
Lecture 2: Data Analytics of Narrative

Data Analytics of Narrative: Pattern Recognition in Text, and Text
Synthesis, Supported by the Correspondence Analysis Platform.

This Lecture is presented in three parts, as follows.

Part 1 Data analytics of narrative.

Part 2 Analysis of narrative: tracking emotion in the film,
Casablanca. Synthesis of narrative: collective,
collaborative authoring of a novel.

Part 3 Ultrametric embedding.



Lecture 2: Data Analytics of Narrative

Data Analytics of Narrative: Pattern Recognition in Text, and Text
Synthesis, Supported by the Correspondence Analysis Platform.

1. A short review of the theory and practical implications of
Correspondence Analysis.

2. Analysis of narrative: tracking emotion in the film,
Casablanca.

3. Synthesis of narrative: collective, collaborative authoring of a
novel.

4. Towards semantic rating.



I “We call distribution of a word the set of all its possible
environments” (Z.S. Harris)

I Initially, correspondence analysis was proposed as an inductive
method for analyzing linguistic data.

I Developed in Rennes, Laboratoire de calcul de la Faculté des
Sciences de Rennes, by Jean-Paul Benzécri. Subsequently in
Paris, Université P. & M. Curie, Paris 6.

I “The model should follow the data, not the reverse!” (In J.P.
Benzécri, “Statistical analysis as a tool to make patterns
emerge from data”, in Methodologies of Pattern Recognition,
Ed. Watanable, NY: Academic, 1969.)

I So: Description first – priority. Inductive philosophy.
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Analysis Chain

I The starting point is a matrix that cross-tabulates the
dependencies, e.g. frequencies of joint occurrence, of an
observations crossed by attributes matrix.

I By endowing the cross-tabulation matrix with the χ2 metric
on both observation set (rows) and attribute set (columns),
we can map observations and attributes into the same space,
endowed with the Euclidean metric.

I A hierarchical clustering is induced on the Euclidean space,
the factor space.

I Interpretation is through projections of observations,
attributes or clusters onto factors. The factors are ordered by
decreasing importance.
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Correspondence Analysis: Mapping χ2 Distances into
Euclidean Distances

I The given contingency table (or numbers of occurrence) data
is denoted kIJ = {kIJ(i , j) = k(i , j); i ∈ I , j ∈ J}.

I I is the set of observation indexes, and J is the set of
attribute indexes.

I We have k(i) =
∑

j∈J k(i , j). Analogously k(j) is defined, and
k =

∑
i∈I ,j∈J k(i , j).

I Next, fIJ = {fij = k(i , j)/k ; i ∈ I , j ∈ J} ⊂ RI×J , similarly fI is
defined as {fi = k(i)/k; i ∈ I , j ∈ J} ⊂ RI , and fJ analogously.

I What we have described here is taking numbers of
occurrences into relative frequencies.

I The conditional distribution of fJ knowing i ∈ I , also termed
the jth profile with coordinates indexed by the elements of I ,
is:

f iJ = {f ij = fij/fi = (kij/k)/(ki/k); fi > 0; j ∈ J}

and likewise for f jI .



Correspondence Analysis: Mapping χ2 Distances into
Euclidean Distances

I The given contingency table (or numbers of occurrence) data
is denoted kIJ = {kIJ(i , j) = k(i , j); i ∈ I , j ∈ J}.

I I is the set of observation indexes, and J is the set of
attribute indexes.

I We have k(i) =
∑

j∈J k(i , j). Analogously k(j) is defined, and
k =

∑
i∈I ,j∈J k(i , j).

I Next, fIJ = {fij = k(i , j)/k ; i ∈ I , j ∈ J} ⊂ RI×J , similarly fI is
defined as {fi = k(i)/k; i ∈ I , j ∈ J} ⊂ RI , and fJ analogously.

I What we have described here is taking numbers of
occurrences into relative frequencies.

I The conditional distribution of fJ knowing i ∈ I , also termed
the jth profile with coordinates indexed by the elements of I ,
is:

f iJ = {f ij = fij/fi = (kij/k)/(ki/k); fi > 0; j ∈ J}

and likewise for f jI .



Correspondence Analysis: Mapping χ2 Distances into
Euclidean Distances

I The given contingency table (or numbers of occurrence) data
is denoted kIJ = {kIJ(i , j) = k(i , j); i ∈ I , j ∈ J}.

I I is the set of observation indexes, and J is the set of
attribute indexes.

I We have k(i) =
∑

j∈J k(i , j). Analogously k(j) is defined, and
k =

∑
i∈I ,j∈J k(i , j).

