
Lecture 3

The Future of Search and 
Discovery in Big Data Analytics:
Ultrametric Information Spaces
Themes

1) “Big Data” and analytics: the potential for metric (geometric) and 
ultrametric (topological) analysis.
2) Baire distance, ultrametric and hierarchy, applied to astronomy data.
3) Chemoinformatics application: first, clustering and data analysis through 
modifying precision of the data; secondly, Baire distance, making use of random 
projections.
4) Finally, best match (nearest neighbour) searching using heuristics can be 
seen to be “stretching” the data in order to be ultrametric.

Department of Computer Science
Royal Holloway, University of London



- First, agglomerative hierarchical clustering; then: “hierarchical 
encoding” of data.

- Ultrametric topology, Baire distance.

- Clustering of large data sets.

- Hierarchical clustering via Baire distance using SDSS 
spectroscopic data. 

-Hierarchical clustering via Baire distance using chemical 
compounds.

- Finally, understanding some other approaches to nearest 
neighbour or best match searching in terms of ultrametric 
“stretching”.  

Overview



• Comments follow on ultrametrics - 
“distances on a hierarchical tree”.

• Ultrametric topology captures well the idea 
of novelty, exception, new.

• We are often interested in hierarchical 
clustering not just for deriving a partition (of 
compact clusters) but rather for more 
general information encapsulated in the 
hierarchy.

Correspondence Analysis is 
A Tale of Three Metrics

- Chi squared metric - 
appropriate for profiles of 
frequencies of occurrence

- Euclidean metric, for 
visualization, and for static 
context

- Ultrametric, for hierarchic 
relations and for dynamic 
context



Triangular inequality 
holds for metrics
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Example: Euclidean or 
“as the crow flies” distance

Ultrametric

• Euclidean distances makes a lot of sense 
when the population is homogeneous

• Ultrametric distance makes a lot of sense 
when the observables are heterogeneous, 
discontinuous

• Latter is especially useful for determining: 
anomalous, atypical, innovative cases
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Strong triangular inequality, or ultrametric 
inequality, holds for tree distances
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Closest common ancestor distance is an ultrametric 
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Some Properties of Ultrametrics

• The distance between two objects -- or two terminals in the 
tree -- is the lowest rank which dominates them.   Lowest 
or closest common ancestor distance.

• The ultrametric inequality holds for any 3 points (or 
terminals): 

• d(i, k)  ≤  max {d(i,j), d(j,k)}
• Recall: the triangular inequality is: d(i,k)  ≤  {d(i,j) + d(j,k)} 
• An ultrametric space is quite special: (i) all triangles are 

isosceles with small base, or equilateral; (ii) every point in 
a ball is its center; (iii) the radius of a ball equals the 
diameter; (iv) a ball is clopen; (v) an ultrametric space is 
always topologically 0-dimensional. 
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Shown by our measuring of ultrametricity: 

Pervasive Ultrametricity
• As dimensionality increases, so does ultrametricity.
• In very high dimensional spaces, the ultrametricity 

approaches being 100%.
• Relative density is important: high dimensional and 

spatially sparse mean the same in this context. 

• See: F Murtagh, “On ultrametricity, data coding, and computation”, Journal 
of Classification, 21, 167-184, 2004

• Hall, P., Marron, J.S., and Neeman, A., “Geometric representation of high 
dimension low sample size data”, JRSS B, 67, 427-444, 2005

• F. Delon, Espaces ultramétriques, J. Symbolic Logic, 49, 405-502, 1984 

Computational Implications
• Consider a dendrogram: a rooted, labeled, ranked, binary tree.   

So: n terminals, n-1 levels.  
• A dendrogram’s root-to-terminal path length is log2n for a balanced 

tree, and n-1 for an imbalanced tree.   Call the computational cost 
of such a traversal O(t) where t is this path length.  It holds:           
1 ≥ O(t) ≥ n-1.  

• Adding a new terminal to a dendrogram is carried out in O(t) time.        
• Cost of finding the ultrametric distance between two terminal 

nodes is twice the length of a traversal from root to terminals in the 
dendrogram.  Therefore distance is computed in O(t) time. 

