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Lecture 2, 3rd Part
Ultrametric Embedding: Application to 

Data Fingerprinting 

•Consider “hierarchical structure” whenever “ultrametricity” is mentioned.  
 
• Now, clustering is often the search for compact groups.   But certainly not 
always…

•  For us, hierarchical structure is targeted.  Embedded subsets.  
Furthermore: local structure.
  
• Hierarchies are often represented by trees.  We use binary rooted trees, 
termed dendrograms.  Such a hierarchy defines an ultrametric topology. 
There is a close relationship between an ultrametric topology and a p-adic 
number system (i.e. base p, where p is a prime).  (For this, see Lecture 3.)
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• Remark (for data analysts) on the methodology here: 
• We do not wish to fit a dendrogram to a data set.
• We want to see if a data set is inherently hierarchical - 

if so, [most] agglomerative hierarchical clustering 
criteria will give the same result.

• We do this by looking for local hierarchical structure.
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Some Properties of Ultrametrics

• The distance between two objects -- or two terminals in 
the tree -- is the lowest rank which dominates them.   
Lowest or closest common ancestor distance.

• The ultrametric inequality holds for any 3 points (or 
terminals): 

• d(i, k)  ≤  max {d(i,j), d(j,k)}
• Recall: the triangular inequality is: d(i,k)  ≤  {d(i,j) + d(j,k)} 
• An ultrametric space is weird: (i) all triangles are 

isosceles with small base, or equilateral; (ii) every point 
in a ball is its center; (iii) the radius of a ball equals the 
diameter; (iv) a ball is clopen; (v) an ultrametric space is 
always topologically 0-dimensional.  Etc.
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Data recoding can enhance 
inherent hierarchical structure

• One early motivation for this work: What is the 
benefit of data encoding as used in 
Correspondence Analysis?  One answer:  it 
tends to bring about greater ultrametricity in our 
data.

• Fisher iris data, 150 x 4.  We quantify ultrametricity -- inherent 
hierarchical structure in a way to be described shortly -- and arrive 
at a value of 0.017 (on a scale of 0 = no ultrametricity, 1 = 100% 
ultrametricity.  

• Now we recode the iris data to 0 and 1 values, furnishing a 150 x 
150 array.  Actually some columns are all 0-valued, so we remove 
them, leaving a 150 x 123 array.  The ultrametricity now is 0.948.

Two major implications...

• Data coding is often so far upstream of 
data analysis that it is just taken for 
granted.

• Major domain of application: high 
dimensional data analysis - search for 
invariants and symmetries.

• Note: high dimensional problems are 
(very) closely linked to small sample size 
problems.
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Quantifying ultrametricity – I 
• Assume Hilbert space.  Consider a triplet of 

points, that defines a triangle.
• Take smallest internal angle, a, in triangle ≤ 60 

deg. 
• … and, for the two other internal angles, b and c, 

if | b – c | < 2 deg. (arbitrary small angle), 
• Then this triangle is ultrametric.  
• We look for the overall proportion of such 

triangles in our data. 
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Quantifying ultrametricity – II
• So: we take all possible triplets, i, j, k
• We look at their angles, and judge whether or 

not the ultrametric triangle properties are verified
• If so: #UM-triangles++
• Having examined all possible triangles, our α 

measure is: #UM-triangles / #triangles
• All triangles respect these ultrametric properties 

implies α = 1; no triangle does, then = 0  
• For n objects, this is computationally prohibitive, 

so we sample i,j,k in practice (uniformly)
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Other Ways of Quantifying 
Ultrametricity – III 

• Relationship between subdominant ultrametric, 
and given dissimilarities.  

• Rammal, Toulouse and Virasoro, Ultrametricity 
for physicists, Rev. Mod. Phys., 58, 765-788, 
1986.

• Whether interval between median and max rank 
dissimilarity of every set of triplets is nearly 
empty.  (Taking ranks provides scale invariance.)  
We will look at Lerman’s measure later.

• Lerman, Classification et Analyse Ordinale des 
Données, Dunod, 1981. 
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Pervasive Ultrametricity
• As dimensionality increases, so does ultrametricity.
• In very high dimensional spaces, the ultrametricity 

approaches being 100%.
• Relative density is important: high dimensional and 

spatially sparse mean the same in this context. 
• We find equilateral polygons which can be analyzed 

through equivalence classes defined by level sets.

