Lecture 2: Data Analytics of Narrative

Data Analytics of Narrative: Pattern Recognition in Text, and Text Synthesis, Supported by the Correspondence Analysis Platform.

This Lecture is presented in three parts, as follows.
Part 1 Data analytics of narrative.
Part 2 Analysis of narrative: tracking emotion in the film, Casablanca. Synthesis of narrative: collective, collaborative authoring of a novel.
Part 3 Ultrametric embedding.

Lecture 2: Data Analytics of Narrative

Data Analytics of Narrative: Pattern Recognition in Text, and Text Synthesis, Supported by the Correspondence Analysis Platform.

1. A short review of the theory and practical implications of Correspondence Analysis.
2. Analysis of narrative: tracking emotion in the film, Casablanca.
3. Synthesis of narrative: collective, collaborative authoring of a novel.
4. Towards semantic rating.

- "We call distribution of a word the set of all its possible environments" (Z.S. Harris)
- "We call distribution of a word the set of all its possible environments" (Z.S. Harris)
- Initially, correspondence analysis was proposed as an inductive method for analyzing linguistic data.
- "We call distribution of a word the set of all its possible environments" (Z.S. Harris)
- Initially, correspondence analysis was proposed as an inductive method for analyzing linguistic data.
- Developed in Rennes, Laboratoire de calcul de la Faculté des Sciences de Rennes, by Jean-Paul Benzécri. Subsequently in Paris, Université P. \& M. Curie, Paris 6.
- "We call distribution of a word the set of all its possible environments" (Z.S. Harris)
- Initially, correspondence analysis was proposed as an inductive method for analyzing linguistic data.
- Developed in Rennes, Laboratoire de calcul de la Faculté des Sciences de Rennes, by Jean-Paul Benzécri. Subsequently in Paris, Université P. \& M. Curie, Paris 6.
- "The model should follow the data, not the reverse!" (In J.P. Benzécri, "Statistical analysis as a tool to make patterns emerge from data", in Methodologies of Pattern Recognition, Ed. Watanable, NY: Academic, 1969.)
- "We call distribution of a word the set of all its possible environments" (Z.S. Harris)
- Initially, correspondence analysis was proposed as an inductive method for analyzing linguistic data.
- Developed in Rennes, Laboratoire de calcul de la Faculté des Sciences de Rennes, by Jean-Paul Benzécri. Subsequently in Paris, Université P. \& M. Curie, Paris 6.
- "The model should follow the data, not the reverse!" (In J.P. Benzécri, "Statistical analysis as a tool to make patterns emerge from data", in Methodologies of Pattern Recognition, Ed. Watanable, NY: Academic, 1969.)
- So: Description first - priority. Inductive philosophy.

Analysis Chain

- The starting point is a matrix that cross-tabulates the dependencies, e.g. frequencies of joint occurrence, of an observations crossed by attributes matrix.

Analysis Chain

- The starting point is a matrix that cross-tabulates the dependencies, e.g. frequencies of joint occurrence, of an observations crossed by attributes matrix.
- By endowing the cross-tabulation matrix with the χ^{2} metric on both observation set (rows) and attribute set (columns), we can map observations and attributes into the same space, endowed with the Euclidean metric.

Analysis Chain

- The starting point is a matrix that cross-tabulates the dependencies, e.g. frequencies of joint occurrence, of an observations crossed by attributes matrix.
- By endowing the cross-tabulation matrix with the χ^{2} metric on both observation set (rows) and attribute set (columns), we can map observations and attributes into the same space, endowed with the Euclidean metric.
- A hierarchical clustering is induced on the Euclidean space, the factor space.

Analysis Chain

- The starting point is a matrix that cross-tabulates the dependencies, e.g. frequencies of joint occurrence, of an observations crossed by attributes matrix.
- By endowing the cross-tabulation matrix with the χ^{2} metric on both observation set (rows) and attribute set (columns), we can map observations and attributes into the same space, endowed with the Euclidean metric.
- A hierarchical clustering is induced on the Euclidean space, the factor space.
- Interpretation is through projections of observations, attributes or clusters onto factors. The factors are ordered by decreasing importance.