I Next, fIJ = {fij = k(i , j)/k ; i ∈ I , j ∈ J} ⊂ RI×J , similarly fI is
defined as {fi = k(i)/k; i ∈ I , j ∈ J} ⊂ RI , and fJ analogously.

I What we have described here is taking numbers of
occurrences into relative frequencies.

I The conditional distribution of fJ knowing i ∈ I , also termed
the jth profile with coordinates indexed by the elements of I ,
is:

f iJ = {f ij = fij/fi = (kij/k)/(ki/k); fi > 0; j ∈ J}

and likewise for f jI .



Correspondence Analysis: Mapping χ2 Distances into
Euclidean Distances

I The given contingency table (or numbers of occurrence) data
is denoted kIJ = {kIJ(i , j) = k(i , j); i ∈ I , j ∈ J}.

I I is the set of observation indexes, and J is the set of
attribute indexes.

I We have k(i) =
∑

j∈J k(i , j). Analogously k(j) is defined, and
k =

∑
i∈I ,j∈J k(i , j).

I Next, fIJ = {fij = k(i , j)/k ; i ∈ I , j ∈ J} ⊂ RI×J , similarly fI is
defined as {fi = k(i)/k; i ∈ I , j ∈ J} ⊂ RI , and fJ analogously.

I What we have described here is taking numbers of
occurrences into relative frequencies.

I The conditional distribution of fJ knowing i ∈ I , also termed
the jth profile with coordinates indexed by the elements of I ,
is:

f iJ = {f ij = fij/fi = (kij/k)/(ki/k); fi > 0; j ∈ J}

and likewise for f jI .



Correspondence Analysis: Mapping χ2 Distances into
Euclidean Distances

I The given contingency table (or numbers of occurrence) data
is denoted kIJ = {kIJ(i , j) = k(i , j); i ∈ I , j ∈ J}.

I I is the set of observation indexes, and J is the set of
attribute indexes.

I We have k(i) =
∑

j∈J k(i , j). Analogously k(j) is defined, and
k =

∑
i∈I ,j∈J k(i , j).

I Next, fIJ = {fij = k(i , j)/k ; i ∈ I , j ∈ J} ⊂ RI×J , similarly fI is
defined as {fi = k(i)/k; i ∈ I , j ∈ J} ⊂ RI , and fJ analogously.

I What we have described here is taking numbers of
occurrences into relative frequencies.

I The conditional distribution of fJ knowing i ∈ I , also termed
the jth profile with coordinates indexed by the elements of I ,
is:

f iJ = {f ij = fij/fi = (kij/k)/(ki/k); fi > 0; j ∈ J}

and likewise for f jI .



Correspondence Analysis: Mapping χ2 Distances into
Euclidean Distances

I The given contingency table (or numbers of occurrence) data
is denoted kIJ = {kIJ(i , j) = k(i , j); i ∈ I , j ∈ J}.

I I is the set of observation indexes, and J is the set of
attribute indexes.

I We have k(i) =
∑

j∈J k(i , j). Analogously k(j) is defined, and
k =

∑
i∈I ,j∈J k(i , j).

I Next, fIJ = {fij = k(i , j)/k ; i ∈ I , j ∈ J} ⊂ RI×J , similarly fI is
defined as {fi = k(i)/k; i ∈ I , j ∈ J} ⊂ RI , and fJ analogously.

I What we have described here is taking numbers of
occurrences into relative frequencies.

I The conditional distribution of fJ knowing i ∈ I , also termed
the jth profile with coordinates indexed by the elements of I ,
is:

f iJ = {f ij = fij/fi = (kij/k)/(ki/k); fi > 0; j ∈ J}

and likewise for f jI .



Input: Cloud of Points Endowed with the Chi Squared
Metric

I The cloud of points consists of the couples:
(multidimensional) profile coordinate and (scalar) mass. We
have NJ(I ) = {(f iJ , fi ); i ∈ I} ⊂ RJ , and again similarly for
NI (J).

I Included in this expression is the fact that the cloud of
observations, NJ(I ), is a subset of the real space of
dimensionality |J| where |.| denotes cardinality of the attribute
set, J.

I The overall inertia is as follows:

M2(NJ(I )) = M2(NI (J)) = ‖fIJ − fI fJ‖2fI fJ

=
∑

i∈I ,j∈J
(fij − fi fj)

2/fi fj (1)
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Input 2/2

I The term ‖fIJ − fI fJ‖2fI fJ is the χ2 metric between the
probability distribution fIJ and the product of marginal
distributions fI fJ , with as center of the metric the product fI fJ .