• Nearest neighbor search in ultrametric space can be carried out in 
O(1) or constant time.  
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Next: the Baire (ultra)metric
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An example of Baire distance for two numbers (x  and y) 
using a precision of 3:

Baire distance between x and y:

dB (x, y) = 10−2 

Base (B) here is 10 (suitable for real 
values)
Precision here = |K| = 3

That is:
k=1 -> Xk = Yk   ->  4
k=2 -> Xk = Yk   ->  2
k=3 -> Xk ≠ Yk   ->  5≠7

x  =  0 . 4 2 5

y  =  0 . 4 2 7

Baire, or longest common prefix



- Baire space consists of countable infinite sequences with a 
metric defined in terms of the longest common prefix [A. Levy. Basic Set 
Theory, Dover, 1979 (reprinted 2002)]

- The longer the common prefix, the closer a pair of sequences.

- The Baire distance is an ultrametric distance.  It follows that a 
hierarchy can be used to represent the relationships associated 
with it.  Furthermore the hierarchy can be directly read from a 
linear scan of the data.   (Hence: hierarchical hashing scheme.)

- We applied the Baire distance to: chemical compounds, 
spectrometric and photometric redshifts from the Sloan Digital Sky Survey 
(SDSS), and various other datasets.

On the Baire (ultra)metric

• SDSS DR5 Imaging Sky Coverage 
• (Aitoff projection of Equatorial coordinates)

Sloan Digital Sky Survey: redshifts (photometric, some spectroscopic) of galaxies, quasars and stars



- We took a subset of approx. 0.5 
million data points from SDSS 
release 5. 

- declination (DEC) 

-right ascension (RA)

-spectrometric redshift

-photometric redshift

-Dec vs RA are shown in the figure

SDSS (Sloan Digital Sky Survey) Data

Data - example

145.4339      0.56416792    0.14611299     0.15175095
145.42139    0.53370196    0.145909         0.17476539
145.6607      0.63385916    0.46691701     0.41157582
145.64568    0.50961215    0.15610801     0.18679948
145.73267    0.53404553    0.16425499     0.19580211
145.72943    0.12690687    0.03660919     0.06343859 
145.74324    0.46347806    0.120695         0.13045037

RA DEC spec. redshift phot. redshift



• Motivation - regress z_spect on z_phot 

• Furthermore: determine good quality 
mappings of z_spect onto z_phot, and less 
qood quality mappings

• I.e., cluster-wise nearest neighbour 
regression

• Note: cluster-wise not spatially (RA, Dec) 
but rather within the data itself

Perspective Plots of Digit Distributions

On the right we have z_spec  where three data peaks can be observed. 
On the left we have z_phot where only one data peak can be seen.



• 82.8% of z_spec and z_phot have at least 2 
common prefix digits.

• I.e. numbers of observations sharing 6, 5, 4, 3, 2 decimal digits. 

• We can find very efficiently where these 
82.8% of the astronomical objects are.

• 21.7% of z_spec and z_phot have at least 3 
common prefix digits. 

• I.e. numbers of observations sharing 6, 5, 4, 3 decimal digits. 

Framework for Fast Clusterwise Regression 

We find good consistency vis-à-vis k-means (right panel)



• Next - another case study, using 
chemoinformatics - which is high 
dimensional.

• Since we are using digits of precision in our 
data (re)coding, how do we handle high 
dimensions?

Baire Distance Applied to 
Chemical Compounds
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Matching of Chemical Structures

- Clustering of compounds based on chemical descriptors or 
chemical representations, in the pharmaceutical industry.  

- Used for screening large corporate databases.  
- Chemical warehouses are expanding due to mergers, 

acquisitions, and the synthetic explosion brought about by 
combinatorial chemistry. 

36

Binary Fingerprints

1 0  0 0 1 0 0 0 1 ...1

Fixed length bit strings such as
Daylight

MDL
BCI
etc.

Encode



Chemoinformatics clustering 
• 1.2 million chemical compounds, each characterized 

by 1052 boolean presence/absence values.  
• Firstly we show that precision of measurement leads 

to greater ultrametricity (i.e. the data are more 
hierarchical).

• From this we develop an algorithm for finding 
equivalence classes of specified precision chemicals.  
We call this: data “condensation”. 