Correspondence Analysis: Mapping χ^{2} Distances into

 Euclidean Distances- The given contingency table (or numbers of occurrence) data is denoted $k_{I J}=\left\{k_{I J}(i, j)=k(i, j) ; i \in I, j \in J\right\}$.

Correspondence Analysis: Mapping χ^{2} Distances into

 Euclidean Distances- The given contingency table (or numbers of occurrence) data is denoted $k_{I J}=\left\{k_{I J}(i, j)=k(i, j) ; i \in I, j \in J\right\}$.
- I is the set of observation indexes, and J is the set of attribute indexes.

Correspondence Analysis: Mapping χ^{2} Distances into Euclidean Distances

- The given contingency table (or numbers of occurrence) data is denoted $k_{I J}=\left\{k_{I J}(i, j)=k(i, j) ; i \in I, j \in J\right\}$.
- I is the set of observation indexes, and J is the set of attribute indexes.
- We have $k(i)=\sum_{j \in J} k(i, j)$. Analogously $k(j)$ is defined, and $k=\sum_{i \in I, j \in J} k(i, j)$.

Correspondence Analysis: Mapping χ^{2} Distances into Euclidean Distances

- The given contingency table (or numbers of occurrence) data is denoted $k_{I J}=\left\{k_{I J}(i, j)=k(i, j) ; i \in I, j \in J\right\}$.
- I is the set of observation indexes, and J is the set of attribute indexes.
- We have $k(i)=\sum_{j \in J} k(i, j)$. Analogously $k(j)$ is defined, and $k=\sum_{i \in I, j \in J} k(i, j)$.
- Next, $f_{I J}=\left\{f_{i j}=k(i, j) / k ; i \in I, j \in J\right\} \subset \mathbb{R}_{I \times J}$, similarly f_{l} is defined as $\left\{f_{i}=k(i) / k ; i \in I, j \in J\right\} \subset \mathbb{R}_{I}$, and f_{J} analogously.

Correspondence Analysis: Mapping χ^{2} Distances into Euclidean Distances

- The given contingency table (or numbers of occurrence) data is denoted $k_{I J}=\left\{k_{I J}(i, j)=k(i, j) ; i \in I, j \in J\right\}$.
- I is the set of observation indexes, and J is the set of attribute indexes.
- We have $k(i)=\sum_{j \in J} k(i, j)$. Analogously $k(j)$ is defined, and $k=\sum_{i \in I, j \in J} k(i, j)$.
- Next, $f_{I J}=\left\{f_{i j}=k(i, j) / k ; i \in I, j \in J\right\} \subset \mathbb{R}_{I \times J}$, similarly f_{l} is defined as $\left\{f_{i}=k(i) / k ; i \in I, j \in J\right\} \subset \mathbb{R}_{I}$, and f_{J} analogously.
- What we have described here is taking numbers of occurrences into relative frequencies.

Correspondence Analysis: Mapping χ^{2} Distances into

Euclidean Distances

- The given contingency table (or numbers of occurrence) data is denoted $k_{I J}=\left\{k_{I J}(i, j)=k(i, j) ; i \in I, j \in J\right\}$.
- I is the set of observation indexes, and J is the set of attribute indexes.
- We have $k(i)=\sum_{j \in J} k(i, j)$. Analogously $k(j)$ is defined, and $k=\sum_{i \in I, j \in J} k(i, j)$.
- Next, $f_{I J}=\left\{f_{i j}=k(i, j) / k ; i \in I, j \in J\right\} \subset \mathbb{R}_{I \times J}$, similarly f_{l} is defined as $\left\{f_{i}=k(i) / k ; i \in I, j \in J\right\} \subset \mathbb{R}_{I}$, and f_{J} analogously.
- What we have described here is taking numbers of occurrences into relative frequencies.
- The conditional distribution of f_{J} knowing $i \in I$, also termed the j th profile with coordinates indexed by the elements of I, is:

$$
f_{J}^{i}=\left\{f_{j}^{i}=f_{i j} / f_{i}=\left(k_{i j} / k\right) /\left(k_{i} / k\right) ; f_{i}>0 ; j \in J\right\}
$$

and likewise for f_{l}^{j}.

