CONTROLLED DIFFUSION PROCESSES WITH COST CONSTRAINTS*

Onésimo Hernández-Lerma

Mathematics Department CINVESTAV–IPN México City <ohernand@math.cinvestav.mx>

*Joint work with A.F. Mendoza–Pérez and H. Jasso–Fuentes.

・ 何 ト ・ ヨ ト ・ ヨ ト

Abstract.

We consider an *n*-dimensional controlled diffusion process with cost constraints. Under suitable assumptions, the *existence* of optimal controls is a well-known fact. In our work we go a bit further and our goal is to introduce a technique to *compute* optimal controls. To this end, we follow the Lagrange multipliers approach.

Typical unconstrained optimal control problem (OCP) : We are given

- A controlled system with state space X, and time-horizon $\tau := [0, T]$, with $T < \infty$, $T = \infty$, or T random,
- $\bullet\,$ A family ${\cal U}$ of admissible controls, and
- A performance index (say, a "reward" function) $J_0(x, \boldsymbol{u})$. Then the OCP is : Find $\boldsymbol{u}^* \in \mathcal{U}$ such that

$$J_0(x, \boldsymbol{u}^*) = \max_{\boldsymbol{u} \in \mathcal{U}} J_0(x, \boldsymbol{u}) \quad \forall \ x(0) = x \in X.$$
 (1)

・ 何 ト ・ ヨ ト ・ ヨ ト …

Control problem with cost constraints :

In addition to the above consider cost functionals

$$J_i(x, \boldsymbol{u}) \quad \forall \ x \in X, \ \boldsymbol{u} \in \mathcal{U}, \ i = 1, \dots, N,$$

and constraint constants, $\theta_1, \ldots, \theta_N$. The cost-constrained problem is maximize $J_0(x, \boldsymbol{u})$

subject to :
$$J_i(x, \boldsymbol{u}) \leq heta_i \quad \forall \ i = 1, \dots, N, \ x \in X, \ \boldsymbol{u} \in \mathcal{U}.$$

Here : We consider the n-dimensional controlled system

$$dx(t) = b(x(t), u(t))dt + \sigma(x(t))dB(t) \quad \forall t \ge 0,$$
(2)

reward functional (=long-run average reward)

$$J_0(x, \boldsymbol{u}) := \liminf_{T \to \infty} \frac{1}{T} E_x^{\boldsymbol{u}} \left[\int_0^T r(x(t), \boldsymbol{u}(t)) dt \right]$$
(3)

and (N = 1) cost functional (=long-rung average cost)

$$J_1(x, \boldsymbol{u}) := \limsup_{T \to \infty} \frac{1}{T} E_x^{\boldsymbol{u}} \left[\int_0^T c(x(t), \boldsymbol{u}(t)) dt \right], \quad (4)$$

with cost constraint $\theta_1 \equiv \theta \in \mathbb{R}$.

References

A. Arapostathis, V.S. Borkar, M.K. Ghosh (2011). *Ergodic Control of Diffusion Processes*. Cambridge University Press.

V.S. Borkar, M.K. Ghosh (1990). Controlled diffusions with constraints. *J. Math. Anal. Appl.* **152**, 88–108.

F. Dufour, R.H. Stockbridge (2011). On the existence of strict optimal controls for constrained, controlled Markov in continuous–time. *Stochastics*, to appear.

A.F. Mendoza–Pérez, O. Hernández–Lerma (2010). Markov control processes with pathwise constraints. *Math. Methods Oper. Res.* **71**.

T. Prieto–Rumeau, O. Hernández–Lerma (2008). Ergodic control of continuous–time Markov chains with pathwise constraints. *SIAM J. Control Optim.* **47**, 1888–1908.

For comparison, consider the OCP (1) and let $\mathcal{X} \subset X$ be a set of constraints. Then we obtain a **control problem with state constraints :**

maximize $J_0(x, \boldsymbol{u})$

over all $\boldsymbol{u} \in \mathcal{U}$ such that the state process $x(t; x, \boldsymbol{u})$ is in \mathcal{X} for all $x(0) = x \in \mathcal{X}$ and all $t \in \tau := [0, T]$.

References

V.S. Borkar, A. Budhiraja (2004). Ergodic control of constrained diffusions : characterization using HJB equations. *SIAM J. Control Optim.* **43**, 1463–1492. [Here, $\mathcal{X} \subset \mathbb{R}^n$ is a polyhedral cone.]

