INTRODUCTION MOTIVATION OF THE PROBLEM MAIN RESULT CONCLUSIONS

Linear Programming Approximations of Constrained Markov Decision Processes ¹

Tomás Prieto-Rumeau

Statistics Department, UNED Madrid, Spain

Coloquio de Sistemas Estocásticos 50 Aniversario del Departamento de Matemáticas del CINVESTAV-IPN

México DF, October 2011

¹Joint work with François Dufour (INRIA, Bordeaux, France) and the second sec

Introduction

- We are concerned with the numerical approximation of the solution of a constrained discrete-time discounted MDP.
- We are interested in obtaining explicit bounds for our approximation errors (and not just "convergence").

Introduction

- We are concerned with the numerical approximation of the solution of a constrained discrete-time discounted MDP.
- We are interested in obtaining explicit bounds for our approximation errors (and not just "convergence").
- We want to use discretization techniques suitable for the case of an MDP with noncompact state space.

Introduction

- We are concerned with the numerical approximation of the solution of a constrained discrete-time discounted MDP.
- We are interested in obtaining explicit bounds for our approximation errors (and not just "convergence").
- We want to use discretization techniques suitable for the case of an MDP with noncompact state space.
- We are going to approximate an infinite dimensional LP problem by a finite LP problem.

Constrained discrete-time MDPs

• Suppose that \mathcal{M} is a (constrained) discrete-time MDP:

 $\mathcal{M} := \{X, A, (A(x), x \in X), P(dy|x, a), c(x, a), r(x, a)\}.$

- The state space X is a locally compact Borel space (not necessarily compact).
- The action space A is a locally compact Borel space, and the action sets A(x), for x ∈ X, are compact.
- The feasible state-actions set is $\mathbb{K} := \{(x, a) \in X \times A : a \in A(x)\}.$
- P(B|x, a) is a stochastic kernel on X given \mathbb{K} .
- $c : \mathbb{K} \to \mathbb{R}$ and $r : \mathbb{K} \to \mathbb{R}^q$ are measurable cost-per-stage functions.

- ∢ ≣ ▶

Constrained discrete-time MDPs

• The total expected discounted cost of a policy $\pi \in \Pi$ is

$$V(x,\pi,c) := E_x^{\pi} \Big[\sum_{t=0}^{\infty} \alpha^t c(x_t,a_t) \Big],$$

where $x \in X$ is the initial state, and $0 < \alpha < 1$ is a discount factor.

- ⊒ - ►

Constrained discrete-time MDPs

• The total expected discounted cost of a policy $\pi \in \Pi$ is

$$V(x,\pi,c) := E_x^{\pi} \Big[\sum_{t=0}^{\infty} \alpha^t c(x_t,a_t) \Big],$$

where $x \in X$ is the initial state, and $0 < \alpha < 1$ is a discount factor.

• We want to approximate the solution of the constrained MDP

minimize $V(x_0, \pi, c)$ s.t. $\pi \in \Pi$ and $V(x_0, \pi, r) \leq \theta_0$,

where $x_0 \in X$ is the initial state and $\theta_0 \in \mathbb{R}^q$ is the constraint constant.

- Consider a finite state and action discretization M_d of the control model M, and use the optimal value of M_d as an approximation.
- If the state space X is compact, then we select a finite grid x_k ∈ H of states, with associated approximation error δ.
- Solve the MDP with state space \mathbf{H} with an approximation error δ .

Main idea

- Here, we deal with a problem with noncompact state space X.
 - **()** Choose $\epsilon > 0$, and find a compact $K_{\epsilon} \subset X$ such that: "what happens outside K_{ϵ} has a weight less than ϵ ".
 - **2** Discretize K_{ϵ} and obtain a δ -approximation of its optimal solution.
 - **3** Obtain a $(\delta + \epsilon)$ -approximation.

- ∢ ≣ →

Main idea

- Here, we deal with a problem with noncompact state space X.
 - Choose $\epsilon > 0$, and find a compact $K_{\epsilon} \subset X$ such that: "what happens outside K_{ϵ} has a weight less than ϵ ".
 - 2 Discretize K_{ϵ} and obtain a δ -approximation of its optimal solution.
 - **3** Obtain a $(\delta + \epsilon)$ -approximation.
- Our approach: Use a discretization technique that proceeds in a single step (and not in two steps, as above).

-∢ ⊒ ▶

Main idea

- Suppose that the stochastic kernel has a density with respect to some probability measure μ on X.
- There exists a function p(y|x, a) on $X \times \mathbb{K}$ such that

$$P(B|x,a) = \int_B p(y|x,a)\mu(dy)$$
 for $B \subseteq X$.