Input: Cloud of Points Endowed with the Chi Squared

 Metric- The cloud of points consists of the couples: (multidimensional) profile coordinate and (scalar) mass. We have $N_{J}(I)=\left\{\left(f_{J}^{i}, f_{i}\right) ; i \in I\right\} \subset \mathbb{R}_{J}$, and again similarly for $N_{l}(J)$.

Input: Cloud of Points Endowed with the Chi Squared

 Metric- The cloud of points consists of the couples: (multidimensional) profile coordinate and (scalar) mass. We have $N_{J}(I)=\left\{\left(f_{J}^{i}, f_{i}\right) ; i \in I\right\} \subset \mathbb{R}_{J}$, and again similarly for $N_{l}(J)$.
- Included in this expression is the fact that the cloud of observations, $N_{J}(I)$, is a subset of the real space of dimensionality $|J|$ where $|$.$| denotes cardinality of the attribute$ set, J.

Input: Cloud of Points Endowed with the Chi Squared

 Metric- The cloud of points consists of the couples: (multidimensional) profile coordinate and (scalar) mass. We have $N_{J}(I)=\left\{\left(f_{J}^{i}, f_{i}\right) ; i \in I\right\} \subset \mathbb{R}_{J}$, and again similarly for $N_{l}(J)$.
- Included in this expression is the fact that the cloud of observations, $N_{J}(I)$, is a subset of the real space of dimensionality $|J|$ where $|$.$| denotes cardinality of the attribute$ set, J.
- The overall inertia is as follows:

$$
\begin{align*}
M^{2}\left(N_{J}(I)\right) & =M^{2}\left(N_{l}(J)\right)=\left\|f_{l J}-f_{l} f_{J}\right\|_{f_{i} f_{J}}^{2} \\
= & \sum_{i \in I, j \in J}\left(f_{i j}-f_{i} f_{j}\right)^{2} / f_{i} f_{j} \tag{1}
\end{align*}
$$

Input 2/2

- The term $\left\|f_{I J}-f_{l} f_{J}\right\|_{f_{f} f_{J}}^{2}$ is the χ^{2} metric between the probability distribution $f_{I J}$ and the product of marginal distributions $f_{l} f_{J}$, with as center of the metric the product $f_{l} f_{J}$.

Input 2/2

- The term $\left\|f_{I J}-f_{l} f_{J}\right\|_{f_{I} f_{J}}^{2}$ is the χ^{2} metric between the probability distribution $f_{I J}$ and the product of marginal distributions $f_{l} f_{J}$, with as center of the metric the product $f_{l} f_{J}$.
- Decomposing the moment of inertia of the cloud $N_{J}(I)$ - or of $N_{l}(J)$ since both analyses are inherently related - furnishes the principal axes of inertia, defined from a singular value decomposition.

Output: Cloud of Points Endowed with the Euclidean Metric in Factor Space

- The χ^{2} distance with center f_{J} between observations i and i^{\prime} is written as follows in two different notations:

$$
\begin{equation*}
d\left(i, i^{\prime}\right)^{2}=\left\|f_{J}^{i}-f_{J}^{i^{\prime}}\right\|_{f_{J}}^{2}=\sum_{j} \frac{1}{f_{j}}\left(\frac{f_{i j}}{f_{i}}-\frac{f_{i^{\prime} j}}{f_{i^{\prime}}}\right)^{2} \tag{2}
\end{equation*}
$$

Output: Cloud of Points Endowed with the Euclidean

 Metric in Factor Space- The χ^{2} distance with center f_{J} between observations i and i^{\prime} is written as follows in two different notations:

$$
\begin{equation*}
d\left(i, i^{\prime}\right)^{2}=\left\|f_{j}^{i}-f_{j}^{i^{\prime}}\right\|_{f_{j}}^{2}=\sum_{j} \frac{1}{f_{j}}\left(\frac{f_{i j}}{f_{i}}-\frac{f_{i^{\prime} j}}{f_{i^{\prime}}}\right)^{2} \tag{2}
\end{equation*}
$$

