Lecture 2, 3rd Part
Ultrametric Embedding: Application to
Data Fingerprinting

*Consider “hierarchical structure” whenever “ultrametricity” is mentioned.

. lNow, clustering is often the search for compact groups. But certainly not
always...

e For us, hierarchical structure is targeted. Embedded subsets.
Furthermore: local structure.

 Hierarchies are often represented by trees. We use binary rooted trees,
termed dendrograms. Such a hierarchy defines an ultrametric topology.
There is a close relationship between an ultrametric topology and a p-adic
number system (i.e. base p, where p is a prime). (For this, see L1ecture 3.)
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Fig. 2. Five dendrograms on n=5.

 Remark (for data analysts) on the methodology here:
» We do not wish to fit a dendrogram to a data set.

 We want to see if a data set is inherently hierarchical -
if so, [most] agglomerative hierarchical clustering
criteria will give the same result.

» We do this by looking for local hierarchical structure.
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Some Properties of Ultrametrics

e The distance between two objects -- or two terminals in
the tree -- is the lowest rank which dominates them.
Lowest or closest common ancestor distance.

e The ultrametric inequality holds for any 3 points (or
terminals):

e d(i, k) < max{d(i,j), d(j,k)}

e Recall: the triangular inequality is: d(i,k) = {d(i,j) + d(j,k)}

» An ultrametric space is weird: (i) all triangles are
isosceles with small base, or egunateral (||? every point
in a ball is its center; (iii) the radius of a bal equals the

diameter; (iv) a ball is clopen (v) an ultrametric space is
always topologlcally 0-dimensional. Etc.
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Data recoding can enhance
iInherent hierarchical structure

e One early motivation for this work: What is the
benefit of data encoding as used in
Correspondence Analysis? One answer: it
tends to bring about greater ultrametricity in our
data.

* Fisheriris data, 150 x 4. We quantify ultrametricity -- inherent
hierarchical structure in a way to be described shortly -- and arrive
at a value of 0.017 (on a scale of 0 = no ultrametricity, 1 = 100%
ultrametricity.

* Now we recode the iris data to 0 and 1 values, furnishing a 150 x
150 array. Actually some columns are all 0-valued, so we remove
them, leaving a 150 x 123 array. The ultrametricity now is 0.948.
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Two major implications...

« Data coding is often so far upstream of
data analysis that it is just taken for
granted.

« Major domain of application: high
dimensional data analysis - search for
invariants and symmetries.

» Note: high dimensional problems are
(very) closely linked to small sample size
problems.




Quantifying ultrametricity — |

Assume Hilbert space. Consider a triplet of
points, that defines a triangle.

Take smallest internal angle, a, in triangle < 60
deg.

... and, for the two other internal angles, b and c,
if | b—c | <2 deg. (arbitrary small angle),

Then this triangle is ultrametric.

We look for the overall proportion of such
triangles in our data.

Quantifying ultrametricity — I

So: we take all possible triplets, i, j, k

We look at their angles, and judge whether or
not the ultrametric triangle properties are verified

If so: #UM-triangles++

Having examined all possible triangles, our a
measure is: #UM-triangles / #triangles

All triangles respect these ultrametric properties
implies a = 1; no triangle does, then =0

For n objects, this is computationally prohibitive,
so we sample i,j,k in practice (uniformly)




Other Ways of Quantifying
Ultrametricity — Il

Relationship between subdominant ultrametric,
and given dissimilarities.

Rammal, Toulouse and Virasoro, Ultrametricity
20g8%hysicists, Rev. Mod. Phys., 58, 765-788,

Whether interval between median and max rank
dissimilarity of every set of triplets is nearly
empty. (Taking ranks provides scale invariance.)
We will ook at Lerman’s measure later.

Lerman, Classification et Analyse Ordinale des
Données, Dunod, 1981.

Pervasive Ultrametricity

As dimensionality increases, so does ultrametricity.

In very high dimensional spaces, the ultrametricity
approaches being 100%.

Relative density is important: high dimensional and
spatially sparse mean the same in this context.

We find equilateral polygons which can be analyzed
through equivalence classes defined by level sets.

See: F Murtagh, “On ultrametricity, data coding, and computation”, Journal
of Classification, 21, 167-184, 2204

Hall, P., Marron, J.S., and Neeman, A., “Geometric representation of high
dimension low sample size data”, JRSS B, 67, 427-444, 2005

F. Delon, Espaces ultramétriques, J. Symbolic Logic, 49, 405-502,13984




Fingerprinting Using Ultrametricity

1) Wide range of time series signals
2) Wide range of texts
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Assessing the ultrametricity of
time series - |

* Fingerprint the time series signals based on their
ultrametricity.

» Approach used: Take “sliding window” of fixed length.
Used “window” sizes m =5, 10, 15, ..., 105, 110. Look
at distance between each pair of values in the window.
Encode as high/low distance. Test ultrametricity of all
these indicators of local variability, and accumulate
ultrametricity index over all such “windows”.