< ∃ →

Main idea

- Suppose that the stochastic kernel has a density with respect to some probability measure μ on X.
- There exists a function p(y|x, a) on $X \times \mathbb{K}$ such that

$$P(B|x,a) = \int_B p(y|x,a)\mu(dy)$$
 for $B \subseteq X$.

• Obtain a discretization μ_N on a finite set **H** of the distribution μ , and consider the discretized kernels

$$P_N(B|x,a) = \int_B p(y|x,a)\mu_N(dy)$$

supported on $\boldsymbol{\mathsf{H}}.$

Quantization

- Suppose that the state space X is a subset of \mathbb{R}^d .
- If Y is a random variable on R^d with distribution μ, let Y_N be the projection of Y (in the L₂(R^d) norm) in the space of random variables supported on N points in R^d.
- We call Y_N the quantization of Y. We have explicit convergence rates:

$$||Y - Y_N||_2 = O(N^{-1/d}).$$

• There are "toolboxes" that can find explicitly the random variable Y_N for a given distribution μ .

Plan of work

- Approximate the solution of the constrained MDP with transition kernel P(B|x, a) by means of a constrained MDP with the quantized transition kernel $P_N(B|x, a)$.
- Obtain explicit bounds on the approximation error: given a precision ε > 0, determine a priori the number of points N needed in the quantization grid.
- We use a mixture of dynamic programming and linear programming.

-∢ ⊒ ▶

Dynamic programming vs. linear programming

The DP approach

• In an unconstrained problem the optimal discounted cost is the solution of the discounted cost optimality equation (DCOE)

$$V^*(x) = \inf_{a \in A(x)} \left\{ c(x, a) + \alpha \int_X V^*(y) P(dy|x, a) \right\}, \text{ for } x \in X.$$

In this case, we could study the DCOE for the quantized kernels P_N .

Dynamic programming vs. linear programming

The DP approach

• In an unconstrained problem the optimal discounted cost is the solution of the discounted cost optimality equation (DCOE)

$$V^*(x) = \inf_{a \in A(x)} \left\{ c(x, a) + \alpha \int_X V^*(y) P(dy|x, a) \right\}, \text{ for } x \in X.$$

In this case, we could study the DCOE for the quantized kernels P_N . • For a constrained problem, there exists $\lambda^* \in \mathbb{R}^q_+$ such that

$$V^*(x) = \inf_{a \in A(x)} \Big\{ c(x,a) + \langle \lambda^*, r(x,a) - (1-\alpha)\theta_0 \rangle \\ + \alpha \int_X V^*(y) P(dy|x,a) \Big\}.$$

This optimality equation is somehow useless because λ^* is unknown and, besides, a minimizing policy might not be constrained optimal.

Dynamic programming vs. linear programming

The LP approach

Given a policy π ∈ Π, define the expected discounted state-action occupation measure for measurable Γ ⊆ K ⊆ X × A:

$$\nu_{\pi}(\mathsf{\Gamma}) := \sum_{t=0}^{\infty} \alpha^{t} P_{x_{0}}^{\pi}\{(x_{t}, \boldsymbol{a}_{t}) \in \mathsf{\Gamma}\}$$

- The space of "feasible measures" $\{\nu_{\pi}\}_{\pi\in\Pi} = \mathcal{P}$ is characterized by means of linear constraints.
- The unconstrained and constrained control problems are respectively equivalent to the infinite dimensional LP problems

 $\begin{array}{ll} \text{minimize} \quad \nu(c) \quad \text{s.t.} \quad \nu \in \mathcal{P} \\ \text{minimize} \quad \nu(c) \quad \text{s.t.} \quad \nu \in \mathcal{P} \quad \text{and} \quad \nu(r) \leq \theta_0. \end{array}$

• Both problems are of the "same nature".

Lipschitz continuity framework

• Given a function $v: X \to \mathbb{R}$ we want to compare

$$Pv(x,a) = \int_X v(y)p(y|x,a)\mu(dy) = E[v(Y)p(Y|x,a)]$$

and

$$P_N v(x,a) = \int_X v(y) p(y|x,a) \mu_N(dy) = E[v(Y_N)p(Y_N|x,a)].$$

- We know that Y_N is close to Y in the $L_2(\mathbb{R}^d)$ norm.
- Under adequate Lipschitz continuity conditions (in particular, v must be Lipschitz continuous), we can show that

$$P_N v(x, a)$$
 is close to $Pv(x, a)$.