- In the factor space this pairwise distance is identical. The coordinate system and the metric change. For factors indexed by α and for total dimensionality N
($N=\min \{|I|-1,|J|-1\}$; the subtraction of 1 is since the χ^{2} distance is centered and hence there is a linear dependency which reduces the inherent dimensionality by 1) we have the projection of observation i on the α th factor, F_{α}, given by $F_{\alpha}(i):$

$$
\begin{equation*}
d\left(i, i^{\prime}\right)^{2}=\sum_{\alpha=1 . . N}\left(F_{\alpha}(i)-F_{\alpha}\left(i^{\prime}\right)\right)^{2} \tag{3}
\end{equation*}
$$

Output: Cloud of Points Endowed with the Euclidean

 Metric in Factor Space- The χ^{2} distance with center f_{J} between observations i and i^{\prime} is written as follows in two different notations:

$$
\begin{equation*}
d\left(i, i^{\prime}\right)^{2}=\left\|f_{j}^{i}-f_{j}^{i^{\prime}}\right\|_{f_{j}}^{2}=\sum_{j} \frac{1}{f_{j}}\left(\frac{f_{i j}}{f_{i}}-\frac{f_{i^{\prime} j}}{f_{i^{\prime}}}\right)^{2} \tag{2}
\end{equation*}
$$

- In the factor space this pairwise distance is identical. The coordinate system and the metric change. For factors indexed by α and for total dimensionality N
($N=\min \{|I|-1,|J|-1\}$; the subtraction of 1 is since the χ^{2} distance is centered and hence there is a linear dependency which reduces the inherent dimensionality by 1) we have the projection of observation i on the α th factor, F_{α}, given by $F_{\alpha}(i):$

$$
\begin{equation*}
d\left(i, i^{\prime}\right)^{2}=\sum_{\alpha=1 . . N}\left(F_{\alpha}(i)-F_{\alpha}\left(i^{\prime}\right)\right)^{2} \tag{3}
\end{equation*}
$$

- Invariance of distance in equations 2 and 3: Parseval relation.

Output 2/2

- In Correspondence Analysis the factors are ordered by decreasing moments of inertia. The factors are closely related, mathematically, in the decomposition of the overall cloud, $N_{J}(I)$ and $N_{l}(J)$, inertias. These are the dual spaces.

Output 2/2

- In Correspondence Analysis the factors are ordered by decreasing moments of inertia. The factors are closely related, mathematically, in the decomposition of the overall cloud, $N_{J}(I)$ and $N_{l}(J)$, inertias. These are the dual spaces.
- The eigenvalues associated with the factors, identically in the space of observations indexed by set l, and in the space of attributes indexed by set J, are given by the eigenvalues associated with the decomposition of the inertia.

Output 2/2

- In Correspondence Analysis the factors are ordered by decreasing moments of inertia. The factors are closely related, mathematically, in the decomposition of the overall cloud, $N_{J}(I)$ and $N_{l}(J)$, inertias. These are the dual spaces.
- The eigenvalues associated with the factors, identically in the space of observations indexed by set I, and in the space of attributes indexed by set J, are given by the eigenvalues associated with the decomposition of the inertia.
- The decomposition of the inertia is a principal axis decomposition, which is arrived at through a singular value decomposition.

Important Consequences

- Given the inherent (mathematical) relationship between the dual spaces of observations and attributes, the eigen-reduction or decomposition of the cloud in terms of moments of inertia, is carried out in the lower dimensional of the dual spaces.

Important Consequences

- Given the inherent (mathematical) relationship between the dual spaces of observations and attributes, the eigen-reduction or decomposition of the cloud in terms of moments of inertia, is carried out in the lower dimensional of the dual spaces.
- The principle of distributional equivalence allows for aggregation of input data (observations, or attributes) with no effect on the analysis beyond the aggregated data. (Hence a type of scale-invariance principle.)

Important Consequences

- Given the inherent (mathematical) relationship between the dual spaces of observations and attributes, the eigen-reduction or decomposition of the cloud in terms of moments of inertia, is carried out in the lower dimensional of the dual spaces.
- The principle of distributional equivalence allows for aggregation of input data (observations, or attributes) with no effect on the analysis beyond the aggregated data. (Hence a type of scale-invariance principle.)
- Supplementary elements are observations or attributes retrospectively projected into the factor space.

