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Abstract.

We consider an n–dimensional controlled diffusion process with cost
constraints. Under suitable assumptions, the existence of optimal
controls is a well–known fact. In our work we go a bit further and our
goal is to introduce a technique to compute optimal controls. To this
end, we follow the Lagrange multipliers approach.
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Typical unconstrained optimal control problem (OCP) : We are
given

A controlled system with state space X , and time–horizon
τ := [0,T ], with T <∞, T =∞, or T random,

A family U of admissible controls, and

A performance index (say, a “reward” function) J0(x ,u).

Then the OCP is : Find u∗ ∈ U such that

J0(x ,u∗) = maxu∈U J0(x ,u) ∀ x(0) = x ∈ X . (1)
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Control problem with cost constraints :
In addition to the above consider cost functionals

Ji(x ,u) ∀ x ∈ X , u ∈ U , i = 1, . . . ,N ,

and constraint constants, θ1, . . . , θN . The cost–constrained problem is
maximize J0(x ,u)

subject to : Ji(x ,u) ≤ θi ∀ i = 1, . . . ,N , x ∈ X , u ∈ U .
Here : We consider the n–dimensional controlled system

dx(t) = b(x(t), u(t))dt + σ(x(t))dB(t) ∀ t ≥ 0, (2)

reward functional (=long–run average reward)

J0(x ,u) := lim inf
T→∞

1
T Eu

x

[∫ T

0
r(x(t),u(t))dt

]
(3)
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and (N = 1) cost functional (=long–rung average cost)

J1(x ,u) := lim sup
T→∞

1
T Eu

x

[∫ T

0
c(x(t),u(t))dt

]
, (4)

with cost constraint θ1 ≡ θ ∈R.
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Remark.

For comparison, consider the OCP (1) and let X ⊂ X be a set of
constraints. Then we obtain a control problem with state
constraints :

maximize J0(x ,u)

over all u ∈ U such that the state process x(t; x ,u) is in X for all
x(0) = x ∈ X and all t ∈ τ := [0,T ].
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Remark : proof techniques.

For either cost–constrained or state–constrained problems the proof
techniques are combinations of

• The direct method,

• Linear programming

• Convex Analysis,

• Dynamic programming,

• Lagrange multipliers.
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Cost-constrained controlled diffusion
(2)–(4)
. Consider the n–dimensional controlled diffusion (2) :

dx(t) = b(x(t), u(t))dt + σ(x(t))dB(t) ∀ t ≥ 0, (5)

with x(0) = x , and B(·) a d–dimensional Brownian motion ;
coefficients

b(·, ·) : Rn
× U →Rn

, σ(·) : Rn
→Rn×d

,

where U ⊂Rm
is a compact control set.

Control policies : Let P(U) be the space of probability measures on
U endowed with the topology of weak convergence, and let F be the
family of measurable functions f : Rn

→ U .Onésimo Hernández–Lerma (Mathematics) CONTROLLED DIFFUSION PROCESSES 10 / 25



( a)
π(du|x) is a randomized stationary policy (a.k.a. relaxed stationary
control) if π(·|x) is in P(U) for every x ∈Rn

, and π(A|·) is a
measurable function on x for every Borel set A ⊂ U . We denote by Π

the family of randomized stationary policies.

(b) We say that π ∈ Π is a deterministic stationary policy (a.k.a. as
a strict or exact control) if there exists f ∈ F such that π(·|x) is the
Dirac measure concentrated at f (x) ∈ U for all x ∈Rn

. We identify
F with the family of deterministic stationary policies. Note that
F ⊂ Π.

Remark : With a suitable topology, Π is a compact convex set, and
F is the set of extreme points of Π.Onésimo Hernández–Lerma (Mathematics) CONTROLLED DIFFUSION PROCESSES 11 / 25



Remark.
We need conditions ensuring that, for every π ∈ Π, the SDE (5) has
a unique strong solution [see Assumption A] which is also uniformly
exponentially ergodic [see Assumption B].

