Lecture 2: Data Analytics of Narrative

Data Analytics of Narrative: Pattern Recognition in Text, and Text
Synthesis, Supported by the Correspondence Analysis Platform.
This Lecture is presented in three parts, as follows.

Part 1 Data analytics of narrative.

Part 2 Analysis of narrative: tracking emotion in the film,
Casablanca. Synthesis of narrative: collective,
collaborative authoring of a novel.

Part 3 Ultrametric embedding.



Lecture 2: Data Analytics of Narrative

Data Analytics of Narrative: Pattern Recognition in Text, and Text
Synthesis, Supported by the Correspondence Analysis Platform.

1. A short review of the theory and practical implications of
Correspondence Analysis.

2. Analysis of narrative: tracking emotion in the film,
Casablanca.

3. Synthesis of narrative: collective, collaborative authoring of a
novel.

4. Towards semantic rating.
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“We call distribution of a word the set of all its possible
environments” (Z.S. Harris)

Initially, correspondence analysis was proposed as an inductive
method for analyzing linguistic data.

Developed in Rennes, Laboratoire de calcul de la Faculté des
Sciences de Rennes, by Jean-Paul Benzécri. Subsequently in
Paris, Université P. & M. Curie, Paris 6.

“The model should follow the data, not the reverse!” (In J.P.
Benzécri, “Statistical analysis as a tool to make patterns
emerge from data”, in Methodologies of Pattern Recognition,
Ed. Watanable, NY: Academic, 1969.)

So: Description first — priority. Inductive philosophy.
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Analysis Chain

» The starting point is a matrix that cross-tabulates the
dependencies, e.g. frequencies of joint occurrence, of an
observations crossed by attributes matrix.

» By endowing the cross-tabulation matrix with the x? metric
on both observation set (rows) and attribute set (columns),
we can map observations and attributes into the same space,
endowed with the Euclidean metric.

» A hierarchical clustering is induced on the Euclidean space,
the factor space.

> Interpretation is through projections of observations,

attributes or clusters onto factors. The factors are ordered by
decreasing importance.
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>

The given contingency table (or numbers of occurrence) data
is denoted ki = {ki(i,j) = k(i,j);i €1,j € J}.

| is the set of observation indexes, and J is the set of
attribute indexes.

We have k(i) = >_;c, k(i,j). Analogously k(j) is defined, and
k= Ziel,jeJ k(i Jj).

Next, fiy = {fj = k(i,j)/k;i € l,j € J} CRyxy, similarly f; is
defined as {f; = k(i)/k;i € I,j € J} C Ry, and f; analogously.
What we have described here is taking numbers of
occurrences into relative frequencies.

The conditional distribution of f; knowing i € I, also termed
the jth profile with coordinates indexed by the elements of /,
is:

=] = i/ = (ky/ )/ (ki/K): £ > 01 € J}

and likewise for f,j.
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Metric

» The cloud of points consists of the couples:
(multidimensional) profile coordinate and (scalar) mass. We
have Ny(I) = {(f],f);i € I} C Ry, and again similarly for
N (J).

> Included in this expression is the fact that the cloud of
observations, N,(/), is a subset of the real space of
dimensionality |J| where |.| denotes cardinality of the attribute
set, J.

» The overall inertia is as follows:

M2(Ny(1)) = MP(Ni(J)) = IIfis = fifslG,

= D (f—fif)*/ff (1)

icljed
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» The term ||fj) — f[fJH%fJ is the x? metric between the
probability distribution f;; and the product of marginal
distributions f;f;, with as center of the metric the product f;f;.

