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Nash equilibria in dynamic potential games

via optimal control problems
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1. Introduction

Example 1.1 (The Stochastic Lake Game, Dechert and O’Donnell [2]). Each

player i = 1, . . . , N solves the problem

max
{uit}

E
∞

∑
t=0

βt[vi(uit)− x2
t ] (1.1)

subject to

xt+1 = h(xt) + (uit + Uit)Zt, (1.2)

where player i takes Uit := ∑j 6=i ujt (t = 0, 1, . . .) as given.

Consider the following optimal control problem (OCP). Given the dynamics

(1.2), maximize

E
∞

∑
t=0

βtG(u1t, . . . , uNt, xt) (1.3)
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where G is a potential function, given by

G(u1, . . . , uN, x) :=
N

∑
i=1

vi(ui)− x2. (1.4)

Proposition 1.2. A solution to this OCP is a Nash equilibrium of the Stochastic Lake

Game (1.1)–(1.2).

The proof is based on Dechert [1].

Notation

Integrals are line integrals. That is, if f : Rn → Rn is measurable with compo-

nent functions f1, f2, . . . , fn and φ : [0, 1]→ Rn is a C1 function with components

φ1, φ2, . . . , φn, then

∫ φ(1)

φ(0)
f (x)dx :=

∫ 1

0

[
n

∑
i=1

fi(φ(t))
dφi

dt

]
dt.
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The function f is said to be exact when this integral does not depend on the

path φ. A necessary and sufficient condition for a C1 function f to be exact is

that
∂ fi

∂xj
=

∂ f j

∂xi
for i, j = 1, . . . , n.

If f : Rn → Rn×n is a matrix of functions fij (i, j = 1, . . . , n), then
∫ φ(1)

φ(0) f (x)dx

is a vector with components

∫ 1

0

[
n

∑
j=1

fij(φ(t))
dφj

dt

]
dt for i = 1, . . . , n.

Partial derivatives ∂g/∂xi of a function g : Rn → R are also denoted by ∂xi g.

The (row) gradient vector is written as ∂xg. Finally, the transpose of a matrix A

is denoted by A∗.
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2. A related inverse problem

2.1. The control model

Consider the following performance index

E

[
∞

∑
t=0

βtG(xt, xt+1, ξt)

]
, (2.1)

where {xt} is a sequence in Rn, 0 < β < 1 is a discount factor, and {ξt} is

a sequence of i.i.d. random variables with values in a Borel set S ⊆ Rm, and

common distribution µ. The (deterministic) initial state x0 and the initial value

ξ0 = s0 are given. Each xt+1 will be chosen at time t after ξt has been observed.

If ξt takes the value st and xt+1 belongs to the so–called feasible set Γ(xt, st),

for all t = 0, 1, 2, . . ., then the sequence {xt} is called a feasible plan.
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Direct problem: Choose a feasible plan {xt} to maximize (2.1).

This kind of OCPs have been widely studied in economics; see, for instance,

Stokey and Lucas [6, Chapter 9].

Assumption 2.1. (a) The correspondence Γ is nonempty–valued. The graph of Γ is

measurable, and Γ has a measurable selection.

(b) The function G in (2.1) is measurable and, moreover, there are measurable functions

Lt : Rn × S→ R+ (with R+ := [0, ∞)) such that

|G(xt, xt+1, ξt)| ≤ Lt(x0, s0) ∀t = 0, 1, 2, . . . ,

for each feasible plan {xt}, and
∞

∑
t=0

βtLt(x0, s0) < ∞.
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Necessary conditions

Suppose that {x̂t} is a solution to the OCP and x̂t+1 is an interior point of the set

Γ(x̂t, st) for all t = 0, 1, . . .. Then {x̂t} must satisfy the stochastic Euler equation

(SEE)

∂xt G(x̂t−1, x̂t, st−1) + βE [∂xt G(x̂t, x̂t+1, ξt)] = 0 ∀t = 1, 2, . . . , (2.2)

whenever the derivative and the expectation operator can be interchanged. We

refer to Stokey and Lucas [6, Chapter 9] for details.

