Nash equilibria in dynamic potential games via optimal control problems

David González-Sánchez

Cinvestav

COLOQUIO DE SISTEMAS ESTOCÁSTICOS 2011
Ciudad de México, 27 y 28 de ocubre
Contents
1 Introduction 3
2 A related inverse problem 6
2.1 The control model 6
2.2 The inverse optimal problem 11
3 Dynamic games with a potential function 17

1. Introduction

Example 1.1 (The Stochastic Lake Game, Dechert and O'Donnell [2]). Each player $i=1, \ldots, N$ solves the problem

$$
\begin{equation*}
\max _{\left\{u_{i t}\right\}} \mathbb{E} \sum_{t=0}^{\infty} \beta^{t}\left[v_{i}\left(u_{i t}\right)-x_{t}^{2}\right] \tag{1.1}
\end{equation*}
$$

subject to

$$
\begin{equation*}
x_{t+1}=h\left(x_{t}\right)+\left(u_{i t}+U_{i t}\right) Z_{t}, \tag{1.2}
\end{equation*}
$$

where player i takes $U_{i t}:=\sum_{j \neq i} u_{j t}(t=0,1, \ldots)$ as given.
Consider the following optimal control problem (OCP). Given the dynamics (1.2), maximize

$$
\begin{equation*}
\mathbb{E} \sum_{t=0}^{\infty} \beta^{t} G\left(u_{1 t}, \ldots, u_{N t}, x_{t}\right) \tag{1.3}
\end{equation*}
$$

where G is a potential function, given by

$$
\text { Page } 4 \text { of } 21
$$

Go Back

Full Screen

$$
\begin{equation*}
G\left(u_{1}, \ldots, u_{N}, x\right):=\sum_{i=1}^{N} v_{i}\left(u_{i}\right)-x^{2} \tag{1.4}
\end{equation*}
$$

Proposition 1.2. A solution to this OCP is a Nash equilibrium of the Stochastic Lake Game (1.1)-(1.2).

The proof is based on Dechert [1].

Notation

Integrals are line integrals. That is, if $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is measurable with component functions $f_{1}, f_{2}, \ldots, f_{n}$ and $\phi:[0,1] \rightarrow \mathbb{R}^{n}$ is a \mathcal{C}^{1} function with components $\phi_{1}, \phi_{2}, \ldots, \phi_{n}$, then

$$
\int_{\phi(0)}^{\phi(1)} f(x) d x:=\int_{0}^{1}\left[\sum_{i=1}^{n} f_{i}(\phi(t)) \frac{d \phi_{i}}{d t}\right] d t .
$$

$$
\text { Page } 5 \text { of } 21
$$

Go Back

Full Screen

Close

Quit

The function f is said to be exact when this integral does not depend on the path ϕ. A necessary and sufficient condition for a \mathcal{C}^{1} function f to be exact is that

$$
\frac{\partial f_{i}}{\partial x_{j}}=\frac{\partial f_{j}}{\partial x_{i}} \quad \text { for } i, j=1, \ldots, n
$$

If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n \times n}$ is a matrix of functions $f_{i j}(i, j=1, \ldots, n)$, then $\int_{\phi(0)}^{\phi(1)} f(x) d x$ is a vector with components

$$
\int_{0}^{1}\left[\sum_{j=1}^{n} f_{i j}(\phi(t)) \frac{d \phi_{j}}{d t}\right] d t \quad \text { for } i=1, \ldots, n
$$

Partial derivatives $\partial g / \partial x_{i}$ of a function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ are also denoted by $\partial_{x_{i}} g$. The (row) gradient vector is written as $\partial_{x} g$. Finally, the transpose of a matrix A is denoted by A^{*}.