R. Buckdahn, D. Goreac, M. Quincampoix (2011). Stochastic optimal control and linear programming approach. *Appl. Math. Optim.* **63**, 257–276. [Here, $\mathcal{X} \subset \mathbb{R}^n$ is an arbitrary compact set.]

Remark : proof techniques.

For either cost-constrained or state-constrained problems the proof techniques are combinations of

- The direct method,
- Linear programming
- Convex Analysis,
- Dynamic programming,
- Lagrange multipliers.

Cost-constrained controlled diffusion (2)–(4)

. Consider the n-dimensional controlled diffusion (2) :

$$dx(t) = b(x(t), u(t))dt + \sigma(x(t))dB(t) \quad \forall \ t \ge 0,$$
(5)

with x(0) = x, and $B(\cdot)$ a d-dimensional Brownian motion; coefficients

$$b(\cdot, \cdot): \mathbb{R}^n \times U \to \mathbb{R}^n, \sigma(\cdot): \mathbb{R}^n \to \mathbb{R}^{n \times d},$$

where $U \subset \mathbb{R}^m$ is a compact *control set*.

Control policies : Let $\mathcal{P}(U)$ be the space of probability measures on U endowed with the topology of weak convergence, and let \mathbb{F} be the family of measurable functions $f: \mathbb{R}^n \to U$

(a)

 $\pi(du|x)$ is a randomized stationary policy (a.k.a. relaxed stationary control) if $\pi(\cdot|x)$ is in $\mathcal{P}(U)$ for every $x \in \mathbb{R}^n$, and $\pi(A|\cdot)$ is a measurable function on x for every Borel set $A \subset U$. We denote by Π the family of randomized stationary policies.

(b) We say that $\pi \in \Pi$ is a deterministic stationary policy (a.k.a. as a strict or exact control) if there exists $f \in \mathbb{F}$ such that $\pi(\cdot|x)$ is the Dirac measure concentrated at $f(x) \in U$ for all $x \in \mathbb{R}^n$. We identify \mathbb{F} with the family of deterministic stationary policies. Note that $\mathbb{F} \subset \Pi$.

Remark : With a suitable topology, Π is a compact convex set, and

Remark.

We need conditions ensuring that, for every $\pi \in \Pi$, the SDE (5) has a unique *strong solution* [see Assumption A] which is also *uniformly exponentially ergodic* [see Assumption B].

Assumption A. (Uniform Ito conditions + uniform ellipticity).

(a) b(x, u) is continuous on $\mathbb{R}^n \times U$, and there exists K such that $\sup_{u \in U} |b(x, u) - b(y, u)| \le K|x - y| \quad \forall x, y \in \mathbb{R}^n.$

(b) There exist K > 0 such that

$$|\sigma(x) - \sigma(y)| \le K|x - y| \quad \forall \ x, y \in \mathbb{R}^n.$$

回 ト イ ヨ ト イ ヨ ト 一

(c) Uniform ellipticity : There exists $\gamma > 0$ for which the so-called diffusion matrix $a(\cdot) := \sigma(\cdot)\sigma(\cdot)'$ satisfies that

$$xa(y)x' \ge \gamma |x|^2 \quad \forall x, y \in \mathbb{R}^n.$$

Assumption B. (Lyapunov condition). There exists a function $W \ge 1$ in $C^2(\mathbb{R}^n)$ and constants $\beta \ge \alpha > 0$ such that

(a)
$$\lim_{|x|\to\infty} W(x) = +\infty$$
, and

$$\begin{array}{ll} ({\sf b}) \ L^u W(x) \leq -\alpha W(x) + \beta \quad \forall \ x \in {\mathbb R}^n, \ u \in U, \\ {\sf where, \ for \ every \ } h \in {\mathcal C}^2({\mathbb R}^n), \ u \in U, \ {\sf and \ } x \in {\mathbb R}^n: \end{array}$$

$$L^{u}h(x) := \sum_{i=1}^{n} h_{x_{i}}(x)b_{i}(x, u) + \frac{1}{2}\sum_{i,j} h_{x_{i},x_{j}}(x)a_{ij}(x)$$
(6)

Remark.

(a) For $\pi \in \Pi$, i = 1, ..., n, and $x \in \mathbb{R}^n$, let $b_i(x, \pi) := \int_U b_i(x, u) \pi(du|x).$

Then $L^{\pi}h(x)$ is defined as in (6) with $b_i(x, \pi)$ in lieu of $b_i(x, u)$.