Assumption A. (Uniform Ito conditions + uniform ellipticity).

(a) b(x , u) is continuous on Rn
× U , and there exists K such that

sup
u∈U
|b(x , u)− b(y , u)| ≤ K |x − y | ∀ x , y ∈Rn

.

(b) There exist K > 0 such that

|σ(x)− σ(y)| ≤ K |x − y | ∀ x , y ∈Rn
.
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(c) Uniform ellipticity : There exists γ > 0 for which the so–called
diffusion matrix a(·) := σ(·)σ(·)′ satisfies that

xa(y)x ′ ≥ γ|x |2 ∀ x , y ∈Rn
.

Assumption B. (Lyapunov condition). There exists a function
W ≥ 1 in C 2(Rn

) and constants β ≥ α > 0 such that

(a) lim|x |→∞W (x) = +∞, and

(b) LuW (x) ≤ −αW (x) + β ∀ x ∈Rn
, u ∈ U ,

where, for every h ∈ C 2(Rn
), u ∈ U , and x ∈Rn

:

Luh(x) :=
n∑

i=1
hxi (x)bi(x , u) +

1
2

∑
i ,j

hxi ,xj (x)aij(x) (6)
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Remark.
(a)

For π ∈ Π, i = 1, . . . , n, and x ∈Rn
, let

bi(x , π) :=
∫

U
bi(x , u)π(du|x).

Then Lπh(x) is defined as in (6) with bi(x , π) in lieu of bi(x , u).

(b) Under Assumptions A and B, for every π ∈ Π, the corresponding
solution x(·) ≡ xπ(·) of (5) is a Markov process, which is positive
recurrent with a unique invariant probability measure µπ such that

µπ(W ) :=
∫
Rn W (y)µπ(dy) <∞.

(c) Let BW (Rn
) be the normed linear space of measurable functions

v : Rn
→R with finite W –norm defined as

||v ||W := sup
x∈Rn

|v(x)|/W (x).
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Let
µ(v) :=

∫
Rn v(y)µ(dy).

(d) Under Assumptions A and B, for every π ∈ Π, the state process
x(·) ≡ xπ(·) is uniformly W –exponentially ergodic, which means that
there exist positive constants C and δ such that

sup
π∈Π
|Eπ

x v(x(t))− µπ(v)| ≤ Ce−δt ||v ||WW (x) (7)

for all x ∈Rn
, v ∈ BW (Rn

), and t ≥ 0.

For every π ∈ Π and x ∈Rn
, consider the long–run average reward

J0(x , π) in (3), i.e.,

J0(x , π) := lim inf
T→∞

1
T

∫ T

0
Eπ

x [r(x(t), π)]dt,
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where
r(x , π) :=

∫
U
r(x , u)π(du|x),

and r(x , f ) = r(x , f (x)) if π ≡ f is in F. Then, by the exponential
ergodicity (7), it is evident that J0(x , π) is a constant r(π)

independent of x ∈Rn
, where

r(π) =
∫
Rn r(y , π)µπ(dy),

i.e.
J0(x , π) ≡ r(π) ∀ π ∈ Π, x ∈Rn

. (8)

Similarly, the cost functional in (4), that is

J1(x , π) := lim sup
T→∞

1
T

∫ T

0
Eπ

x [c(x(t), π)]dt,

is such that

J1(x , π) ≡ c(π) ∀ π ∈ Π, x ∈Rn
, (9)
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with c(π) :=
∫
c(y , π)µπ(dy), and c(y , π) :=

∫
U c(y , u)π(du|y).

Consider the constrained problem CPθ :

maximize J0(x , π)

subject to : J1(x , π) ≤ θ ∀ x ∈Rn
, π ∈ Π.