2. A related inverse problem

2.1. The control model

Consider the following performance index

$$
\begin{equation*}
\mathbb{E}\left[\sum_{t=0}^{\infty} \beta^{t} G\left(x_{t}, x_{t+1}, \xi_{t}\right)\right], \tag{2.1}
\end{equation*}
$$

where $\left\{x_{t}\right\}$ is a sequence in $\mathbb{R}^{n}, 0<\beta<1$ is a discount factor, and $\left\{\xi_{t}\right\}$ is a sequence of i.i.d. random variables with values in a Borel set $S \subseteq \mathbb{R}^{m}$, and common distribution μ. The (deterministic) initial state x_{0} and the initial value $\xi_{0}=s_{0}$ are given. Each x_{t+1} will be chosen at time t after ξ_{t} has been observed. If ξ_{t} takes the value s_{t} and x_{t+1} belongs to the so-called feasible set $\Gamma\left(x_{t}, s_{t}\right)$, for all $t=0,1,2, \ldots$, then the sequence $\left\{x_{t}\right\}$ is called a feasible plan.

Direct problem: Choose a feasible plan $\left\{x_{t}\right\}$ to maximize (2.1). Stokey and Lucas [6, Chapter 9].

Assumption 2.1. (a) The correspondence Γ is nonempty-valued. The graph of Γ is measurable, and Γ has a measurable selection.
(b) The function G in (2.1) is measurable and, moreover, there are measurable functions $L_{t}: \mathbb{R}^{n} \times S \rightarrow \mathbb{R}_{+}$(with $\mathbb{R}_{+}:=[0, \infty)$) such that

$$
\left|G\left(x_{t}, x_{t+1}, \xi_{t}\right)\right| \leq L_{t}\left(x_{0}, s_{0}\right) \quad \forall t=0,1,2, \ldots,
$$

for each feasible plan $\left\{x_{t}\right\}$, and

$$
\sum_{t=0}^{\infty} \beta^{t} L_{t}\left(x_{0}, s_{0}\right)<\infty .
$$

Necessary conditions

Page 8 of 21

Go Back

Full Screen

Close

Quit

Suppose that $\left\{\hat{x}_{t}\right\}$ is a solution to the OCP and \hat{x}_{t+1} is an interior point of the set $\Gamma\left(\hat{x}_{t}, s_{t}\right)$ for all $t=0,1, \ldots$. Then $\left\{\hat{x}_{t}\right\}$ must satisfy the stochastic Euler equation (SEE)

$$
\begin{equation*}
\partial_{x_{t}} G\left(\hat{x}_{t-1}, \hat{x}_{t}, s_{t-1}\right)+\beta \mathbb{E}\left[\partial_{x_{t}} G\left(\hat{x}_{t}, \hat{x}_{t+1}, \xi_{t}\right)\right]=0 \quad \forall t=1,2, \ldots, \tag{2.2}
\end{equation*}
$$

whenever the derivative and the expectation operator can be interchanged. We refer to Stokey and Lucas [6, Chapter 9] for details.

Remark 2.2. In many OCPs it is considered a performance index of the form

$$
\mathbb{E}\left[\sum_{t=0}^{\infty} \beta^{t} g\left(x_{t}, u_{t}\right)\right]
$$

where u_{t} is a control variable, and x_{t} is the state variable. The initial state x_{0} is
given, and the state evolves according to the law time t. Thus, the evolution of the system is given by

$$
x_{t+1}=x_{t}-c_{t}, \quad t=0,1, \ldots
$$

Let U be a concave and increasing utility function defined on the control set
$\left[0, x_{0}\right]$. The OCP is to choose a sequence $\left\{c_{t}\right\}$ that maximizes the total discounted utility of consumption

$$
\sum_{t=0}^{\infty} \beta^{t} U\left(c_{t}\right) .
$$

Equivalently, we wish to choose a sequence $\left\{x_{t}\right\}$ that maximizes

$$
\begin{equation*}
\sum_{t=0}^{\infty} \beta^{t} U\left(x_{t}-x_{t+1}\right) . \tag{2.3}
\end{equation*}
$$

Suppose that the utility function in (2.3) is a CES (constant elasticity of substitution) function $U(c)=(1-\sigma)^{-1} c^{1-\sigma}$, where $0<\sigma<1$. Then the Euler equation is

$$
\begin{equation*}
-\frac{1}{\left(x_{t-1}-x_{t}\right)^{\sigma}}+\beta \frac{1}{\left(x_{t}-x_{t+1}\right)^{\sigma}}=0, \quad x_{0} \text { given } \tag{2.4}
\end{equation*}
$$