Important Consequences

- Given the inherent (mathematical) relationship between the dual spaces of observations and attributes, the eigen-reduction or decomposition of the cloud in terms of moments of inertia, is carried out in the lower dimensional of the dual spaces.
- The principle of distributional equivalence allows for aggregation of input data (observations, or attributes) with no effect on the analysis beyond the aggregated data. (Hence a type of scale-invariance principle.)
- Supplementary elements are observations or attributes retrospectively projected into the factor space.
- Further topics, not covered here: Data Coding. Multiple Correspondence Analysis.

Important Consequences

- Given the inherent (mathematical) relationship between the dual spaces of observations and attributes, the eigen-reduction or decomposition of the cloud in terms of moments of inertia, is carried out in the lower dimensional of the dual spaces.
- The principle of distributional equivalence allows for aggregation of input data (observations, or attributes) with no effect on the analysis beyond the aggregated data. (Hence a type of scale-invariance principle.)
- Supplementary elements are observations or attributes retrospectively projected into the factor space.
- Further topics, not covered here: Data Coding. Multiple Correspondence Analysis.
- Following slide: from Pierre Bourdieu's La Distinction, 1979. A Social Critique of the Judgment of Taste.

Contributions, Correlations

- Contributions

Contributions, Correlations

- Contributions
- Contribution of i to moment α : CTR: $f_{i} F_{\alpha}(i)^{2} / \lambda_{\alpha}$

Contributions, Correlations

- Contributions
- Contribution of i to moment α : CTR: $f_{i} F_{\alpha}(i)^{2} / \lambda_{\alpha}$
- Correlations

Contributions, Correlations

- Contributions
- Contribution of i to moment α : CTR: $f_{i} F_{\alpha}(i)^{2} / \lambda_{\alpha}$
- Correlations
- Cosine squared of angle between i and factor α.

Contributions, Correlations

- Contributions
- Contribution of i to moment α : CTR: $f_{i} F_{\alpha}(i)^{2} / \lambda_{\alpha}$
- Correlations
- Cosine squared of angle between i and factor α.
- $\cos ^{2} a=F_{\alpha}(i)^{2} / \rho(i)^{2}$ where $\rho(i)^{2}=\left\|f_{j}^{i}-f_{j}\right\|_{f_{j}}^{2}=$ $\sum_{j \in J}\left(f_{j}^{i}-f_{j}\right)^{2} / f_{j}$

Contributions, Correlations

- Contributions
- Contribution of i to moment α : CTR: $f_{i} F_{\alpha}(i)^{2} / \lambda_{\alpha}$
- Correlations
- Cosine squared of angle between i and factor α.
- $\cos ^{2} a=F_{\alpha}(i)^{2} / \rho(i)^{2}$ where $\rho(i)^{2}=\left\|f_{j}^{i}-f_{j}\right\|_{f_{j}}^{2}=$ $\sum_{j \in J}\left(f_{j}^{i}-f_{j}\right)^{2} / f_{j}$
- Contributions determine the factor space, correlations illustrate it.

Hierarchical Clustering

- Consider the projection of observation i onto the set of all factors indexed by $\alpha,\left\{F_{\alpha}(i)\right\}$ for all α, which defines the observation i in the new coordinate frame.

Hierarchical Clustering

- Consider the projection of observation i onto the set of all factors indexed by $\alpha,\left\{F_{\alpha}(i)\right\}$ for all α, which defines the observation i in the new coordinate frame.
- This new factor space is endowed with the (unweighted) Euclidean distance, d.

Hierarchical Clustering

- Consider the projection of observation i onto the set of all factors indexed by $\alpha,\left\{F_{\alpha}(i)\right\}$ for all α, which defines the observation i in the new coordinate frame.
- This new factor space is endowed with the (unweighted) Euclidean distance, d.
- We seek a hierarchical clustering that takes into account the observation sequence, i.e. observation i precedes observation i^{\prime} for all $i, i^{\prime} \in I$. We use the linear order on the observations.

