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Introduction

We are concerned with the numerical approximation of the solution
of a constrained discrete-time discounted MDP.

We are interested in obtaining explicit bounds for our approximation
errors (and not just “convergence”).

We want to use discretization techniques suitable for the case of an
MDP with noncompact state space.

We are going to approximate an infinite dimensional LP problem by
a finite LP problem.
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Constrained discrete-time MDPs

Suppose that M is a (constrained) discrete-time MDP:

M := {X ,A, (A(x), x ∈ X ),P(dy |x , a), c(x , a), r(x , a)}.

The state space X is a locally compact Borel space (not necessarily
compact).

The action space A is a locally compact Borel space, and the action
sets A(x), for x ∈ X , are compact.

The feasible state-actions set is K := {(x , a) ∈ X × A : a ∈ A(x)}.
P(B|x , a) is a stochastic kernel on X given K.

c : K→ R and r : K→ Rq are measurable cost-per-stage functions.
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Constrained discrete-time MDPs

The total expected discounted cost of a policy π ∈ Π is

V (x , π, c) := Eπx

[ ∞∑
t=0

αtc(xt , at)
]
,

where x ∈ X is the initial state, and 0 < α < 1 is a discount factor.

We want to approximate the solution of the constrained MDP

minimize V (x0, π, c) s.t. π ∈ Π and V (x0, π, r) ≤ θ0,

where x0 ∈ X is the initial state and θ0 ∈ Rq is the constraint
constant.
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Approximation of MDPs

Consider a finite state and action discretization Md of the control
model M, and use the optimal value of Md as an approximation.

If the state space X is compact, then we select a finite grid xk ∈ H
of states, with associated approximation error δ.

Solve the MDP with state space H with an approximation error δ.
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Approximation of MDPs

Main idea

Here, we deal with a problem with noncompact state space X .
1 Choose ε > 0, and find a compact Kε ⊂ X such that: “what

happens outside Kε has a weight less than ε”.
2 Discretize Kε and obtain a δ-approximation of its optimal solution.
3 Obtain a (δ + ε)-approximation.

Our approach: Use a discretization technique that proceeds in a
single step (and not in two steps, as above).
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Approximation of MDPs

Main idea

Suppose that the stochastic kernel has a density with respect to
some probability measure µ on X .

There exists a function p(y |x , a) on X ×K such that

P(B|x , a) =

∫
B

p(y |x , a)µ(dy) for B ⊆ X .

Obtain a discretization µN on a finite set H of the distribution µ,
and consider the discretized kernels

PN(B|x , a) =

∫
B

p(y |x , a)µN(dy)

supported on H.
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Approximation of MDPs

Quantization

Suppose that the state space X is a subset of Rd .

If Y is a random variable on Rd with distribution µ, let YN be the
projection of Y (in the L2(Rd) norm) in the space of random
variables supported on N points in Rd .

We call YN the quantization of Y . We have explicit convergence
rates:

||Y − YN ||2 = O(N−1/d).

There are “toolboxes” that can find explicitly the random variable
YN for a given distribution µ.
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Approximation of MDPs

Plan of work

Approximate the solution of the constrained MDP with transition
kernel P(B|x , a) by means of a constrained MDP with the quantized
transition kernel PN(B|x , a).

Obtain explicit bounds on the approximation error: given a precision
ε > 0, determine a priori the number of points N needed in the
quantization grid.

We use a mixture of dynamic programming and linear programming.
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Dynamic programming vs. linear programming

The DP approach

In an unconstrained problem the optimal discounted cost is the
solution of the discounted cost optimality equation (DCOE)

V ∗(x) = inf
a∈A(x)

{
c(x , a) + α

∫
X

V ∗(y)P(dy |x , a)

}
, for x ∈ X .

In this case, we could study the DCOE for the quantized kernels PN .

For a constrained problem, there exists λ∗ ∈ Rq
+ such that

V ∗(x) = inf
a∈A(x)

{
c(x , a) + 〈λ∗, r(x , a)− (1− α)θ0〉

+α

∫
X

V ∗(y)P(dy |x , a)
}
.

This optimality equation is somehow useless because λ∗ is unknown
and, besides, a minimizing policy might not be constrained optimal.
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Dynamic programming vs. linear programming

The LP approach

Given a policy π ∈ Π, define the expected discounted state-action
occupation measure for measurable Γ ⊆ K ⊆ X × A:

νπ(Γ) :=
∞∑
t=0

αtPπx0
{(xt , at) ∈ Γ}

The space of “feasible measures” {νπ}π∈Π = P is characterized by
means of linear constraints.