2.2. The inverse optimal problem

Consider a sequence $\left\{\hat{x}_{t}\right\}$ that satisfies the difference equation

$$
\begin{equation*}
F\left(\hat{x}_{t-1}, \hat{x}_{t}, \hat{x}_{t+1}, \xi_{t-1}\right)=0 \quad \forall t=1,2, \ldots, \tag{2.5}
\end{equation*}
$$

where F is some continuously differentiable function (see the function F in Theorem 2.4), and the pair $\left(\hat{x}_{0}, \xi_{0}\right)=\left(x_{0}, s_{0}\right)$ is given.

Inverse problem: Find conditions under which there exists a function G such that $\left\{\hat{x}_{t}\right\}$ also satisfies (2.2).

This is an inverse problem because we want to find an objective function as in (2.1) when the SEE is given.

Theorem 2.4. Let $F: \mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n} \times S \rightarrow \mathbb{R}^{n}$ be a continuously differentiable
function. The following conditions (i) and (ii) are equivalent:
(i) There exists a function $G: \mathbb{R}^{n} \times \mathbb{R}^{n} \times S \rightarrow \mathbb{R}$ of class \mathcal{C}^{2} such that

$$
\begin{equation*}
F(x, y, z, \xi)=\partial_{y} G(x, y, \xi)+\beta \int \partial_{y} G(y, z, s) \mu(d s) . \tag{2.6}
\end{equation*}
$$

(ii) There exist functions $a, b: \mathbb{R}^{n} \times \mathbb{R}^{n} \times S \rightarrow \mathbb{R}^{n}$ of class \mathcal{C}^{1} such that
(a) $F(x, y, z, \xi)=a(x, y, \xi)+\beta \int b(y, z, s) \mu(d s)$,
(b) $\partial_{x} a(x, y, \xi)=\left[\partial_{y} b(x, y, \xi)\right]^{*}$,
(c) $a(x, \cdot, \xi)$ and $b(\cdot, y, \xi)$ are both exact,
(d1) $\partial_{x} \int_{y_{0}}^{y} a(x, w, \xi) d w=\int_{y_{0}}^{y}\left[\partial_{x} a(x, w, \xi)\right]^{*} d w$,
(d2) $\partial_{y} \int_{x_{0}}^{x} b(w, y, \xi) d w=\int_{x_{0}}^{x}\left[\partial_{y} b(w, y, \xi)\right]^{*} d w$.

When conditions (a)-(d) of Theorem 2.4 hold, the function G is given by

$$
\begin{equation*}
G(x, y, \xi):=\int_{x_{0}}^{x} b(w, y, \xi) d w+\int_{y_{0}}^{y} a\left(x_{0}, w, \xi\right) d w . \tag{2.7}
\end{equation*}
$$

See González-Sánchez and Hernández-Lerma [4, Theorem 3.1] for details.

Sufficient conditions

Theorem 2.6, below, gives conditions to ensure that a sequence satisfying the SEE (2.2) is indeed a maximizer of (2.1), where G is the function given by (2.7).

Dechert [1, Theorem 2] considers different conditions for the deterministic case. In particular, he supposes that

$$
\begin{equation*}
\sum_{t=0}^{\infty} \beta^{t}\left\|\partial_{v} G\left(\hat{x}_{t}, \hat{x}_{t+1}\right)\right\|<\infty, \quad \text { for } v=x_{t}, x_{t+1} . \tag{2.8}
\end{equation*}
$$

This assumption is not satisfied even for some elementary problems. For instance, we find in Example 2.7, below, that $\hat{x}_{t}=\beta^{t / \sigma} x_{0}(t=1,2, \ldots)$ solves the

OCP in Example 2.3, but

$$
\sum_{t=0}^{\infty} \beta^{t}\left\|\partial_{x_{t}} G\left(\hat{x}_{t}, \hat{x}_{t+1}\right)\right\|=\sum_{t=0}^{\infty} \beta^{t} \frac{1}{\left(\beta^{t / \sigma} x_{0}-\beta^{(t+1) / \sigma} x_{0}\right)^{\sigma}}
$$

is not finite; that is, (2.8) is not satisfied.