» Decomposing the moment of inertia of the cloud N,(/) — or of
N;(J) since both analyses are inherently related — furnishes
the principal axes of inertia, defined from a singular value
decomposition.
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Metric in Factor Space

» The x? distance with center f; between observations i and i’
is written as follows in two different notations:

.2 i i"2 1 ([t fi’j ?
d(lal) :||fJ—fJ HfJ: E F\F T F (2)
PR I I

J
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Output: Cloud of Points Endowed with the Euclidean
Metric in Factor Space

» The x? distance with center f; between observations i and i’
is written as follows in two different notations:

w160 -Y (51 o
) J g ; F\f
> In the factor space this pairwise distance is identical. The
coordinate system and the metric change. For factors indexed
by o and for total dimensionality N
(N = min {|/| —1,|J] — 1}; the subtraction of 1 is since the
x? distance is centered and hence there is a linear dependency
which reduces the inherent dimensionality by 1) we have the
projection of observation i/ on the ath factor, F,, given by
Fo(1):
d(i.i)? = > (Fali) = Fa(1)” 3)
a=1..N
> Invariance of distance in equations 2 and 3: Parseval relation.
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» In Correspondence Analysis the factors are ordered by
decreasing moments of inertia. The factors are closely related,
mathematically, in the decomposition of the overall cloud,
N,(I) and N,(J), inertias. These are the dual spaces.

» The eigenvalues associated with the factors, identically in the
space of observations indexed by set /, and in the space of
attributes indexed by set J, are given by the eigenvalues
associated with the decomposition of the inertia.

» The decomposition of the inertia is a principal axis
decomposition, which is arrived at through a singular value
decomposition.
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Important Consequences

» Given the inherent (mathematical) relationship between the
dual spaces of observations and attributes, the eigen-reduction
or decomposition of the cloud in terms of moments of inertia,
is carried out in the lower dimensional of the dual spaces.

» The principle of distributional equivalence allows for
aggregation of input data (observations, or attributes) with no
effect on the analysis beyond the aggregated data. (Hence a
type of scale-invariance principle.)

» Supplementary elements are observations or attributes
retrospectively projected into the factor space.

» Further topics, not covered here: Data Coding. Multiple
Correspondence Analysis.

» Following slide: from Pierre Bourdieu's La Distinction, 1979.
A Social Critique of the Judgment of Taste.
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Contributions, Correlations

» Contributions

» Contribution of i to moment a: CTR: fiF,(i)?/\a

» Correlations

» Cosine squared of angle between i and factor «.

> cos?a = Fo(i)?2/pli)? where p(i)? = [|£] — £)]3 =
>jesfl = 6)2/1;

» Contributions determine the factor space, correlations
illustrate it.
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Hierarchical Clustering

» Consider the projection of observation i onto the set of all
factors indexed by «, {F,()} for all a, which defines the
observation i in the new coordinate frame.

» This new factor space is endowed with the (unweighted)
Euclidean distance, d.
> We seek a hierarchical clustering that takes into account the

observation sequence, i.e. observation i precedes observation
i’ for all i,i" € I. We use the linear order on the observations.
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Sequence-Constrained Hierarchical Clustering

>

Consider each text in the sequence of texts as constituting a
singleton cluster. Determine the closest pair of adjacent texts,
and define a cluster from them.

Determine and merge the closest pair of adjacent clusters, ¢;
and ¢y, where closeness is defined by

d(c1, ) = max {d;: such that i € ¢1,i" € &}

Repeat this merge step until only one cluster remains.

Here we use a complete link criterion which additionally takes
account of the adjacency constraint imposed by the sequence
of texts in set /.

It can be shown that the closeness value, given by d, at each
agglomerative step is strictly non-decreasing.

That is, if cluster c3 is formed earlier in the series of
agglomerations compared to cluster ¢4, then the
corresponding distances will satisfy dc.3 < dea. (d here is as
determined in the merge step of the algorithm above.)



Example of Hierarchy Without and With Inversion

> Inversions in the sequence of agglomerations.

» That is, i and j merge, and the distance of the this new
cluster to another cluster is smaller than the dening distance
of the /; j merger.

» Hence, there is non-monotonic change in the level index,
given by the distance dening the merger agglomeration.



Hierarchy (not sequence-constrained, 30 terms)
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Figure : Hierarchical clustering using the Ward minimum variance
agglomerative criterion.
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Figure : Median agglomerative criterion. (For each agglomeration,
minimize the median of the pairwise dissimilarities.)