• See: F Murtagh, “On ultrametricity, data coding, and computation”, Journal 
of Classification, 21, 167-184, 2204

• Hall, P., Marron, J.S., and Neeman, A., “Geometric representation of high 
dimension low sample size data”, JRSS B, 67, 427-444, 2005

• F. Delon, Espaces ultramétriques, J. Symbolic Logic, 49, 405-502, 1984 



11

Fingerprinting Using Ultrametricity

1) Wide range of time series signals
2) Wide range of texts
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Assessing the ultrametricity of 
time series - I

• Fingerprint the time series signals based on their 
ultrametricity.  

• Approach used: Take “sliding window” of fixed length. 
Used “window” sizes m = 5, 10, 15, … , 105, 110.  Look 
at distance between each pair of values in the window. 
Encode as high/low distance.  Test ultrametricity of all 
these indicators of local variability, and accumulate 
ultrametricity index over all such “windows”. 

• In “window” code each value as 1 if there is no/small 
change; and 2 if there is large change (up or down).  
Small/large defined relative to threshold maxjj’ djj’

2/2, j,j’ ∈ 
“window”.  Recoded values are metric.
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Ultrametricity of time series - II
• So in a local region (window) we map pairwise dissimilarities onto 

relative (i.e. local) “change = 2” versus “no change = 1” distance.  
• This is our “change/no change” metric. 

• Used signals: FTSE, USD/EUR, sunspot, stock, 
futures, eyegaze, Mississippi, www traffic, EEG/
sleep/normal, EEG/petit mal epilepsy, EEG/irreg. 
epilepsy, quadratic chaotic map, uniform.

• Signals can be clearly distinguished.   Extremes are: 
EEG and uniform.
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Assessing the ultrametricity of text
• Semantic networks defined from texts, through shared words.
• Used as texts: 209 tales of Brothers Grimm; 266 Jane Austen chapters (full/

partial) from 3 novels from 1811, 1813, 1817; 50 air accident reports; 384 
dream reports.  In all: nearly 1000 texts, over 1 million words.

• Using Benzécri (“bag of words”) approach, use words as found (no 
stemming).  Define χ2 distance between profiles of frequency of occurrence 
table.  

• We “euclideanized” by mapping into correspondence analysis factor space.   
E.g. for dream reports, 384 texts crossed by 11,441 words.

• Then we determined ultrametricity of text collections in factor space. 
• We found dream reports to be highest in ultrametricity (albeit with fairly 

small coefficient of ultrametricity); and air accident reports similar to Grimm 
texts. 

• Other assessments were carried out on Aristotle’s Categories; and James 
Joyce’s Ulysses (304,414 words). 



Ultrametricity (i.e. hierarchical substructure) 
for various text collections

• 209 Grimm Brothers tales, 209 x 7443, 
ultrametricity coefficient 0.1147

• 266 Jane Austen chapters or partial chapters, 
266 x 9723, ultrametricity coefficient 0.1404

• 50 aviation accident reports, 50 x 4261, 
ultrametricity coefficient 0.1154

• 385 dream reports, 385 x 11441, ultrametricity 
coefficient 0.1933

• 171 Barbara Sanders dream reports, 171 x 
7044, ultrametricity coefficient 0.2603 
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Results quite consistent:
Example of Brothers Grimm



Applications of local 
ultrametricity

• Application 1 - To characterize the data set
• Application 2 - To help in proximity and 

related search problems

• Application 1 - This leads to what?
• It serves to determine the data generation 

process, and the phenomenon or activity 
represented by the data

• Application 2 - Lecture 3
19
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Lerman’s H-classifiability
• Quantifies how ultrametric a given metric is; useful because it 

is based on rank orders - so avoids messiness of handling 
RA, Dec, redshift coordinates.

• Let M(x,y,z) be median pair among {(x,y), (y,z), (x,z)}; and let 
S(x,y,z) be highest ranked pair in this triplet.  J is the set of all 
possible triplets.  

• We consider the open interval ]M(x,y,z), S(x,y,z)[
• If triplet {x,y,z} is such that (x,y) ≤ (y,z) ≤ (x,z) for the preorder 

defined by the distance used, then the preorder is ultrametric 
if the interval ]M(x,y,z), S(x,y,z)[ is empty.  

• Lerman’s approach is based on counting how often this 
interval is found to be empty.   0 if ultrametric, 1 if very non-
ultrametric.  (Note: my triangle-based measure was 1 for ultrametric, and 0 for non-
ultrametric.)