Assumption 2.5. (a) The function G in (2.7) is concave in (x, y) and $\partial G / \partial x_{i} \geq 0$

$$
\text { for each } i=1,2, \ldots, n \text {. }
$$

(b) Each set $\Gamma(x, s)$ consists of nonnegative vectors only.

Theorem 2.6. Let F satisfy conditions (a)-(d) of Theorem 2.4. Consider the function G in (2.7) and a sequence $\left\{\hat{x}_{t}\right\}_{t=0}^{\infty}$ (in particular, $\hat{x}_{0}=x$) that satisfies the difference equation

$$
F\left(\hat{x}_{t-1}, \hat{x}_{t}, \hat{x}_{t+1}, \xi_{t-1}\right)=0, \quad t=1,2, \ldots .
$$

$$
\begin{equation*}
\lim _{t \rightarrow \infty} \beta^{t} \mathbb{E}\left[\partial_{x_{t}} G\left(\hat{x}_{t}, \hat{x}_{t+1}, \xi_{t}\right)\right] \cdot \hat{x}_{t}=0, \tag{2.9}
\end{equation*}
$$

the sequence $\left\{\hat{x}_{t}\right\}_{t=0}^{\infty}$ is a solution to the problem

$$
\max \left\{\mathbb{E} \sum_{t=0}^{\infty} \beta^{t} G\left(x_{t}, x_{t+1}, \xi_{t}\right) \mid x_{0}=x, \xi_{0}=s_{0} \text { given }\right\} .
$$

See Kamihigashi [5] for an explanation of the transversality condition (2.9) and the relationship to some applications in economics.

Example 2.7. The Euler equation for the Cake-eating problem in Example 2.3

$$
x_{t+1}-\left(1+\beta^{1 / \sigma}\right) x_{t}+\beta^{1 / \sigma} x_{t-1}=0, \quad x_{0} \text { given, }
$$

is a second order difference equation. Its solution is $\hat{x}_{t}=c_{1}+c_{2} \beta^{t / \sigma}(t=$ $0,1,2, \ldots)$, for some constants c_{1}, c_{2}. To determine these two constants, we have
to use both the initial condition and the transversality condition (2.9). We obtain $c_{1}=0$ and $c_{2}=x_{0}$. Therefore, the optimal Markov policy for consumption is

$$
\hat{c}_{t}=\left(1-\beta^{1 / \sigma}\right) \hat{x}_{t}, \quad t=0,1,2, \ldots .
$$

3. Dynamic games with a potential function

Consider a game with player i 's reward function, $i=1,2, \ldots, N$, given by

$$
\begin{equation*}
\mathbb{E} \sum_{t=0}^{\infty} \beta^{t} r^{i}\left(x_{t}, x_{t+1}, \xi_{t}\right) . \tag{3.1}
\end{equation*}
$$

Each player i has to choose a sequence $\left\{x_{t}^{i}\right\}$ to maximize (3.1) given $\left\{x_{t}^{j}\right\}$ for $j \neq i$. The corresponding SEEs for an open-loop Nash equilibrium $\left\{\hat{x}_{t}\right\}$ are

$$
\begin{equation*}
\partial_{x_{i t}} r^{i}\left(\hat{x}_{t-1}, \hat{x}_{t}, s_{t-1}\right)+\beta \mathbb{E}\left[\partial_{x_{i t}}{ }^{i}\left(\hat{x}_{t}, \hat{x}_{t+1}, \xi_{t}\right)\right]=0 \tag{3.2}
\end{equation*}
$$

for each $i=1, \ldots, N$, and for all $t=0,1, \ldots$.