(b) Under Assumptions A and B, for every $\pi \in \Pi$, the corresponding solution $x(\cdot) \equiv x^{\pi}(\cdot)$ of (5) is a Markov process, which is positive recurrent with a unique invariant probability measure μ_{π} such that

$$\mu_{\pi}(W) := \int_{\operatorname{I\!R}^n} W(y) \mu_{\pi}(dy) < \infty.$$

(c) Let $B_W(\mathbb{R}^n)$ be the normed linear space of measurable functions $v: \mathbb{R}^n \to \mathbb{R}$ with finite *W*-norm defined as A = A = A = A and A = A = A.

$$\mu(\mathbf{v}) := \int_{\mathbb{R}^n} \mathbf{v}(\mathbf{y}) \mu(d\mathbf{y}).$$

(d) Under Assumptions A and B, for every $\pi \in \Pi$, the state process $x(\cdot) \equiv x^{\pi}(\cdot)$ is uniformly *W*-exponentially ergodic, which means that there exist positive constants *C* and δ such that

$$\sup_{\pi \in \Pi} |E_x^{\pi} v(x(t)) - \mu_{\pi}(v)| \le C e^{-\delta t} ||v||_W W(x)$$
for all $x \in \mathbb{R}^n$, $v \in B_W(\mathbb{R}^n)$, and $t \ge 0$.

For every $\pi \in \Pi$ and $x \in \mathbb{R}^{n}$, consider the long-run average reward $J_{0}(x,\pi)$ in (3), i.e.,

$$J_0(x,\pi) := \liminf_{T\to\infty} \frac{1}{T} \int_0^T E_x^{\pi}[r(x(t),\pi)]dt,$$

where

$$r(x,\pi) := \int_U r(x,u)\pi(du|x),$$

and r(x, f) = r(x, f(x)) if $\pi \equiv f$ is in \mathbb{F} . Then, by the exponential ergodicity (7), it is evident that $J_0(x, \pi)$ is a *constant* $\overline{r}(\pi)$ independent of $x \in \mathbb{R}^n$, where

$$\overline{r}(\pi) = \int_{\mathbb{R}^n} r(y,\pi) \mu_{\pi}(dy),$$

i.e.

$$J_0(x,\pi) \equiv \overline{r}(\pi) \quad \forall \ \pi \in \Pi, \ x \in \mathbb{R}^n.$$
(8)

Similarly, the cost functional in (4), that is

$$J_1(x,\pi) := \limsup_{T o \infty} rac{1}{T} \int_0^T E^\pi_x [c(x(t),\pi)] dt,$$

is such that

 $J_1(x,\pi) \equiv \overline{c}(\pi) \quad \forall \pi \in \Pi, x \in \mathbb{R}^n$

with $\overline{c}(\pi) := \int c(y,\pi) \mu_{\pi}(dy)$, and $c(y,\pi) := \int_{U} c(y,u) \pi(du|y)$.

Consider the **constrained problem** CP_{θ} :

maximize $J_0(x,\pi)$

subject to : $J_1(x,\pi) \leq \theta \quad \forall \ x \in \mathbb{R}^n, \pi \in \Pi.$

By (7)–(8), we can express CP_{θ} as

maximize $\overline{r}(\pi)$

```
subject to : \overline{c}(\pi) \leq \theta, \pi \in \Pi.
```

くぼう くほう くほう しゅ

Assumption C.

The constraint constant θ is in $(\theta_{\min}, \theta_{\max})$, where

$$heta_{\mathsf{min}} := \mathsf{inf}_{\pi \in \Pi} \overline{c}(\pi) \ \, \mathsf{and} \ \, heta_{\mathsf{max}} := \mathsf{sup}_{\pi \in \Pi} \overline{c}(\pi).$$

Let $V(\theta)$ be the optimal value of CP_{θ} , i.e.,

$$V(heta) := \sup\{\overline{r}(\pi) : \overline{c}(\pi) \le heta, \ \pi \in \Pi\}$$

The Lagrange multipliers approach

For every $\Lambda \leq 0$ consider the reward rate function

$$r_{\Lambda}(x, u) := r(x, u) + (c(x, u) - \theta) \cdot \Lambda.$$

The corresponding long-run average reward

$$J_{r_{\Lambda}}(x,\pi) := \liminf_{T\to\infty} \frac{1}{T} E_x^{\pi} \left[\int_0^T r_{\Lambda}(x(t),\pi) dt \right]$$

satisfies that

$$J_{r_{\Lambda}}(x,u)=J_{0}(x,\pi)+(J_{1}(x,\pi)-\theta)\cdot\Lambda.$$

• • = • • = •

Assumption D.