Remark 2.2. In many OCPs it is considered a performance index of the form

E

[
∞

∑
t=0

βtg(xt, ut)

]

where ut is a control variable, and xt is the state variable. The initial state x0 is
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given, and the state evolves according to the law

xt+1 = h(xt, ut, ξt).

The model described above is less restrictive than it might seem at first sight,

because in most cases, the latter formulation can be rewritten in the form (2.1);

see, for instance, Sydsæter et al. [7, Section 12.2].

Example 2.3 (A cake–eating problem). Consider a system in which the state

variable xt denotes the stock of a certain nonrenewable resource at time t. The

initial state x0 > 0 is given and the control variable ct is the consumption at

time t. Thus, the evolution of the system is given by

xt+1 = xt − ct, t = 0, 1, . . . .

Let U be a concave and increasing utility function defined on the control set
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[0, x0]. The OCP is to choose a sequence {ct} that maximizes the total dis-

counted utility of consumption

∞

∑
t=0

βtU(ct).

Equivalently, we wish to choose a sequence {xt} that maximizes

∞

∑
t=0

βtU(xt − xt+1). (2.3)

Suppose that the utility function in (2.3) is a CES (constant elasticity of substitu-

tion) function U(c) = (1− σ)−1c1−σ, where 0 < σ < 1. Then the Euler equation

is

− 1
(xt−1 − xt)σ

+ β
1

(xt − xt+1)σ
= 0, x0 given. (2.4)
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2.2. The inverse optimal problem

Consider a sequence {x̂t} that satisfies the difference equation

F(x̂t−1, x̂t, x̂t+1, ξt−1) = 0 ∀t = 1, 2, . . . , (2.5)

where F is some continuously differentiable function (see the function F in

Theorem 2.4), and the pair (x̂0, ξ0) = (x0, s0) is given.

Inverse problem: Find conditions under which there exists a function G such

that {x̂t} also satisfies (2.2).

This is an inverse problem because we want to find an objective function as

in (2.1) when the SEE is given.

Theorem 2.4. Let F : Rn × Rn × Rn × S → Rn be a continuously differentiable
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function. The following conditions (i) and (ii) are equivalent:

(i) There exists a function G : Rn ×Rn × S→ R of class C2 such that

F(x, y, z, ξ) = ∂yG(x, y, ξ) + β
∫

∂yG(y, z, s) µ(ds). (2.6)

(ii) There exist functions a, b : Rn ×Rn × S→ Rn of class C1 such that

(a) F(x, y, z, ξ) = a(x, y, ξ) + β
∫

b(y, z, s) µ(ds),

(b) ∂xa(x, y, ξ) = [∂yb(x, y, ξ)]∗,

(c) a(x, ·, ξ) and b(·, y, ξ) are both exact,

(d1) ∂x
∫ y

y0
a(x, w, ξ) dw =

∫ y
y0

[∂xa(x, w, ξ)]∗ dw,

(d2) ∂y
∫ x

x0
b(w, y, ξ) dw =

∫ x
x0

[∂yb(w, y, ξ)]∗ dw.
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When conditions (a)–(d) of Theorem 2.4 hold, the function G is given by

G(x, y, ξ) :=
∫ x

x0

b(w, y, ξ) dw +
∫ y

y0

a(x0, w, ξ) dw. (2.7)

See González–Sánchez and Hernández–Lerma [4, Theorem 3.1] for details.

Sufficient conditions

Theorem 2.6, below, gives conditions to ensure that a sequence satisfying the

SEE (2.2) is indeed a maximizer of (2.1), where G is the function given by (2.7).

Dechert [1, Theorem 2] considers different conditions for the deterministic

case. In particular, he supposes that
∞

∑
t=0

βt‖∂vG(x̂t, x̂t+1)‖ < ∞, for v = xt, xt+1. (2.8)

This assumption is not satisfied even for some elementary problems. For in-

stance, we find in Example 2.7, below, that x̂t = βt/σx0 (t = 1, 2, . . .) solves the
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OCP in Example 2.3, but

∞

∑
t=0

βt‖∂xt G(x̂t, x̂t+1)‖ =
∞

∑
t=0

βt 1
(βt/σx0 − β(t+1)/σx0)σ

is not finite; that is, (2.8) is not satisfied.