By (7)–(8), we can express CPθ as

maximize r(π)

subject to : c(π) ≤ θ, π ∈ Π.
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Assumption C.

The constraint constant θ is in (θmin, θmax), where

θmin := infπ∈Πc(π) and θmax := supπ∈Πc(π).

Let V (θ) be the optimal value of CPθ, i,e.,

V (θ) := sup{r(π) : c(π) ≤ θ, π ∈ Π}
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The Lagrange multipliers approach

For every Λ ≤ 0 consider the reward rate function

rΛ(x , u) := r(x , u) + (c(x , u)− θ) · Λ.

The corresponding long-run average reward

JrΛ
(x , π) := lim inf

T→∞

1
T Eπ

x

[∫ T

0
rΛ(x(t), π)dt

]

satisfies that

JrΛ
(x , u) = J0(x , π) + (J1(x , π)− θ) · Λ.
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Assumption D.
(a) r(x , u) and c(x , u) are continuous on Rn

× U , and locally
Lipschitz in x , uniformly in u ∈ U ; that is, for each R > 0, there
exists a constant K (R) such that

sup
u∈U
|r(x , u)− r(y , u)| ≤ K (R)|x − y | ∀ |x |, |y | ≤ R ,

and similarly for c(x , u).

(b) The squared functions r(x , u)2 and c(x , u)2 are in BW (Rn
)

uniformly in U ; that is, there exists M > 0 such that

sup
u∈U

r(x , u)2 ≤ MW (x) and sup
u∈U

c(x , u)2 ≤ MW (x)

for all x ∈Rn
.
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Theorem.
Suppose that the Assumptions A, B, C, D are satisfied.

(a) For each Λ ≤ 0, there exists a solution (ρ(Λ), hΛ), with
ρ(Λ) ∈R and hΛ ∈ C 2(Rn

) ∩ BW (Rn
), of the HJB equation

ρ(Λ) = max
u∈U

[rΛ(x , a) + LuhΛ(x)] ∀ x ∈Rn
. (10)

(b) V (θ) = minΛ≤0 ρ(Λ) = ρ(Λ0) for some Λ0 ≤ 0.

(c) Suppose that there exists Λ ≤ 0 and π̂ ∈ Π satisfying

c(π̂) = θ and rΛ(π̂) = ρ(Λ),

with ρ(Λ) as in (a). Then π̂ is an optimal policy for CPθ, i.e.

r(π̂) = V (θ).
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Further, if fΛ ∈ F attains the maximum in the r.h.s. of (10) and
c(fΛ) = θ, then fΛ is a deterministic (or exact or strict) optimal policy
for CPθ.

(d) Let ρ(Λ) and fΛ be as above, and suppose that Λ 7→ ρ(Λ) is
differentiable at some Λ < 0. Then

ρ′(Λ) = c(fΛ)− θ.

In particular, if Λ < 0 is a critical point of ρ(·), then fΛ is an optimal
policy for CPθ, and part (b) holds with Λ0 = Λ.

(e) Summarizing : If ρ(·) is differentiable at some Λ < 0, then the
following statements are equivalent.
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(1) fΛ is an optimal policy for CPθ and ρ(Λ) = V (θ) ;

(2) c(fΛ) = θ ;

(3) Λ is a critical point of ρ(·).

(f) In addition, assume that the mapping Λ 7→ c(fΛ) is continuous on
the interval (−∞, 0). Then the function ρ(·) is differentiable on
(−∞, 0).

(g) [What happens at Λ = 0?] If c(f0) ≤ θ, then f0 is an optimal
policy for CPθ, and (b) holds at Λ0 = 0, i.e.,

V (θ) = minΛ≤0 ρ(Λ) = ρ(0).
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For an example and further details see :

• A.F. Mendoza–Pérez, H. Jasso–Fuentes, O. Hernández–Lerma,
The Lagrange approach to ergodic control of diffusions with cost
constraints. Submitted to Optimization.
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