(a) r(x, u) and c(x, u) are continuous on $\mathbb{R}^n \times U$, and locally Lipschitz in x, uniformly in $u \in U$; that is, for each R > 0, there exists a constant K(R) such that

$$\sup_{u\in U} |r(x,u)-r(y,u)| \leq K(R)|x-y| \quad \forall |x|, |y| \leq R,$$

and similarly for c(x, u).

for all $\mathbf{x} \in \mathbb{R}^n$

(b) The squared functions $r(x, u)^2$ and $c(x, u)^2$ are in $B_W(\mathbb{R}^n)$ uniformly in U; that is, there exists M > 0 such that

$$\sup_{u \in U} r(x, u)^2 \le MW(x)$$
 and $\sup_{u \in U} c(x, u)^2 \le MW(x)$

Theorem.

Suppose that the Assumptions A, B, C, D are satisfied.

(a) For each $\Lambda \leq 0$, there exists a solution $(\rho(\Lambda), h_{\Lambda})$, with $\rho(\Lambda) \in \mathbb{R}$ and $h_{\Lambda} \in C^{2}(\mathbb{R}^{n}) \cap B_{W}(\mathbb{R}^{n})$, of the HJB equation $\rho(\Lambda) = \max_{u \in U} [r_{\Lambda}(x, a) + L^{u}h_{\Lambda}(x)] \quad \forall x \in \mathbb{R}^{n}.$ (10) (b) $V(\theta) = \min_{\Lambda \leq 0} \rho(\Lambda) = \rho(\Lambda_{0})$ for some $\Lambda_{0} \leq 0.$

(c) Suppose that there exists $\Lambda \leq 0$ and $\hat{\pi} \in \Pi$ satisfying

$$\overline{c}(\hat{\pi}) = \theta$$
 and $\overline{r}_{\Lambda}(\hat{\pi}) = \rho(\Lambda),$

with $\rho(\Lambda)$ as in (a). Then $\hat{\pi}$ is an optimal policy for CP_{θ} , i.e.

$$\overline{r}(\hat{\pi}) = V(\theta).$$

A (1) < A (2) < A (2) </p>

Further, if $f_{\Lambda} \in \mathbb{F}$ attains the maximum in the r.h.s. of (10) and $\overline{c}(f_{\Lambda}) = \theta$, then f_{Λ} is a deterministic (or exact or strict) optimal policy for CP_{θ} .

(d) Let $\rho(\Lambda)$ and f_{Λ} be as above, and suppose that $\Lambda \mapsto \rho(\Lambda)$ is differentiable at some $\Lambda < 0$. Then

$$\rho'(\Lambda) = \overline{c}(f_{\Lambda}) - \theta.$$

In particular, if $\Lambda < 0$ is a critical point of $\rho(\cdot)$, then f_{Λ} is an optimal policy for CP_{θ} , and part (b) holds with $\Lambda_0 = \Lambda$.

(e) Summarizing : If $\rho(\cdot)$ is differentiable at some $\Lambda < 0$, then the following statements are equivalent.

くぼう くほう くほう しほ

f_Λ is an optimal policy for CP_θ and ρ(Λ) = V(θ);
 c(f_Λ) = θ;
 Λ is a critical point of ρ(·).

(f) In addition, assume that the mapping $\Lambda \mapsto \overline{c}(f_{\Lambda})$ is continuous on the interval $(-\infty, 0)$. Then the function $\rho(\cdot)$ is differentiable on $(-\infty, 0)$.

(g) [What happens at $\Lambda = 0$?] If $\overline{c}(f_0) \leq \theta$, then f_0 is an optimal policy for CP_{θ} , and (b) holds at $\Lambda_0 = 0$, i.e.,

$$V(\theta) = \min_{\Lambda \leq 0} \rho(\Lambda) = \rho(0).$$

For an example and further details see :

• A.F. Mendoza–Pérez, H. Jasso–Fuentes, O. Hernández–Lerma, *The Lagrange approach to ergodic control of diffusions with cost constraints.* Submitted to *Optimization.*

THANK YOU FOR YOUR ATTENTION!

Onésimo Hernández–Lerma (Mathematics) CONTROLLED DIFFUSION PROCESSES

3 1 4 3 1