Dynamic potential games

To find Nash equilibria, we can use the inverse problem described in Section 2.2. Replace the difference equation (2.5) by (3.2) and suppose that hypotheses
of Theorems 2.4 and 2.6 hold. Then the previous game is a potential game. That is, there is a potential function G such that a solution to the OCP

$$
\max \left\{\mathbb{E} \sum_{t=0}^{\infty} \beta^{t} G\left(x_{t}, x_{t+1}, \xi_{t}\right) \mid x_{0}=x, \xi_{0}=s_{0} \text { given }\right\},
$$

is also a Nash equilibrium of the game. The potential function is given by (2.7).
Example 3.1. Dockner et al. [3] consider a capital accumulation game with two players. The reward functions are

$$
\begin{aligned}
& J^{1}(\cdot)=\sum_{t=0}^{\infty} \beta^{t}\left[\pi^{1}\left(x_{t}, y_{t}\right)-I_{t}^{1}\right] \\
& J^{2}(\cdot)=\sum_{t=0}^{\infty} \beta^{t}\left[\pi^{2}\left(y_{t}, x_{t}\right)-I_{t}^{2}\right]
\end{aligned}
$$

and the dynamics

$$
\begin{aligned}
& x_{t+1}=I_{t}^{1}+\left(1-\delta_{1}\right) x_{t} \\
& y_{t+1}=I_{t}^{2}+\left(1-\delta_{2}\right) y_{t} .
\end{aligned}
$$

The rewards for this game can be written in the form (3.1) as follows

$$
\begin{aligned}
& \sum_{t=0}^{\infty} \beta^{t}\left[\pi^{1}\left(x_{t}, y_{t}\right)-x_{t+1}+\left(1-\delta_{1}\right) x_{t}\right], \\
& \sum_{t=0}^{\infty} \beta^{t}\left[\pi^{2}\left(y_{t}, x_{t}\right)-y_{t+1}+\left(1-\delta_{2}\right) y_{t}\right]
\end{aligned}
$$

This is a potential game if

$$
\begin{equation*}
\frac{\partial^{2} \pi^{1}}{\partial x \partial y}(x, y)=\frac{\partial^{2} \pi^{2}}{\partial x \partial y}(y, x) . \tag{3.3}
\end{equation*}
$$

When (3.3) holds, there exists a function π such that

$$
\frac{\partial \pi}{\partial x}(x, y)=\frac{\partial \pi^{1}}{\partial x}(x, y), \quad \frac{\partial \pi}{\partial y}(x, y)=\frac{\partial \pi^{2}}{\partial y}(y, x) .
$$

A potential function G is given by

$$
\pi\left(x_{t}, y_{t}\right)+\left(1-\delta_{1}\right) x_{t}+\left(1-\delta_{2}\right) y_{t}-x_{t+1}-y_{t+1} .
$$

References

Close

[1] W.D. Dechert (1978). Optimal control problems from second order difference equations, J. Econ. Theory 19, pp. 50-63.
[2] W.D. Dechert and S.I. O'Donnell (2006). The stochastic lake game: A numerical solution, J. Econ. Dyn. Control 30, pp. 1569-1587.
[3] E.J. Dockner, M. Plank, and K. Nishimura (1999). Markov perfect equilibria for a class of capital accumulation games, Ann. Oper. Res. 89, pp. 215Ü-230.
[4] D. González-Sánchez and O. Hernández-Lerma (2011). An inverse optimal problem in discrete-time stochastic control, J. Difference Eq. Appl. DOI:10.1080/10236198.2011.613596

Go Back

Full Screen

Close

Quit
[5] T. Kamihigashi (2008). Transversality conditions and dynamic economic behaviour. In: S.N. Durlauf and L.E. Blume (eds), The New Palgrave Dictionary of Economics, 2nd ed., pp. 384-387, Palgrave Macmillan, Hampshire.
[6] N.L. Stokey and R.E. Lucas with E.C. Prescott (1989). Recursive Methods in Economic Dynamics, Harvard University Press, Cambridge, MA.
[7] K. Sydsæter, P.J. Hammond, A. Seierstad, and A. Strøm (2008). Further Mathematics for Economic Analysis, 2nd ed., Prentice-Hall, New York.