The unconstrained and constrained control problems are respectively
equivalent to the infinite dimensional LP problems

minimize ν(c) s.t. ν ∈ P
minimize ν(c) s.t. ν ∈ P and ν(r) ≤ θ0.

Both problems are of the “same nature”.
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Statement of the problem

Lipschitz continuity framework

Given a function v : X → R we want to compare

Pv(x , a) =

∫
X

v(y)p(y |x , a)µ(dy) = E [v(Y )p(Y |x , a)]

and

PNv(x , a) =

∫
X

v(y)p(y |x , a)µN(dy) = E [v(YN)p(YN |x , a)].

We know that YN is close to Y in the L2(Rd) norm.

Under adequate Lipschitz continuity conditions (in particular, v
must be Lipschitz continuous), we can show that

PNv(x , a) is close to Pv(x , a).
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Statement of the problem

Lipschitz continuity framework

Given a function u : K→ R (interpreted as a cost function), define
the dynamic programming operators:

(T uv)(x) := inf
a∈A(x)

{
u(x , a) + α

∫
X

v(y)p(y |x , a)µ(dy)

}
and T u

Nv , with µ replaced with µN .

We have that T uv and T u
Nv are close provided that v is Lipschitz

continuous.

Hence, we place ourselves in the context of a Lipschitz continuous
MDP.
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Statement of the problem

Lipschitz continuity framework

The elements x 7→ A(x), P, and u (the cost function) of the control
model M are Lipschitz continuous.

Then the optimal discounted cost V ∗, i.e., the solution of the DCOE

V ∗(x) = inf
a∈A(x)

{
u(x , a) + α

∫
X

V ∗(y)P(dy |x , a)

}
is Lipschitz continuous.

Note that x 7→ V (x , π, u) is not, in general, continuous; but
x 7→ infπ∈Π V (x , π, u) is continuous.

Tomás Prieto-Rumeau LP approximations of constrained MDPs



INTRODUCTION
MOTIVATION OF THE PROBLEM

MAIN RESULT
CONCLUSIONS

Statement of the problem

Lipschitz continuity framework

The elements x 7→ A(x), P, and u (the cost function) of the control
model M are Lipschitz continuous.

Then the optimal discounted cost V ∗, i.e., the solution of the DCOE

V ∗(x) = inf
a∈A(x)

{
u(x , a) + α

∫
X

V ∗(y)P(dy |x , a)

}
is Lipschitz continuous.

Note that x 7→ V (x , π, u) is not, in general, continuous; but
x 7→ infπ∈Π V (x , π, u) is continuous.

Tomás Prieto-Rumeau LP approximations of constrained MDPs



INTRODUCTION
MOTIVATION OF THE PROBLEM

MAIN RESULT
CONCLUSIONS

The linear programming approach

Main idea

The LP that finds an optimal policy for the constrained MDP is LP:

J∗ = min ν(c) s.t. ν(r − (1− α)θ0) ≤ 0 and

ν(B × A) = δx0 (B) + α

∫
K
P(B|x , a)ν(dx , da) for B ⊆ X .

We solve the finite state LP problem LPN

J∗N := min ν(c) s.t. ν(r − (1− α)θ0) ≤ 0 and

ν(B × A) = δx0 (B) + α

∫
K
PN(B|x , a)ν(dx , da) for B ⊆ X .
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Steps of the proof

The kernel PN is not stochastic, and so there is no underlying
Markov decision process.

If LP verifies the Slater condition

ν(r − (1− α)θ0) < 0 for some ν,

then show that for large N the problem LPN also satisfies the Slater
condition.

Consequently, both optima are the fixed points of the operators T u

and T uN
N for

u(x , a) = c(x , a)− 〈λ∗, r(x , a)− (1− α)θ0〉
uN(x , a) = c(x , a)− 〈λ∗N , r(x , a)− (1− α)θ0〉.

Both cost functions being Lipschitz continuous, the corresponding
fixed points are “close”.
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Main result

Theorem

Consider the Lipschitz continuous constrained MDP. Given an initial
state x0 ∈ X and an arbitrary ε > 0, there exists N such that

|J∗ − J∗N | < ε.

Moreover, N depends on explicitly known data (the Lipschitz constants
of the MDP, the norm of the cost functions, etc.).
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Conclusions

We have introduced a technique which allows to approximate
explicitly the solution of a constrained MDP.

We base our approach on the quantization of an underlying
probability distribution.

Our proofs are mainly based on finite state approximations of linear
problems, with a digression to dynamic programming techniques.

Numerical experimentation of this approach is in progress.

Tomás Prieto-Rumeau LP approximations of constrained MDPs



INTRODUCTION
MOTIVATION OF THE PROBLEM

MAIN RESULT
CONCLUSIONS

Thank you for your attention.
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