in
the 1970s.)

2. Murtagh: “Identifying the ultrametricity of time series”,
European Physical Journal B, 43, 573–579, 2005: ultrametric
embedding of time-varying signals, including biomedical,
meteorological, financial and other. At issue: inherent
hierarchical properties in the data.

3. Most non-ultrametric time series: chaotic.

4. Eyegaze trace data: remarkably high in ultrametricity, due to
extreme saccade movements.

5. Some questions raised in regard to the EEG data used, for
sleeping, petit mal and irregular epilepsy cases.
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Sibson’s “Packed Representation” of a Dendrogram 1/4

1. Put a lower ranked subtree always to the left; and read off the
oriented binary tree on non-terminal nodes (see example).

2. Then for any terminal node indexed by i with the exception of
the rightmost which will always be n, define p(i) as the rank
at which the terminal node is first united with some terminal
node to its right.

3. Inorder traversal of the oriented binary tree.

4. For the dendrogram to follows we find the unique
permutation: (13625748).
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Sibson’s “Packed Representation” of a Dendrogram 1/4
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Sibson’s “Packed Representation” of a Dendrogram 2/4
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Sibson’s “Packed Representation” of a Dendrogram 3/4
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Sibson’s “Packed Representation” of a Dendrogram 4/4
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Partial Ultrametric Embedding: Notes 2/3

1. Khrennikov et al.: modelling multi-agent systems.

2. Bose-Einstein and Fermi-Dirac statistical distributions
(derived from quantum statistics of energy states of bosons
and fermions, i.e. elementary particles with integer, and half
odd integer, spin).

3. Multi-agent behaviours modelled using such energy
distributions.

4. Framework: urn model, balls can move, loss of energy over
time, possibility to receive input energy, but potentially shared
with other balls.

5. Monte Carlo system. Sequences of actions (and moves), viz.
their histories, coded such that triangle properties can be
investigated. Leads to characterization of how
ultrametrically-embeddable the data is.
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Partial Ultrametric Embedding: Notes 3/3

1. Andrei Khrennikov: case presented for such analysis of
behavioural histories being important for study of social and
economic complexity.

2. Van Rijsbergen’s The Geometry of Information Retrieval, CUP,
2004: quantum physics formalism for information retrieval.

3. Text: tales from the Brothers Grimm, Jane Austen novels,
dream reports, air accident reports, and James Joyce’s
Ulysses.
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Ultrametric Baire Space and Distance 1/3

1. Baire space: countably infinite sequences; metric defined in
terms of the longest common prefix: the longer the common
prefix, the closer a pair of sequences.

2. Univariate values: let base m = 10; x and y ∈ [0, 1].
Maximum precision, |K |; ordered sets xk , yk for k ∈ K , or, for
k = 1, 2, . . . , |K |.

3. Consider x = 0.478; and y = 0.472. 1st, 2nd digits the same,
3rd different.

4.

dB(x , y) ≡ dB(xK , yK ) =

{
1 if x1 6= y1

inf 10−k xk = yk , 1 ≤ k ≤ |K |
(5)

5. This Baire distance is an ultrametric.

6. For a metric, require d(x , y) = 0 iff x = y whereas for the
Baire distance this reflexivity property is relaxed by having the
0 value replaced by the definably minimal value.
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Ultrametric Baire Space and Distance 2/3

1. Application: This distance splits a unidimensional string of
decimal values into a 10-way hierarchy (base m = 10, in
which each leaf is associated with a grid cell.

2. Pairwise distances of points assigned to the same cell are the
same.

3. Relative to agglomerative hierarchical clustering, in
Baire-based hierarchy each node of this tree is associated with
a grid (more strictly, in what we have described, interval) cell.

4. Grid cardinality defines local density.

5. Top-down hierarchy construction.

6. By having target data structure, regular 10-way tree, we can
cluster data in a single scan. Hence linear time computational
complexity.

7. Higher dimensionality: random projections.
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Ultrametric Baire Space and Distance 3/3

1. Random matrix R and project the d × N data matrix X into
the k dimensions is of order O(dkN). If X is sparse with c
nonzero entries per column, the complexity is of order
O(ckN).

2. Random projection: class of hashing function. If two points
(p, q) are close, they will have a very small ‖p − q‖
(Euclidean metric) value; and they will hash to the same value
with high probability; if they are distant, they should collide
with small probability.

3. See results for: chemoinformatics, astronomy, text retrieval.
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Approximating an Ultrametric for Similarity Metric Space
Searching

1. Fast nearest neighbour searching in metric spaces often uses
heuristics. Ultrametric spaces give rise instead to a unifying
view.

2. Fast nearest neighbour finding often makes use of pivots to
establish bounds on points to be searched, and points to be
bypassed as infeasible.

3. E.g. feasibility bounds: determine a neigbour and the distance
to it from our given point; have pre-stored distances to a fixed
point; many other points can be excluded through use of the
triangular inequality.

4. Can be shown to be: “stretching the triangular inequality”
(transform locally) to be the ultrametric inequality.

5. Another heuristic: embedding the given metric space points in
lower dimensional spaces.
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Symmetry: Examples Seen

1. p-Adic encoding and also tree and embedded clusters:
expansive automorphism of object set I , i.e. form-preserving,
and locally expansive.

2. Dendrogram: invariant relative to rotation (alternatively:
permutation) of left and right child nodes. Denote the
permutation at level ν by Pν . Then the automorphism group
is given by:

G = Pn−1 wr Pn−2 wr . . . wr P2 wr P1

where wr denotes the wreath product.

3. We considered labelled, ranked, binary trees. If we considere
non-labelled, ranked, binary trees, then these are isomorphic
to either down-up permutations, or up-down permutations
(both on n − 1 elements). Thus we are dealing with the
symmetry group of these permutations.
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Final Word

1. “My thesis has been that one path to the construction of a
nontrivial theory of complex systems is by way of a theory of
hierarchy.” (Herbert Simon)

2. “... my central theme is that complexity frequently takes the
form of hierarchy and that hierarchic systems have some
common properties independent of their specic content.
Hierarchy, I shall argue, is one of the central structural
schemes that the architect of complexity uses.” (Herbert
Simon)

3. “Human thinking (as well as many other information
processes) is fundamentally a hierarchical process. ... In our
information modeling the main distinguishing feature of p-adic
numbers is the treelike hierarchical structure.” (Andrei
Khrennikov)
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Final Word 2/2

4. “Whenever you have to do with a structure-endowed entity ...
try to determine its group of automorphisms, the group of
those element-wise transformations which leave all structural
relations undisturbed. You can expect to gain a deep insight
in the constitution of [the structure-endowed entity] in this
way. After that you may start to investigate symmetric
configurations of elements, i.e. configurations which are
invariant under a certain subgroup of the group of all
automorphisms; ...” (Hermann Weyl)
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