• Secondly, we use random projections of the 1052-
dimensional space in order to find the Baire hierarchy.  
We find that clusters derived from this hierarchy are 
quite similar to k-means clustering outcomes. 
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Data characteristics: 1.2M chemicals crossed by 1052 
presence/absence attributes.  Chemicals follow power law 
with exponent approx. 1.23.  Attributes approx. Gaussian. 
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Dependence of ultrametricity on precision - II

• We have seen that significant numbers of chemicals are 
identical (0 distance)

• Normalize by dividing by column sums:

• We limit the precision of all normalized values in a 
chemical’s 1052-valued vector 

• Then: with very limited precision, we get lots more identical 
(0 distance) chemicals

• And we find that local ultrametricity increases with limited 
precision
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xIJ −→ xJ
IJ , where I, J are chemical, attribute sets ,

xJ defines column or attribute masses , and we have: x
J
IJ ◦ xJ = xIJ

Dependence of ultrametricity, i.e. data inherently 
hierarchical, on precision - I

20,000 chemicals, normalized
2000 sampled triangles
Ultrametricities for 
precisions 1,2,3,4,...
in all values.
Numbers of non-degenerate
triangles (out of 2000): 
precision 1: 2
precision 2: 1062
precision 3: 1999
precision 4: 2000
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• We now exploit what we have just observed 
- potentially high ultrametricity or inherently 
hierarchical properties in the data, ...

• ... arrived at through reducing the precision 
of our data values.

• We are looking at different sets of digit 
precision.

• Implicit here is the Baire distance.  

41

Data “Condensation” through 
Recoding - I

• We will look for identical chemicals (in the normalized 
1052-valued attribute space).

• We will also take all attribute values to limited precision, 
thereby enabling many more chemicals to be identical.

• As a heuristic to find equivalence classes of identical 
chemicals, we use a spanning path.

• Path defined by row (chemical) marginal density.  (Also 
looked at random projections, etc.)  

• We find clusters of identical chemicals.  But we may miss 
some; and we may have separate clusters that should be 
merged.  For data condensation, unimportant.

• Dominant computational term: for n chemicals, O(n log n) 
to sort spanning path.   

42



Data “Condensation” through 
Recoding - II

• Data set 1: form spanning paths, agglomerate identical, 
adjacent chemicals; repeat.  Numbers of chemicals 
retained on successive passes: 

• 20000; 8487; 8393; 8372; 8364; 8360.
• Data set 2:
• 20000; 6969; 6825; 6776; 6757; 6747.
• Similar for further data sets.

• Processing 20000 chemicals (characterized by 1052 
normalized attributes) is fast: few minutes in R. 
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Data “Condensation” through 
Recoding - III

• Then remaining 8000-odd chemicals, out of 
20000 started with (all characterized by the 
normalized 1052 attributes), are 
hierarchically clustered using traditional 
means - using a “commodity” clustering 
algorithm.

• Ward minimum variance method used. 

44



Data “Condensation” through 
Recoding - IV

• Some comparative results, with no speed-up processing, 
from Geoff Downs (Digital Chemistry Ltd.) for clustering 
15,465 chemical structures x 1052-bit descriptions:

• Ward 42.5 mins
• k-Means 19.5 mins
• Divisive k-Means 8 mins
• (4 year old PC used, 2.4MHz, 1Gb RAM, Windows XP 

SP2)

• 152,450 chemical structures x 1052-bit descriptions: 
• k-Means 22 hrs
• Divisive k-Means 4.5 hrs 45

• Data “condensation” through recoding leads 
to a hybrid hierarchical clustering algorithm.

• It implicitly uses the Baire (ultra)metric in the 
first “condensation” phase.  

• Now we will approach the same issue of 
finding clusters at increasing levels of 
refinement more explicitly, by using the Baire 
(ultra)metric.

46



• To handle high dimensional data, like the 
chemoinformatics data, we will use random 
projections. 
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In fact random projection here works 
as a class of hashing function.  

Hashing is much faster than alternative 
methods because it avoids the pairwise 
comparisons required for partitioning 
and classification.

Random vector

If two points (p , q) are close, they will have a very small |p-q| (Euclidean metric) value; 
and they will hash to the same value with high probability; if they are distant, they should 
collide with small probability.