Lipschitz continuity framework

 Given a function u : K → R (interpreted as a cost function), define the dynamic programming operators:

$$(T^{u}v)(x) := \inf_{a \in A(x)} \left\{ u(x,a) + \alpha \int_{X} v(y)p(y|x,a)\mu(dy) \right\}$$

and $T_N^{\mu} v$, with μ replaced with μ_N .

- We have that $T^{u}v$ and $T^{u}_{N}v$ are close provided that v is Lipschitz continuous.
- Hence, we place ourselves in the context of a Lipschitz continuous MDP.

< ∃⇒

Lipschitz continuity framework

- The elements x → A(x), P, and u (the cost function) of the control model M are Lipschitz continuous.
- Then the optimal discounted cost V^* , i.e., the solution of the DCOE

$$V^*(x) = \inf_{a \in A(x)} \left\{ u(x, a) + \alpha \int_X V^*(y) P(dy|x, a) \right\}$$

is Lipschitz continuous.

< ∃ →

Lipschitz continuity framework

- The elements x → A(x), P, and u (the cost function) of the control model M are Lipschitz continuous.
- Then the optimal discounted cost V^* , i.e., the solution of the DCOE

$$V^*(x) = \inf_{a \in A(x)} \left\{ u(x, a) + \alpha \int_X V^*(y) P(dy|x, a) \right\}$$

is Lipschitz continuous.

• Note that $x \mapsto V(x, \pi, u)$ is not, in general, continuous; but $x \mapsto \inf_{\pi \in \Pi} V(x, \pi, u)$ is continuous.

-∢ ⊒ ▶

The linear programming approach

Main idea

• The LP that finds an optimal policy for the constrained MDP is \mathbb{LP} :

$$J^* = \min \
u(c) \quad ext{s.t.} \quad
u(r - (1 - lpha) heta_0) \leq \mathbf{0} \quad ext{and}$$

$$u(B imes A) = \delta_{x_0}(B) + \alpha \int_{\mathbb{K}} P(B|x, a) \nu(dx, da) \quad \text{for } B \subseteq X.$$

< ∃⇒

The linear programming approach

Main idea

• The LP that finds an optimal policy for the constrained MDP is LP:

$$J^* = \min \
u(c)$$
 s.t. $u(r - (1 - lpha) heta_0) \leq \mathbf{0}$ and

$$u(B imes A) = \delta_{x_0}(B) + \alpha \int_{\mathbb{K}} P(B|x, a) \nu(dx, da) \quad \text{for } B \subseteq X.$$

• We solve the finite state LP problem \mathbb{LP}_N

$$egin{aligned} &J_N^* := \min \
u(c) \quad ext{s.t.} \quad
u(r-(1-lpha) heta_0) \leq oldsymbol{0} \quad ext{and} \
u(B imes A) &= \delta_{x_0}(B) + lpha \int_{\mathbb{K}} P_N(B|x,a)
u(dx,da) \quad ext{for } B \subseteq X \end{aligned}$$

Steps of the proof

- The kernel P_N is not stochastic, and so there is no underlying Markov decision process.
- If \mathbb{LP} verifies the Slater condition

$$u(r - (1 - \alpha)\theta_0) < \mathbf{0} \quad \text{for some } \nu,$$

then show that for large N the problem \mathbb{LP}_N also satisfies the Slater condition.

• Consequently, both optima are the fixed points of the operators \mathcal{T}^{u} and $\mathcal{T}_{N}^{u_{N}}$ for

$$u(x,a) = c(x,a) - \langle \lambda^*, r(x,a) - (1-\alpha)\theta_0 \rangle$$

$$u_N(x,a) = c(x,a) - \langle \lambda^*_N, r(x,a) - (1-\alpha)\theta_0 \rangle.$$

• Both cost functions being Lipschitz continuous, the corresponding fixed points are "close".

Main result

Theorem

Consider the Lipschitz continuous constrained MDP. Given an initial state $x_0 \in X$ and an arbitrary $\epsilon > 0$, there exists N such that

$$|J^* - J^*_N| < \epsilon.$$

Moreover, N depends on explicitly known data (the Lipschitz constants of the MDP, the norm of the cost functions, etc.).

< ∃⇒

Conclusions

- We have introduced a technique which allows to approximate explicitly the solution of a constrained MDP.
- We base our approach on the quantization of an underlying probability distribution.
- Our proofs are mainly based on finite state approximations of linear problems, with a digression to dynamic programming techniques.
- Numerical experimentation of this approach is in progress.

INTRODUCTION MOTIVATION OF THE PROBLEM MAIN RESULT CONCLUSIONS

Thank you for your attention.

∢ 臣 ≯

э