I Decomposing the moment of inertia of the cloud NJ(I ) – or of
NI (J) since both analyses are inherently related – furnishes
the principal axes of inertia, defined from a singular value
decomposition.
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Output: Cloud of Points Endowed with the Euclidean
Metric in Factor Space

I The χ2 distance with center fJ between observations i and i ′

is written as follows in two different notations:

d(i , i ′)2 = ‖f iJ − f i
′

J ‖2fJ =
∑
j

1

fj

(
fij
fi
−

fi ′j
fi ′

)2

(2)

I In the factor space this pairwise distance is identical. The
coordinate system and the metric change. For factors indexed
by α and for total dimensionality N
(N = min {|I | − 1, |J| − 1}; the subtraction of 1 is since the
χ2 distance is centered and hence there is a linear dependency
which reduces the inherent dimensionality by 1) we have the
projection of observation i on the αth factor, Fα, given by
Fα(i):

d(i , i ′)2 =
∑

α=1..N

(
Fα(i)− Fα(i ′)

)2
(3)

I Invariance of distance in equations 2 and 3: Parseval relation.
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Output 2/2

I In Correspondence Analysis the factors are ordered by
decreasing moments of inertia. The factors are closely related,
mathematically, in the decomposition of the overall cloud,
NJ(I ) and NI (J), inertias. These are the dual spaces.

I The eigenvalues associated with the factors, identically in the
space of observations indexed by set I , and in the space of
attributes indexed by set J, are given by the eigenvalues
associated with the decomposition of the inertia.

I The decomposition of the inertia is a principal axis
decomposition, which is arrived at through a singular value
decomposition.
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Important Consequences

I Given the inherent (mathematical) relationship between the
dual spaces of observations and attributes, the eigen-reduction
or decomposition of the cloud in terms of moments of inertia,
is carried out in the lower dimensional of the dual spaces.

I The principle of distributional equivalence allows for
aggregation of input data (observations, or attributes) with no
effect on the analysis beyond the aggregated data. (Hence a
type of scale-invariance principle.)

I Supplementary elements are observations or attributes
retrospectively projected into the factor space.

I Further topics, not covered here: Data Coding. Multiple
Correspondence Analysis.

I Following slide: from Pierre Bourdieu’s La Distinction, 1979.
A Social Critique of the Judgment of Taste.
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Contributions, Correlations

I Contributions

I Contribution of i to moment α: CTR: fiFα(i)2/λα
I Correlations

I Cosine squared of angle between i and factor α.

I cos2 a = Fα(i)2/ρ(i)2 where ρ(i)2 = ‖f iJ − fJ‖2fJ =∑
j∈J(f ij − fj)

2/fj
I Contributions determine the factor space, correlations

illustrate it.
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Hierarchical Clustering

I Consider the projection of observation i onto the set of all
factors indexed by α, {Fα(i)} for all α, which defines the
observation i in the new coordinate frame.

I This new factor space is endowed with the (unweighted)
Euclidean distance, d .

I We seek a hierarchical clustering that takes into account the
observation sequence, i.e. observation i precedes observation
i ′ for all i , i ′ ∈ I . We use the linear order on the observations.
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Sequence-Constrained Hierarchical Clustering

I Consider each text in the sequence of texts as constituting a
singleton cluster. Determine the closest pair of adjacent texts,
and define a cluster from them.

I Determine and merge the closest pair of adjacent clusters, c1
and c2, where closeness is defined by
d(c1, c2) = max {dii ′ such that i ∈ c1, i

′ ∈ c2}.
I Repeat this merge step until only one cluster remains.

I Here we use a complete link criterion which additionally takes
account of the adjacency constraint imposed by the sequence
of texts in set I .

I It can be shown that the closeness value, given by d , at each
agglomerative step is strictly non-decreasing.

I That is, if cluster c3 is formed earlier in the series of
agglomerations compared to cluster c4, then the
corresponding distances will satisfy dc3 ≤ dc4. (d here is as
determined in the merge step of the algorithm above.)
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I Here we use a complete link criterion which additionally takes
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I It can be shown that the closeness value, given by d , at each
agglomerative step is strictly non-decreasing.

I That is, if cluster c3 is formed earlier in the series of
agglomerations compared to cluster c4, then the
corresponding distances will satisfy dc3 ≤ dc4. (d here is as
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Example of Hierarchy Without and With Inversion

I Inversions in the sequence of agglomerations.

I That is, i and j merge, and the distance of the this new
cluster to another cluster is smaller than the dening distance
of the i ; j merger.

I Hence, there is non-monotonic change in the level index,
given by the distance dening the merger agglomeration.



Hierarchy (not sequence-constrained, 30 terms)
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Figure : Hierarchical clustering using the Ward minimum variance
agglomerative criterion.
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Figure : Median agglomerative criterion. (For each agglomeration,
minimize the median of the pairwise dissimilarities.)