Random projection and hashing



Random projection

Here we use different random vector 
to project the original data matrix.

It can be observed in that the shape is 
kept for the different projections.  
This implies that different random 
projections do not affect the resulting 
clusters.

Is random projection a good 
method to reduce dimensionality?

Results for the three different data sets, each consisting 
of 7500 chemicals, are shown in immediate succession. 
The number of  significant decimal digits is 4 (more 
precise, and hence more different clusters found), 3, 2, 
and 1 (lowest precision in terms of  significant digits). 

Sig. dig. k No clusters

4
4
4

6591  
6507
5735

3
3
3

6481
6402
5360

2
2
2

2519
2576
2135

1
1
1

138
148
167

Simple Clustering Hierarchy



Comparative evaluation: Results of k-means using as input the 
cluster centres provided by the 1 sig. dig. Baire approach relating to 
7500 chemical structures, with 1052 descriptors. 

Sig. dig. : number of significant digits used. 
No. clusters: number of clusters in the data set of 7500 chemical structures, associated with 
the number of significant digits used in the Baire scheme. 
Largest cluster : cardinality. 
No. discrep. : number of discrepancies found in k-means clustering outcome. 
No. discrep. cl. : number of clusters containing these discrepant assignments. 

Sig. Dig. No. Clusters No. discrep. No. discrep. cl.

1
1
1

138
148
167

3
1
9

3
1
7

Simple Clustering Hierarchy

• Next:

• Nearest neighbour or best match searching

• Using heuristic to make search in a 
coordinate space more efficient



Nearest neighbor finding through bounding: 
the unifying view of ultrametricity

• Feasibility bounds relating to nearest neighbors are an old 
idea (e.g. Fukunaga and Narendra, 1975)  

• Chávez and Navarro (2000, 2003) show how bounds are 
used: they serve to "stretch the triangular inequality"

• What happens is: we look for a good approximation to a  
locally ultrametric configuration.  From this we have a 
small and reliable candidate set of nearest neighbors.

• K Fukunaga and PM Narendra, A branch and bound algorithm for computing k-nearest neighbors, IEEE 
Trans. Computers, C-24, 750-753, 1975

• E Chávez and G Navarro, Probabilistic proximity search: fighting the curse of dimensionality in metric spaces, 
Information Processing Letters, 85, 39-46, 2003

• E Chávez, G Navarro, R Baeza-Yates and JL Marroquín, Proximity searching in metric spaces, ACM 
Computing Surveys, 33, 273-321, 2001
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• Consider points u which we seek to discard when searching for nearest 
neighbors of query q, and we use pivots, p.

• Consider the situation of: 

• as being of interest.  By the triangular inequality: 

• This gives the rejection rule: discard all u such that

• for a threshold r, and for some pivot pi.  
• This gives a bound for the radius around q which could be relevant.  This 

bound is in terms of pre-calculated distances.  
• If                                       then clearly we have no rejection at all of points u.  

But if r is small, i.e.                                     then we have a small and reliable 
search neighbourhood.  The smaller r is, r > 0, so much the better.  But we 
can’t allow it to be too small.

• From the foregoing observations, the triangle formed by {q, u, pi} is 
approximately isosceles with small base, or equilateral.  

54

d(u, pi) ≤ d(u, q) + d(q, pi) and d(q, pi) ≤ d(q, u) + d(u, pi)

d(q, u) ≤ d(u, pi) and d(q, u) ≤ d(q, pi)

|d(u, pi) − d(q, pi)| > r

d(u, pi) = d(q, pi)
d(u, pi) ≈ d(q, pi)



- We have a new way of inducing a hierarchy on data 

- First viewpoint: encode the data hierarchically and essentially read off the 
clusters

- Alternative viewpoint: we can cluster information based on the longest 
common prefix

- We obtain a hierarchy that can be visualized as a tree

- We are hashing, in a hierarchical or multiscale way, our data

- We are targeting clustering in massive data sets

- The Baire method - we find - offers a fast alternative to k-means and a 
fortiori to traditional agglomerative hierarchical clustering

- At issue throughout this work: embedding of our data in an ultrametric 
topology 

Concluding Remarks