* In “window” code each value as 1 if there is no/small
change; and 2 if there is large change (up or down).
Small/large defined relative to threshold max;; d;2/2, j,j’ €

“‘window”. Recoded values are metric.
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Ultrametricity of time series - |l

So in a local region (window) we map pairwise dissimilarities onto
relative (i.e. local) “change = 2” versus “no change = 1” distance.

This is our “change/no change” metric.

Used signals: FTSE, USD/EUR, sunspot, stock,
futures, eyegaze, Mississippi, www traffic, EEG/
sleep/normal, EEG/petit mal epilepsy, EEG/irreg.

epilepsy, quadratic chaotic map, uniform.

Signals can be clearly distinguished. Extremes are:
EEG and uniform.
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1 ro1om 1020
FTSE - Financial Tmes Stock Exchange index

2 USD/EUR 1169
USD/EUR daily foreign exchange rates

3 Sunspot 2739
Monthly index values of sunspot solar physics activity

4 Stock 1374
Stock price, unknown origin

5 Futures-3080 3080
First 3080 values of futures

6 Futures 6160
Futures, daily highs

7 Eyegaze 1471
One coordinate of eyegaze position from eye tracker

8 Mississippi-20000 20,000
First 20,000 values of Mississippi data

9 Mississippi 43,829
Mississippi River daily water levels

10 WWW traffic 34,726
Bytes transferred per hour by a web server

11 EEG-chan4 2500
EEG channel p4, sampled at 250 Hz for 10 seconds

12 EEG-chand 2500
EEG channel ol, sampled at 250 Hz for 10 seconds

13 Quadratic map 1 2500
zy 1 = Az (1 — ), ®g = 0.2

14 Quadratic map 2 2500
zy 1 = 4z (1 — ), ®g = 0.37777

15 Quadratic map 3 2500
@yq1 = 4z (l — ), xg = 0.451 14

16 Sleep EEG chan. 1 999
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Fig. 3. Investigation of two of the windows (embedding dimensions), m = 10 and
m = 110. Results for 44 time series are shown, with window size m = 110 on top
and m = 10 on bottom. In both cases, an ultrametricity ~ value is plotted for each
time series. Portraying the v values as a continuous curve for all data sets is done
for visualization.

Assessing the ultrametricity of text

+ Semantic networks defined from texts, through shared words.

* Used as texts: 209 tales of Brothers Grimm; 266 Jane Austen chapters (full/
partial) from 3 novels from 1811, 1813, 1817; 50 air accident reports; 384
dream reports. In all: nearly 1000 texts, over 1 million words.

» Using Benzécri (“bag of words”) approach, use words as found (no
stemming). Define %2 distance between profiles of frequency of occurrence
table.

+  We “euclideanized” by mapping into correspondence analysis factor space.
E.g. for dream reports, 384 texts crossed by 11,441 words.

+ Then we determined ultrametricity of text collections in factor space.

* We found dream reports to be highest in ultrametricity (albeit with fairly
small coefficient of ultrametricity); and air accident reports similar to Grimm
texts.

» Other assessments were carried out on Aristotle’s Categories; and James
Joyce’s Ulysses (304,414 words).
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Ultrametricity (i.e. hierarchical substructure)
for various text collections

« 209 Grimm Brothers tales, 209 x 7443,
ultrametricity coefficient 0.1147

« 266 Jane Austen chapters or partial chapters,
266 x 9723, ultrametricity coefficient 0.1404

» 50 aviation accident reports, 50 x 4261,
ultrametricity coefficient 0.1154

« 385 dream reports, 385 x 11441, ultrametricity
coefficient 0.1933

* 171 Barbara Sanders dream reports, 171 X
7044, ultrametricity coefficient 0.2603
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Results quite consistent:
Example of Brothers Grimm

209 Brothers Grimm fairy tales

Texts Orig.Dim. FactorDim. Alpha, mean Alpha, sdev.

209 1000 208 0.1236 0.0054

209 2000 208 0.1123 0.0065

209 7443 208 0.1147 0.0066
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Applications of local
ultrametricity

Application 1 - To characterize the data set
Application 2 - To help in proximity and
related search problems

Application 1 - This leads to what?

It serves to determine the data generation
process, and the phenomenon or activity
represented by the data

Application 2 - Lecture 3
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Lerman’s H-classifiability

Quantifies how ultrametric a given metric is; useful because it
is based on rank orders - so avoids messiness of handling
RA, Dec, redshift coordinates.

Let M(x,y,z) be median pair among {(x,y), (y,2), (x,z)}; and let
S(x,y,z) be highest ranked pair in this triplet. J is the set of all
possible triplets.

We consider the open interval IM(x,y,z), S(x,y,z)[

If triplet {x,y,z} is such that (x,y) < (y,z) < (x,z) for the preorder
defined by the distance used, then the preorder is ultrametric
if the interval ]M(x,y,z), S(x,y,z)[ is empty.

Lerman’s approach is based on counting how often this
interval is found to be empty. 0 if ultrametric, 1 if very non-
ultrametric. (Note: my triangle-based measure was 1 for ultrametric, and 0 for non-
ultrametric.)
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