Sequence-Constrained Hierarchical Clustering

- Consider each text in the sequence of texts as constituting a singleton cluster. Determine the closest pair of adjacent texts, and define a cluster from them.

Sequence-Constrained Hierarchical Clustering

- Consider each text in the sequence of texts as constituting a singleton cluster. Determine the closest pair of adjacent texts, and define a cluster from them.
- Determine and merge the closest pair of adjacent clusters, c_{1} and c_{2}, where closeness is defined by $d\left(c_{1}, c_{2}\right)=\max \left\{d_{i i^{\prime}}\right.$ such that $\left.i \in c_{1}, i^{\prime} \in c_{2}\right\}$.

Sequence-Constrained Hierarchical Clustering

- Consider each text in the sequence of texts as constituting a singleton cluster. Determine the closest pair of adjacent texts, and define a cluster from them.
- Determine and merge the closest pair of adjacent clusters, c_{1} and c_{2}, where closeness is defined by $d\left(c_{1}, c_{2}\right)=\max \left\{d_{i i^{\prime}}\right.$ such that $\left.i \in c_{1}, i^{\prime} \in c_{2}\right\}$.
- Repeat this merge step until only one cluster remains.

Sequence-Constrained Hierarchical Clustering

- Consider each text in the sequence of texts as constituting a singleton cluster. Determine the closest pair of adjacent texts, and define a cluster from them.
- Determine and merge the closest pair of adjacent clusters, c_{1} and c_{2}, where closeness is defined by $d\left(c_{1}, c_{2}\right)=\max \left\{d_{i i^{\prime}}\right.$ such that $\left.i \in c_{1}, i^{\prime} \in c_{2}\right\}$.
- Repeat this merge step until only one cluster remains.
- Here we use a complete link criterion which additionally takes account of the adjacency constraint imposed by the sequence of texts in set l.

Sequence-Constrained Hierarchical Clustering

- Consider each text in the sequence of texts as constituting a singleton cluster. Determine the closest pair of adjacent texts, and define a cluster from them.
- Determine and merge the closest pair of adjacent clusters, c_{1} and c_{2}, where closeness is defined by $d\left(c_{1}, c_{2}\right)=\max \left\{d_{i i^{\prime}}\right.$ such that $\left.i \in c_{1}, i^{\prime} \in c_{2}\right\}$.
- Repeat this merge step until only one cluster remains.
- Here we use a complete link criterion which additionally takes account of the adjacency constraint imposed by the sequence of texts in set l.
- It can be shown that the closeness value, given by d, at each agglomerative step is strictly non-decreasing.

Sequence-Constrained Hierarchical Clustering

- Consider each text in the sequence of texts as constituting a singleton cluster. Determine the closest pair of adjacent texts, and define a cluster from them.
- Determine and merge the closest pair of adjacent clusters, c_{1} and c_{2}, where closeness is defined by $d\left(c_{1}, c_{2}\right)=\max \left\{d_{i i^{\prime}}\right.$ such that $\left.i \in c_{1}, i^{\prime} \in c_{2}\right\}$.
- Repeat this merge step until only one cluster remains.
- Here we use a complete link criterion which additionally takes account of the adjacency constraint imposed by the sequence of texts in set l.
- It can be shown that the closeness value, given by d, at each agglomerative step is strictly non-decreasing.
- That is, if cluster c_{3} is formed earlier in the series of agglomerations compared to cluster c_{4}, then the corresponding distances will satisfy $d_{c 3} \leq d_{c 4}$. (d here is as determined in the merge step of the algorithm above.)

Example of Hierarchy Without and With Inversion

- Inversions in the sequence of agglomerations.
- That is, i and j merge, and the distance of the this new cluster to another cluster is smaller than the dening distance of the $i ; j$ merger.
- Hence, there is non-monotonic change in the level index, given by the distance dening the merger agglomeration.

Hierarchy (not sequence-constrained, 30 terms)

Ward

Figure: Hierarchical clustering using the Ward minimum variance agglomerative criterion.

Hierarchy (not sequence-constrained, 30 terms)

Median agglomerative criterion

Figure : Median agglomerative criterion. (For each agglomeration, minimize the median of the pairwise dissimilarities.)