Assumption 2.5. (a) The function G in (2.7) is concave in (x, y) and ∂G/∂xi ≥ 0

for each i = 1, 2, . . . , n.

(b) Each set Γ(x, s) consists of nonnegative vectors only.

Theorem 2.6. Let F satisfy conditions (a)–(d) of Theorem 2.4. Consider the function

G in (2.7) and a sequence {x̂t}∞
t=0 (in particular, x̂0 = x) that satisfies the difference

equation

F(x̂t−1, x̂t, x̂t+1, ξt−1) = 0, t = 1, 2, . . . .
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Under Assumption 2.5 and the transversality condition

lim
t→∞

βtE [∂xt G(x̂t, x̂t+1, ξt)] · x̂t = 0, (2.9)

the sequence {x̂t}∞
t=0 is a solution to the problem

max
{

E
∞

∑
t=0

βtG(xt, xt+1, ξt)
∣∣∣∣ x0 = x, ξ0 = s0 given

}
.

See Kamihigashi [5] for an explanation of the transversality condition (2.9)

and the relationship to some applications in economics.

Example 2.7. The Euler equation for the Cake–eating problem in Example 2.3

xt+1 − (1 + β1/σ)xt + β1/σxt−1 = 0, x0 given,

is a second order difference equation. Its solution is x̂t = c1 + c2βt/σ (t =

0, 1, 2, . . .), for some constants c1, c2. To determine these two constants, we have
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to use both the initial condition and the transversality condition (2.9). We obtain

c1 = 0 and c2 = x0. Therefore, the optimal Markov policy for consumption is

ĉt = (1− β1/σ)x̂t, t = 0, 1, 2, . . . .
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3. Dynamic games with a potential function

Consider a game with player i’s reward function, i = 1, 2, . . . , N, given by

E
∞

∑
t=0

βtri(xt, xt+1, ξt). (3.1)

Each player i has to choose a sequence {xi
t} to maximize (3.1) given {xj

t} for

j 6= i. The corresponding SEEs for an open–loop Nash equilibrium {x̂t} are

∂xitr
i(x̂t−1, x̂t, st−1) + βE

[
∂xitr

i(x̂t, x̂t+1, ξt)
]

= 0 (3.2)

for each i = 1, . . . , N, and for all t = 0, 1, . . ..

Dynamic potential games

To find Nash equilibria, we can use the inverse problem described in Section

2.2. Replace the difference equation (2.5) by (3.2) and suppose that hypotheses
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of Theorems 2.4 and 2.6 hold. Then the previous game is a potential game.

That is, there is a potential function G such that a solution to the OCP

max
{

E
∞

∑
t=0

βtG(xt, xt+1, ξt)
∣∣∣∣ x0 = x, ξ0 = s0 given

}
,

is also a Nash equilibrium of the game. The potential function is given by (2.7).

Example 3.1. Dockner et al. [3] consider a capital accumulation game with two

players. The reward functions are

J1(·) =
∞

∑
t=0

βt[π1(xt, yt)− I1
t ],

J2(·) =
∞

∑
t=0

βt[π2(yt, xt)− I2
t ],

and the dynamics

xt+1 = I1
t + (1− δ1)xt,

yt+1 = I2
t + (1− δ2)yt.
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The rewards for this game can be written in the form (3.1) as follows

∞

∑
t=0

βt[π1(xt, yt)− xt+1 + (1− δ1)xt],

∞

∑
t=0

βt[π2(yt, xt)− yt+1 + (1− δ2)yt].

This is a potential game if

∂2π1

∂x∂y
(x, y) =

∂2π2

∂x∂y
(y, x). (3.3)

When (3.3) holds, there exists a function π such that

∂π

∂x
(x, y) =

∂π1

∂x
(x, y),

∂π

∂y
(x, y) =

∂π2

∂y
(y, x).

A potential function G is given by

π(xt, yt) + (1− δ1)xt + (1− δ2)yt − xt+1 − yt+1.
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